| /*********************************************************************** |
| Copyright (c) 2006-2011, Skype Limited. All rights reserved. |
| Redistribution and use in source and binary forms, with or without |
| modification, are permitted provided that the following conditions |
| are met: |
| - Redistributions of source code must retain the above copyright notice, |
| this list of conditions and the following disclaimer. |
| - Redistributions in binary form must reproduce the above copyright |
| notice, this list of conditions and the following disclaimer in the |
| documentation and/or other materials provided with the distribution. |
| - Neither the name of Internet Society, IETF or IETF Trust, nor the |
| names of specific contributors, may be used to endorse or promote |
| products derived from this software without specific prior written |
| permission. |
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| POSSIBILITY OF SUCH DAMAGE. |
| ***********************************************************************/ |
| |
| #ifdef HAVE_CONFIG_H |
| #include "config.h" |
| #endif |
| |
| #include "main.h" |
| |
| /* Delayed-decision quantizer for NLSF residuals */ |
| opus_int32 silk_NLSF_del_dec_quant( /* O Returns RD value in Q25 */ |
| opus_int8 indices[], /* O Quantization indices [ order ] */ |
| const opus_int16 x_Q10[], /* I Input [ order ] */ |
| const opus_int16 w_Q5[], /* I Weights [ order ] */ |
| const opus_uint8 pred_coef_Q8[], /* I Backward predictor coefs [ order ] */ |
| const opus_int16 ec_ix[], /* I Indices to entropy coding tables [ order ] */ |
| const opus_uint8 ec_rates_Q5[], /* I Rates [] */ |
| const opus_int quant_step_size_Q16, /* I Quantization step size */ |
| const opus_int16 inv_quant_step_size_Q6, /* I Inverse quantization step size */ |
| const opus_int32 mu_Q20, /* I R/D tradeoff */ |
| const opus_int16 order /* I Number of input values */ |
| ) |
| { |
| opus_int i, j, nStates, ind_tmp, ind_min_max, ind_max_min, in_Q10, res_Q10; |
| opus_int pred_Q10, diff_Q10, rate0_Q5, rate1_Q5; |
| opus_int16 out0_Q10, out1_Q10; |
| opus_int32 RD_tmp_Q25, min_Q25, min_max_Q25, max_min_Q25; |
| opus_int ind_sort[ NLSF_QUANT_DEL_DEC_STATES ]; |
| opus_int8 ind[ NLSF_QUANT_DEL_DEC_STATES ][ MAX_LPC_ORDER ]; |
| opus_int16 prev_out_Q10[ 2 * NLSF_QUANT_DEL_DEC_STATES ]; |
| opus_int32 RD_Q25[ 2 * NLSF_QUANT_DEL_DEC_STATES ]; |
| opus_int32 RD_min_Q25[ NLSF_QUANT_DEL_DEC_STATES ]; |
| opus_int32 RD_max_Q25[ NLSF_QUANT_DEL_DEC_STATES ]; |
| const opus_uint8 *rates_Q5; |
| |
| opus_int out0_Q10_table[2 * NLSF_QUANT_MAX_AMPLITUDE_EXT]; |
| opus_int out1_Q10_table[2 * NLSF_QUANT_MAX_AMPLITUDE_EXT]; |
| |
| for (i = -NLSF_QUANT_MAX_AMPLITUDE_EXT; i <= NLSF_QUANT_MAX_AMPLITUDE_EXT-1; i++) |
| { |
| out0_Q10 = silk_LSHIFT( i, 10 ); |
| out1_Q10 = silk_ADD16( out0_Q10, 1024 ); |
| if( i > 0 ) { |
| out0_Q10 = silk_SUB16( out0_Q10, SILK_FIX_CONST( NLSF_QUANT_LEVEL_ADJ, 10 ) ); |
| out1_Q10 = silk_SUB16( out1_Q10, SILK_FIX_CONST( NLSF_QUANT_LEVEL_ADJ, 10 ) ); |
| } else if( i == 0 ) { |
| out1_Q10 = silk_SUB16( out1_Q10, SILK_FIX_CONST( NLSF_QUANT_LEVEL_ADJ, 10 ) ); |
| } else if( i == -1 ) { |
| out0_Q10 = silk_ADD16( out0_Q10, SILK_FIX_CONST( NLSF_QUANT_LEVEL_ADJ, 10 ) ); |
| } else { |
| out0_Q10 = silk_ADD16( out0_Q10, SILK_FIX_CONST( NLSF_QUANT_LEVEL_ADJ, 10 ) ); |
| out1_Q10 = silk_ADD16( out1_Q10, SILK_FIX_CONST( NLSF_QUANT_LEVEL_ADJ, 10 ) ); |
| } |
| out0_Q10_table[ i + NLSF_QUANT_MAX_AMPLITUDE_EXT ] = silk_RSHIFT( silk_SMULBB( out0_Q10, quant_step_size_Q16 ), 16 ); |
| out1_Q10_table[ i + NLSF_QUANT_MAX_AMPLITUDE_EXT ] = silk_RSHIFT( silk_SMULBB( out1_Q10, quant_step_size_Q16 ), 16 ); |
| } |
| |
| silk_assert( (NLSF_QUANT_DEL_DEC_STATES & (NLSF_QUANT_DEL_DEC_STATES-1)) == 0 ); /* must be power of two */ |
| |
| nStates = 1; |
| RD_Q25[ 0 ] = 0; |
| prev_out_Q10[ 0 ] = 0; |
| for( i = order - 1; ; i-- ) { |
| rates_Q5 = &ec_rates_Q5[ ec_ix[ i ] ]; |
| in_Q10 = x_Q10[ i ]; |
| for( j = 0; j < nStates; j++ ) { |
| pred_Q10 = silk_RSHIFT( silk_SMULBB( (opus_int16)pred_coef_Q8[ i ], prev_out_Q10[ j ] ), 8 ); |
| res_Q10 = silk_SUB16( in_Q10, pred_Q10 ); |
| ind_tmp = silk_RSHIFT( silk_SMULBB( inv_quant_step_size_Q6, res_Q10 ), 16 ); |
| ind_tmp = silk_LIMIT( ind_tmp, -NLSF_QUANT_MAX_AMPLITUDE_EXT, NLSF_QUANT_MAX_AMPLITUDE_EXT-1 ); |
| ind[ j ][ i ] = (opus_int8)ind_tmp; |
| |
| /* compute outputs for ind_tmp and ind_tmp + 1 */ |
| out0_Q10 = out0_Q10_table[ ind_tmp + NLSF_QUANT_MAX_AMPLITUDE_EXT ]; |
| out1_Q10 = out1_Q10_table[ ind_tmp + NLSF_QUANT_MAX_AMPLITUDE_EXT ]; |
| |
| out0_Q10 = silk_ADD16( out0_Q10, pred_Q10 ); |
| out1_Q10 = silk_ADD16( out1_Q10, pred_Q10 ); |
| prev_out_Q10[ j ] = out0_Q10; |
| prev_out_Q10[ j + nStates ] = out1_Q10; |
| |
| /* compute RD for ind_tmp and ind_tmp + 1 */ |
| if( ind_tmp + 1 >= NLSF_QUANT_MAX_AMPLITUDE ) { |
| if( ind_tmp + 1 == NLSF_QUANT_MAX_AMPLITUDE ) { |
| rate0_Q5 = rates_Q5[ ind_tmp + NLSF_QUANT_MAX_AMPLITUDE ]; |
| rate1_Q5 = 280; |
| } else { |
| rate0_Q5 = silk_SMLABB( 280 - 43 * NLSF_QUANT_MAX_AMPLITUDE, 43, ind_tmp ); |
| rate1_Q5 = silk_ADD16( rate0_Q5, 43 ); |
| } |
| } else if( ind_tmp <= -NLSF_QUANT_MAX_AMPLITUDE ) { |
| if( ind_tmp == -NLSF_QUANT_MAX_AMPLITUDE ) { |
| rate0_Q5 = 280; |
| rate1_Q5 = rates_Q5[ ind_tmp + 1 + NLSF_QUANT_MAX_AMPLITUDE ]; |
| } else { |
| rate0_Q5 = silk_SMLABB( 280 - 43 * NLSF_QUANT_MAX_AMPLITUDE, -43, ind_tmp ); |
| rate1_Q5 = silk_SUB16( rate0_Q5, 43 ); |
| } |
| } else { |
| rate0_Q5 = rates_Q5[ ind_tmp + NLSF_QUANT_MAX_AMPLITUDE ]; |
| rate1_Q5 = rates_Q5[ ind_tmp + 1 + NLSF_QUANT_MAX_AMPLITUDE ]; |
| } |
| RD_tmp_Q25 = RD_Q25[ j ]; |
| diff_Q10 = silk_SUB16( in_Q10, out0_Q10 ); |
| RD_Q25[ j ] = silk_SMLABB( silk_MLA( RD_tmp_Q25, silk_SMULBB( diff_Q10, diff_Q10 ), w_Q5[ i ] ), mu_Q20, rate0_Q5 ); |
| diff_Q10 = silk_SUB16( in_Q10, out1_Q10 ); |
| RD_Q25[ j + nStates ] = silk_SMLABB( silk_MLA( RD_tmp_Q25, silk_SMULBB( diff_Q10, diff_Q10 ), w_Q5[ i ] ), mu_Q20, rate1_Q5 ); |
| } |
| |
| if( nStates <= ( NLSF_QUANT_DEL_DEC_STATES >> 1 ) ) { |
| /* double number of states and copy */ |
| for( j = 0; j < nStates; j++ ) { |
| ind[ j + nStates ][ i ] = ind[ j ][ i ] + 1; |
| } |
| nStates = silk_LSHIFT( nStates, 1 ); |
| for( j = nStates; j < NLSF_QUANT_DEL_DEC_STATES; j++ ) { |
| ind[ j ][ i ] = ind[ j - nStates ][ i ]; |
| } |
| } else if( i > 0 ) { |
| /* sort lower and upper half of RD_Q25, pairwise */ |
| for( j = 0; j < NLSF_QUANT_DEL_DEC_STATES; j++ ) { |
| if( RD_Q25[ j ] > RD_Q25[ j + NLSF_QUANT_DEL_DEC_STATES ] ) { |
| RD_max_Q25[ j ] = RD_Q25[ j ]; |
| RD_min_Q25[ j ] = RD_Q25[ j + NLSF_QUANT_DEL_DEC_STATES ]; |
| RD_Q25[ j ] = RD_min_Q25[ j ]; |
| RD_Q25[ j + NLSF_QUANT_DEL_DEC_STATES ] = RD_max_Q25[ j ]; |
| /* swap prev_out values */ |
| out0_Q10 = prev_out_Q10[ j ]; |
| prev_out_Q10[ j ] = prev_out_Q10[ j + NLSF_QUANT_DEL_DEC_STATES ]; |
| prev_out_Q10[ j + NLSF_QUANT_DEL_DEC_STATES ] = out0_Q10; |
| ind_sort[ j ] = j + NLSF_QUANT_DEL_DEC_STATES; |
| } else { |
| RD_min_Q25[ j ] = RD_Q25[ j ]; |
| RD_max_Q25[ j ] = RD_Q25[ j + NLSF_QUANT_DEL_DEC_STATES ]; |
| ind_sort[ j ] = j; |
| } |
| } |
| /* compare the highest RD values of the winning half with the lowest one in the losing half, and copy if necessary */ |
| /* afterwards ind_sort[] will contain the indices of the NLSF_QUANT_DEL_DEC_STATES winning RD values */ |
| while( 1 ) { |
| min_max_Q25 = silk_int32_MAX; |
| max_min_Q25 = 0; |
| ind_min_max = 0; |
| ind_max_min = 0; |
| for( j = 0; j < NLSF_QUANT_DEL_DEC_STATES; j++ ) { |
| if( min_max_Q25 > RD_max_Q25[ j ] ) { |
| min_max_Q25 = RD_max_Q25[ j ]; |
| ind_min_max = j; |
| } |
| if( max_min_Q25 < RD_min_Q25[ j ] ) { |
| max_min_Q25 = RD_min_Q25[ j ]; |
| ind_max_min = j; |
| } |
| } |
| if( min_max_Q25 >= max_min_Q25 ) { |
| break; |
| } |
| /* copy ind_min_max to ind_max_min */ |
| ind_sort[ ind_max_min ] = ind_sort[ ind_min_max ] ^ NLSF_QUANT_DEL_DEC_STATES; |
| RD_Q25[ ind_max_min ] = RD_Q25[ ind_min_max + NLSF_QUANT_DEL_DEC_STATES ]; |
| prev_out_Q10[ ind_max_min ] = prev_out_Q10[ ind_min_max + NLSF_QUANT_DEL_DEC_STATES ]; |
| RD_min_Q25[ ind_max_min ] = 0; |
| RD_max_Q25[ ind_min_max ] = silk_int32_MAX; |
| silk_memcpy( ind[ ind_max_min ], ind[ ind_min_max ], MAX_LPC_ORDER * sizeof( opus_int8 ) ); |
| } |
| /* increment index if it comes from the upper half */ |
| for( j = 0; j < NLSF_QUANT_DEL_DEC_STATES; j++ ) { |
| ind[ j ][ i ] += silk_RSHIFT( ind_sort[ j ], NLSF_QUANT_DEL_DEC_STATES_LOG2 ); |
| } |
| } else { /* i == 0 */ |
| break; |
| } |
| } |
| |
| /* last sample: find winner, copy indices and return RD value */ |
| ind_tmp = 0; |
| min_Q25 = silk_int32_MAX; |
| for( j = 0; j < 2 * NLSF_QUANT_DEL_DEC_STATES; j++ ) { |
| if( min_Q25 > RD_Q25[ j ] ) { |
| min_Q25 = RD_Q25[ j ]; |
| ind_tmp = j; |
| } |
| } |
| for( j = 0; j < order; j++ ) { |
| indices[ j ] = ind[ ind_tmp & ( NLSF_QUANT_DEL_DEC_STATES - 1 ) ][ j ]; |
| silk_assert( indices[ j ] >= -NLSF_QUANT_MAX_AMPLITUDE_EXT ); |
| silk_assert( indices[ j ] <= NLSF_QUANT_MAX_AMPLITUDE_EXT ); |
| } |
| indices[ 0 ] += silk_RSHIFT( ind_tmp, NLSF_QUANT_DEL_DEC_STATES_LOG2 ); |
| silk_assert( indices[ 0 ] <= NLSF_QUANT_MAX_AMPLITUDE_EXT ); |
| silk_assert( min_Q25 >= 0 ); |
| return min_Q25; |
| } |