blob: 56a0dd27e18edaacf221ea0041886924a39c12e4 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "sandbox/linux/bpf_dsl/codegen.h"
#include <stddef.h>
#include <stdint.h>
#include <map>
#include <utility>
#include <vector>
#include "base/macros.h"
#include "base/md5.h"
#include "base/strings/string_piece.h"
#include "sandbox/linux/system_headers/linux_filter.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace sandbox {
namespace {
// Hash provides an abstraction for building "hash trees" from BPF
// control flow graphs, and efficiently identifying equivalent graphs.
//
// For simplicity, we use MD5, because base happens to provide a
// convenient API for its use. However, any collision-resistant hash
// should suffice.
class Hash {
public:
static const Hash kZero;
Hash() : digest_() {}
Hash(uint16_t code,
uint32_t k,
const Hash& jt = kZero,
const Hash& jf = kZero)
: digest_() {
base::MD5Context ctx;
base::MD5Init(&ctx);
HashValue(&ctx, code);
HashValue(&ctx, k);
HashValue(&ctx, jt);
HashValue(&ctx, jf);
base::MD5Final(&digest_, &ctx);
}
Hash(const Hash& hash) = default;
Hash& operator=(const Hash& rhs) = default;
friend bool operator==(const Hash& lhs, const Hash& rhs) {
return lhs.Base16() == rhs.Base16();
}
friend bool operator!=(const Hash& lhs, const Hash& rhs) {
return !(lhs == rhs);
}
private:
template <typename T>
void HashValue(base::MD5Context* ctx, const T& value) {
base::MD5Update(ctx,
base::StringPiece(reinterpret_cast<const char*>(&value),
sizeof(value)));
}
std::string Base16() const {
return base::MD5DigestToBase16(digest_);
}
base::MD5Digest digest_;
};
const Hash Hash::kZero;
// Sanity check that equality and inequality work on Hash as required.
TEST(CodeGen, HashSanity) {
std::vector<Hash> hashes;
// Push a bunch of logically distinct hashes.
hashes.push_back(Hash::kZero);
for (int i = 0; i < 4; ++i) {
hashes.push_back(Hash(i & 1, i & 2));
}
for (int i = 0; i < 16; ++i) {
hashes.push_back(Hash(i & 1, i & 2, Hash(i & 4, i & 8)));
}
for (int i = 0; i < 64; ++i) {
hashes.push_back(
Hash(i & 1, i & 2, Hash(i & 4, i & 8), Hash(i & 16, i & 32)));
}
for (const Hash& a : hashes) {
for (const Hash& b : hashes) {
// Hashes should equal themselves, but not equal all others.
if (&a == &b) {
EXPECT_EQ(a, b);
} else {
EXPECT_NE(a, b);
}
}
}
}
// ProgramTest provides a fixture for writing compiling sample
// programs with CodeGen and verifying the linearized output matches
// the input DAG.
class ProgramTest : public ::testing::Test {
protected:
ProgramTest() : gen_(), node_hashes_() {}
// MakeInstruction calls CodeGen::MakeInstruction() and associated
// the returned address with a hash of the instruction.
CodeGen::Node MakeInstruction(uint16_t code,
uint32_t k,
CodeGen::Node jt = CodeGen::kNullNode,
CodeGen::Node jf = CodeGen::kNullNode) {
CodeGen::Node res = gen_.MakeInstruction(code, k, jt, jf);
EXPECT_NE(CodeGen::kNullNode, res);
Hash digest(code, k, Lookup(jt), Lookup(jf));
auto it = node_hashes_.insert(std::make_pair(res, digest));
EXPECT_EQ(digest, it.first->second);
return res;
}
// RunTest compiles the program and verifies that the output matches
// what is expected. It should be called at the end of each program
// test case.
void RunTest(CodeGen::Node head) {
// Compile the program
CodeGen::Program program = gen_.Compile(head);
// Walk the program backwards, and compute the hash for each instruction.
std::vector<Hash> prog_hashes(program.size());
for (size_t i = program.size(); i > 0; --i) {
const sock_filter& insn = program.at(i - 1);
Hash& hash = prog_hashes.at(i - 1);
if (BPF_CLASS(insn.code) == BPF_JMP) {
if (BPF_OP(insn.code) == BPF_JA) {
// The compiler adds JA instructions as needed, so skip them.
hash = prog_hashes.at(i + insn.k);
} else {
hash = Hash(insn.code, insn.k, prog_hashes.at(i + insn.jt),
prog_hashes.at(i + insn.jf));
}
} else if (BPF_CLASS(insn.code) == BPF_RET) {
hash = Hash(insn.code, insn.k);
} else {
hash = Hash(insn.code, insn.k, prog_hashes.at(i));
}
}
EXPECT_EQ(Lookup(head), prog_hashes.at(0));
}
private:
const Hash& Lookup(CodeGen::Node next) const {
if (next == CodeGen::kNullNode) {
return Hash::kZero;
}
auto it = node_hashes_.find(next);
if (it == node_hashes_.end()) {
ADD_FAILURE() << "No hash found for node " << next;
return Hash::kZero;
}
return it->second;
}
CodeGen gen_;
std::map<CodeGen::Node, Hash> node_hashes_;
DISALLOW_COPY_AND_ASSIGN(ProgramTest);
};
TEST_F(ProgramTest, OneInstruction) {
// Create the most basic valid BPF program:
// RET 0
CodeGen::Node head = MakeInstruction(BPF_RET + BPF_K, 0);
RunTest(head);
}
TEST_F(ProgramTest, SimpleBranch) {
// Create a program with a single branch:
// JUMP if eq 42 then $0 else $1
// 0: RET 1
// 1: RET 0
CodeGen::Node head = MakeInstruction(BPF_JMP + BPF_JEQ + BPF_K, 42,
MakeInstruction(BPF_RET + BPF_K, 1),
MakeInstruction(BPF_RET + BPF_K, 0));
RunTest(head);
}
TEST_F(ProgramTest, AtypicalBranch) {
// Create a program with a single branch:
// JUMP if eq 42 then $0 else $0
// 0: RET 0
CodeGen::Node ret = MakeInstruction(BPF_RET + BPF_K, 0);
CodeGen::Node head = MakeInstruction(BPF_JMP + BPF_JEQ + BPF_K, 42, ret, ret);
// N.B.: As the instructions in both sides of the branch are already
// the same object, we do not actually have any "mergeable" branches.
// This needs to be reflected in our choice of "flags".
RunTest(head);
}
TEST_F(ProgramTest, Complex) {
// Creates a basic BPF program that we'll use to test some of the code:
// JUMP if eq 42 the $0 else $1 (insn6)
// 0: LD 23 (insn5)
// 1: JUMP if eq 42 then $2 else $4 (insn4)
// 2: JUMP to $3 (insn2)
// 3: LD 42 (insn1)
// RET 42 (insn0)
// 4: LD 42 (insn3)
// RET 42 (insn3+)
CodeGen::Node insn0 = MakeInstruction(BPF_RET + BPF_K, 42);
CodeGen::Node insn1 = MakeInstruction(BPF_LD + BPF_W + BPF_ABS, 42, insn0);
CodeGen::Node insn2 = insn1; // Implicit JUMP
// We explicitly duplicate instructions to test that they're merged.
CodeGen::Node insn3 = MakeInstruction(BPF_LD + BPF_W + BPF_ABS, 42,
MakeInstruction(BPF_RET + BPF_K, 42));
EXPECT_EQ(insn2, insn3);
CodeGen::Node insn4 =
MakeInstruction(BPF_JMP + BPF_JEQ + BPF_K, 42, insn2, insn3);
CodeGen::Node insn5 = MakeInstruction(BPF_LD + BPF_W + BPF_ABS, 23, insn4);
// Force a basic block that ends in neither a jump instruction nor a return
// instruction. It only contains "insn5". This exercises one of the less
// common code paths in the topo-sort algorithm.
// This also gives us a diamond-shaped pattern in our graph, which stresses
// another aspect of the topo-sort algorithm (namely, the ability to
// correctly count the incoming branches for subtrees that are not disjunct).
CodeGen::Node insn6 =
MakeInstruction(BPF_JMP + BPF_JEQ + BPF_K, 42, insn5, insn4);
RunTest(insn6);
}
TEST_F(ProgramTest, ConfusingTails) {
// This simple program demonstrates https://crbug.com/351103/
// The two "LOAD 0" instructions are blocks of their own. MergeTails() could
// be tempted to merge them since they are the same. However, they are
// not mergeable because they fall-through to non semantically equivalent
// blocks.
// Without the fix for this bug, this program should trigger the check in
// CompileAndCompare: the serialized graphs from the program and its compiled
// version will differ.
//
// 0) LOAD 1 // ???
// 1) if A == 0x1; then JMP 2 else JMP 3
// 2) LOAD 0 // System call number
// 3) if A == 0x2; then JMP 4 else JMP 5
// 4) LOAD 0 // System call number
// 5) if A == 0x1; then JMP 6 else JMP 7
// 6) RET 0
// 7) RET 1
CodeGen::Node i7 = MakeInstruction(BPF_RET + BPF_K, 1);
CodeGen::Node i6 = MakeInstruction(BPF_RET + BPF_K, 0);
CodeGen::Node i5 = MakeInstruction(BPF_JMP + BPF_JEQ + BPF_K, 1, i6, i7);
CodeGen::Node i4 = MakeInstruction(BPF_LD + BPF_W + BPF_ABS, 0, i5);
CodeGen::Node i3 = MakeInstruction(BPF_JMP + BPF_JEQ + BPF_K, 2, i4, i5);
CodeGen::Node i2 = MakeInstruction(BPF_LD + BPF_W + BPF_ABS, 0, i3);
CodeGen::Node i1 = MakeInstruction(BPF_JMP + BPF_JEQ + BPF_K, 1, i2, i3);
CodeGen::Node i0 = MakeInstruction(BPF_LD + BPF_W + BPF_ABS, 1, i1);
RunTest(i0);
}
TEST_F(ProgramTest, ConfusingTailsBasic) {
// Without the fix for https://crbug.com/351103/, (see
// SampleProgramConfusingTails()), this would generate a cyclic graph and
// crash as the two "LOAD 0" instructions would get merged.
//
// 0) LOAD 1 // ???
// 1) if A == 0x1; then JMP 2 else JMP 3
// 2) LOAD 0 // System call number
// 3) if A == 0x2; then JMP 4 else JMP 5
// 4) LOAD 0 // System call number
// 5) RET 1
CodeGen::Node i5 = MakeInstruction(BPF_RET + BPF_K, 1);
CodeGen::Node i4 = MakeInstruction(BPF_LD + BPF_W + BPF_ABS, 0, i5);
CodeGen::Node i3 = MakeInstruction(BPF_JMP + BPF_JEQ + BPF_K, 2, i4, i5);
CodeGen::Node i2 = MakeInstruction(BPF_LD + BPF_W + BPF_ABS, 0, i3);
CodeGen::Node i1 = MakeInstruction(BPF_JMP + BPF_JEQ + BPF_K, 1, i2, i3);
CodeGen::Node i0 = MakeInstruction(BPF_LD + BPF_W + BPF_ABS, 1, i1);
RunTest(i0);
}
TEST_F(ProgramTest, ConfusingTailsMergeable) {
// This is similar to SampleProgramConfusingTails(), except that
// instructions 2 and 4 are now RET instructions.
// In PointerCompare(), this exercises the path where two blocks are of the
// same length and identical and the last instruction is a JMP or RET, so the
// following blocks don't need to be looked at and the blocks are mergeable.
//
// 0) LOAD 1 // ???
// 1) if A == 0x1; then JMP 2 else JMP 3
// 2) RET 42
// 3) if A == 0x2; then JMP 4 else JMP 5
// 4) RET 42
// 5) if A == 0x1; then JMP 6 else JMP 7
// 6) RET 0
// 7) RET 1
CodeGen::Node i7 = MakeInstruction(BPF_RET + BPF_K, 1);
CodeGen::Node i6 = MakeInstruction(BPF_RET + BPF_K, 0);
CodeGen::Node i5 = MakeInstruction(BPF_JMP + BPF_JEQ + BPF_K, 1, i6, i7);
CodeGen::Node i4 = MakeInstruction(BPF_RET + BPF_K, 42);
CodeGen::Node i3 = MakeInstruction(BPF_JMP + BPF_JEQ + BPF_K, 2, i4, i5);
CodeGen::Node i2 = MakeInstruction(BPF_RET + BPF_K, 42);
CodeGen::Node i1 = MakeInstruction(BPF_JMP + BPF_JEQ + BPF_K, 1, i2, i3);
CodeGen::Node i0 = MakeInstruction(BPF_LD + BPF_W + BPF_ABS, 1, i1);
RunTest(i0);
}
TEST_F(ProgramTest, InstructionFolding) {
// Check that simple instructions are folded as expected.
CodeGen::Node a = MakeInstruction(BPF_RET + BPF_K, 0);
EXPECT_EQ(a, MakeInstruction(BPF_RET + BPF_K, 0));
CodeGen::Node b = MakeInstruction(BPF_RET + BPF_K, 1);
EXPECT_EQ(a, MakeInstruction(BPF_RET + BPF_K, 0));
EXPECT_EQ(b, MakeInstruction(BPF_RET + BPF_K, 1));
EXPECT_EQ(b, MakeInstruction(BPF_RET + BPF_K, 1));
// Check that complex sequences are folded too.
CodeGen::Node c =
MakeInstruction(BPF_LD + BPF_W + BPF_ABS, 0,
MakeInstruction(BPF_JMP + BPF_JSET + BPF_K, 0x100, a, b));
EXPECT_EQ(c, MakeInstruction(
BPF_LD + BPF_W + BPF_ABS, 0,
MakeInstruction(BPF_JMP + BPF_JSET + BPF_K, 0x100, a, b)));
RunTest(c);
}
TEST_F(ProgramTest, FarBranches) {
// BPF instructions use 8-bit fields for branch offsets, which means
// branch targets must be within 255 instructions of the branch
// instruction. CodeGen abstracts away this detail by inserting jump
// instructions as needed, which we test here by generating programs
// that should trigger any interesting boundary conditions.
// Populate with 260 initial instruction nodes.
std::vector<CodeGen::Node> nodes;
nodes.push_back(MakeInstruction(BPF_RET + BPF_K, 0));
for (size_t i = 1; i < 260; ++i) {
nodes.push_back(
MakeInstruction(BPF_ALU + BPF_ADD + BPF_K, i, nodes.back()));
}
// Exhaustively test branch offsets near BPF's limits.
for (size_t jt = 250; jt < 260; ++jt) {
for (size_t jf = 250; jf < 260; ++jf) {
nodes.push_back(MakeInstruction(BPF_JMP + BPF_JEQ + BPF_K, 0,
nodes.rbegin()[jt], nodes.rbegin()[jf]));
RunTest(nodes.back());
}
}
}
TEST_F(ProgramTest, JumpReuse) {
// As a code size optimization, we try to reuse jumps when possible
// instead of emitting new ones. Here we make sure that optimization
// is working as intended.
//
// NOTE: To simplify testing, we rely on implementation details
// about what CodeGen::Node values indicate (i.e., vector indices),
// but CodeGen users should treat them as opaque values.
// Populate with 260 initial instruction nodes.
std::vector<CodeGen::Node> nodes;
nodes.push_back(MakeInstruction(BPF_RET + BPF_K, 0));
for (size_t i = 1; i < 260; ++i) {
nodes.push_back(
MakeInstruction(BPF_ALU + BPF_ADD + BPF_K, i, nodes.back()));
}
// Branching to nodes[0] and nodes[1] should require 3 new
// instructions: two far jumps plus the branch itself.
CodeGen::Node one =
MakeInstruction(BPF_JMP + BPF_JEQ + BPF_K, 0, nodes[0], nodes[1]);
EXPECT_EQ(nodes.back() + 3, one); // XXX: Implementation detail!
RunTest(one);
// Branching again to the same target nodes should require only one
// new instruction, as we can reuse the previous branch's jumps.
CodeGen::Node two =
MakeInstruction(BPF_JMP + BPF_JEQ + BPF_K, 1, nodes[0], nodes[1]);
EXPECT_EQ(one + 1, two); // XXX: Implementation detail!
RunTest(two);
}
} // namespace
} // namespace sandbox