| //===----------------------------------------------------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is dual licensed under the MIT and the University of Illinois Open |
| // Source Licenses. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| // <unordered_map> |
| |
| // template <class Key, class T, class Hash = hash<Key>, class Pred = equal_to<Key>, |
| // class Alloc = allocator<pair<const Key, T>>> |
| // class unordered_multimap |
| |
| // template <class InputIterator> |
| // unordered_multimap(InputIterator first, InputIterator last); |
| |
| #include <unordered_map> |
| #include <string> |
| #include <cassert> |
| #include <cfloat> |
| |
| #include "test_iterators.h" |
| #include "../../../NotConstructible.h" |
| #include "../../../test_compare.h" |
| #include "../../../test_hash.h" |
| #include "test_allocator.h" |
| #include "min_allocator.h" |
| |
| int main() |
| { |
| { |
| typedef std::unordered_multimap<int, std::string, |
| test_hash<std::hash<int> >, |
| test_compare<std::equal_to<int> >, |
| test_allocator<std::pair<const int, std::string> > |
| > C; |
| typedef std::pair<int, std::string> P; |
| P a[] = |
| { |
| P(1, "one"), |
| P(2, "two"), |
| P(3, "three"), |
| P(4, "four"), |
| P(1, "four"), |
| P(2, "four"), |
| }; |
| C c(input_iterator<P*>(a), input_iterator<P*>(a + sizeof(a)/sizeof(a[0]))); |
| assert(c.bucket_count() >= 7); |
| assert(c.size() == 6); |
| typedef std::pair<C::const_iterator, C::const_iterator> Eq; |
| Eq eq = c.equal_range(1); |
| assert(std::distance(eq.first, eq.second) == 2); |
| C::const_iterator i = eq.first; |
| assert(i->first == 1); |
| assert(i->second == "one"); |
| ++i; |
| assert(i->first == 1); |
| assert(i->second == "four"); |
| eq = c.equal_range(2); |
| assert(std::distance(eq.first, eq.second) == 2); |
| i = eq.first; |
| assert(i->first == 2); |
| assert(i->second == "two"); |
| ++i; |
| assert(i->first == 2); |
| assert(i->second == "four"); |
| |
| eq = c.equal_range(3); |
| assert(std::distance(eq.first, eq.second) == 1); |
| i = eq.first; |
| assert(i->first == 3); |
| assert(i->second == "three"); |
| eq = c.equal_range(4); |
| assert(std::distance(eq.first, eq.second) == 1); |
| i = eq.first; |
| assert(i->first == 4); |
| assert(i->second == "four"); |
| assert(std::distance(c.begin(), c.end()) == c.size()); |
| assert(std::distance(c.cbegin(), c.cend()) == c.size()); |
| assert(fabs(c.load_factor() - (float)c.size()/c.bucket_count()) < FLT_EPSILON); |
| assert(c.max_load_factor() == 1); |
| assert(c.hash_function() == test_hash<std::hash<int> >()); |
| assert(c.key_eq() == test_compare<std::equal_to<int> >()); |
| assert((c.get_allocator() == test_allocator<std::pair<const int, std::string> >())); |
| } |
| #if __cplusplus >= 201103L |
| { |
| typedef std::unordered_multimap<int, std::string, |
| test_hash<std::hash<int> >, |
| test_compare<std::equal_to<int> >, |
| min_allocator<std::pair<const int, std::string> > |
| > C; |
| typedef std::pair<int, std::string> P; |
| P a[] = |
| { |
| P(1, "one"), |
| P(2, "two"), |
| P(3, "three"), |
| P(4, "four"), |
| P(1, "four"), |
| P(2, "four"), |
| }; |
| C c(input_iterator<P*>(a), input_iterator<P*>(a + sizeof(a)/sizeof(a[0]))); |
| assert(c.bucket_count() >= 7); |
| assert(c.size() == 6); |
| typedef std::pair<C::const_iterator, C::const_iterator> Eq; |
| Eq eq = c.equal_range(1); |
| assert(std::distance(eq.first, eq.second) == 2); |
| C::const_iterator i = eq.first; |
| assert(i->first == 1); |
| assert(i->second == "one"); |
| ++i; |
| assert(i->first == 1); |
| assert(i->second == "four"); |
| eq = c.equal_range(2); |
| assert(std::distance(eq.first, eq.second) == 2); |
| i = eq.first; |
| assert(i->first == 2); |
| assert(i->second == "two"); |
| ++i; |
| assert(i->first == 2); |
| assert(i->second == "four"); |
| |
| eq = c.equal_range(3); |
| assert(std::distance(eq.first, eq.second) == 1); |
| i = eq.first; |
| assert(i->first == 3); |
| assert(i->second == "three"); |
| eq = c.equal_range(4); |
| assert(std::distance(eq.first, eq.second) == 1); |
| i = eq.first; |
| assert(i->first == 4); |
| assert(i->second == "four"); |
| assert(std::distance(c.begin(), c.end()) == c.size()); |
| assert(std::distance(c.cbegin(), c.cend()) == c.size()); |
| assert(fabs(c.load_factor() - (float)c.size()/c.bucket_count()) < FLT_EPSILON); |
| assert(c.max_load_factor() == 1); |
| assert(c.hash_function() == test_hash<std::hash<int> >()); |
| assert(c.key_eq() == test_compare<std::equal_to<int> >()); |
| assert((c.get_allocator() == min_allocator<std::pair<const int, std::string> >())); |
| } |
| #if _LIBCPP_STD_VER > 11 |
| { |
| typedef std::pair<int, std::string> P; |
| typedef test_allocator<std::pair<const int, std::string>> A; |
| typedef test_hash<std::hash<int>> HF; |
| typedef test_compare<std::equal_to<int>> Comp; |
| typedef std::unordered_multimap<int, std::string, HF, Comp, A> C; |
| |
| P arr[] = |
| { |
| P(1, "one"), |
| P(2, "two"), |
| P(3, "three"), |
| P(4, "four"), |
| P(1, "four"), |
| P(2, "four"), |
| }; |
| A a(42); |
| C c(input_iterator<P*>(arr), input_iterator<P*>(arr + sizeof(arr)/sizeof(arr[0])), 14, a); |
| assert(c.bucket_count() >= 14); |
| assert(c.size() == 6); |
| typedef std::pair<C::const_iterator, C::const_iterator> Eq; |
| Eq eq = c.equal_range(1); |
| assert(std::distance(eq.first, eq.second) == 2); |
| C::const_iterator i = eq.first; |
| assert(i->first == 1); |
| assert(i->second == "one"); |
| ++i; |
| assert(i->first == 1); |
| assert(i->second == "four"); |
| eq = c.equal_range(2); |
| assert(std::distance(eq.first, eq.second) == 2); |
| i = eq.first; |
| assert(i->first == 2); |
| assert(i->second == "two"); |
| ++i; |
| assert(i->first == 2); |
| assert(i->second == "four"); |
| |
| eq = c.equal_range(3); |
| assert(std::distance(eq.first, eq.second) == 1); |
| i = eq.first; |
| assert(i->first == 3); |
| assert(i->second == "three"); |
| eq = c.equal_range(4); |
| assert(std::distance(eq.first, eq.second) == 1); |
| i = eq.first; |
| assert(i->first == 4); |
| assert(i->second == "four"); |
| assert(std::distance(c.begin(), c.end()) == c.size()); |
| assert(std::distance(c.cbegin(), c.cend()) == c.size()); |
| assert(fabs(c.load_factor() - (float)c.size()/c.bucket_count()) < FLT_EPSILON); |
| assert(c.max_load_factor() == 1); |
| assert(c.hash_function() == HF()); |
| assert(c.key_eq() == Comp()); |
| assert(c.get_allocator() == a); |
| assert(!(c.get_allocator() == A())); |
| } |
| { |
| typedef std::pair<int, std::string> P; |
| typedef test_allocator<std::pair<const int, std::string>> A; |
| typedef test_hash<std::hash<int>> HF; |
| typedef test_compare<std::equal_to<int>> Comp; |
| typedef std::unordered_multimap<int, std::string, HF, Comp, A> C; |
| |
| P arr[] = |
| { |
| P(1, "one"), |
| P(2, "two"), |
| P(3, "three"), |
| P(4, "four"), |
| P(1, "four"), |
| P(2, "four"), |
| }; |
| A a(42); |
| HF hf (43); |
| C c(input_iterator<P*>(arr), input_iterator<P*>(arr + sizeof(arr)/sizeof(arr[0])), 12, hf, a ); |
| assert(c.bucket_count() >= 12); |
| assert(c.size() == 6); |
| typedef std::pair<C::const_iterator, C::const_iterator> Eq; |
| Eq eq = c.equal_range(1); |
| assert(std::distance(eq.first, eq.second) == 2); |
| C::const_iterator i = eq.first; |
| assert(i->first == 1); |
| assert(i->second == "one"); |
| ++i; |
| assert(i->first == 1); |
| assert(i->second == "four"); |
| eq = c.equal_range(2); |
| assert(std::distance(eq.first, eq.second) == 2); |
| i = eq.first; |
| assert(i->first == 2); |
| assert(i->second == "two"); |
| ++i; |
| assert(i->first == 2); |
| assert(i->second == "four"); |
| |
| eq = c.equal_range(3); |
| assert(std::distance(eq.first, eq.second) == 1); |
| i = eq.first; |
| assert(i->first == 3); |
| assert(i->second == "three"); |
| eq = c.equal_range(4); |
| assert(std::distance(eq.first, eq.second) == 1); |
| i = eq.first; |
| assert(i->first == 4); |
| assert(i->second == "four"); |
| assert(std::distance(c.begin(), c.end()) == c.size()); |
| assert(std::distance(c.cbegin(), c.cend()) == c.size()); |
| assert(fabs(c.load_factor() - (float)c.size()/c.bucket_count()) < FLT_EPSILON); |
| assert(c.max_load_factor() == 1); |
| assert(c.hash_function() == hf); |
| assert(!(c.hash_function() == HF())); |
| assert(c.key_eq() == Comp()); |
| assert(c.get_allocator() == a); |
| assert(!(c.get_allocator() == A())); |
| } |
| #endif |
| #endif |
| } |