| /*********************************************************************** |
| Copyright (c) 2006-2011, Skype Limited. All rights reserved. |
| Redistribution and use in source and binary forms, with or without |
| modification, are permitted provided that the following conditions |
| are met: |
| - Redistributions of source code must retain the above copyright notice, |
| this list of conditions and the following disclaimer. |
| - Redistributions in binary form must reproduce the above copyright |
| notice, this list of conditions and the following disclaimer in the |
| documentation and/or other materials provided with the distribution. |
| - Neither the name of Internet Society, IETF or IETF Trust, nor the |
| names of specific contributors, may be used to endorse or promote |
| products derived from this software without specific prior written |
| permission. |
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| POSSIBILITY OF SUCH DAMAGE. |
| ***********************************************************************/ |
| |
| #ifdef HAVE_CONFIG_H |
| #include "config.h" |
| #endif |
| |
| #include "main_FIX.h" |
| #include "stack_alloc.h" |
| #include "tuning_parameters.h" |
| |
| /*****************************/ |
| /* Internal function headers */ |
| /*****************************/ |
| |
| typedef struct { |
| opus_int32 Q36_part; |
| opus_int32 Q48_part; |
| } inv_D_t; |
| |
| /* Factorize square matrix A into LDL form */ |
| static OPUS_INLINE void silk_LDL_factorize_FIX( |
| opus_int32 *A, /* I/O Pointer to Symetric Square Matrix */ |
| opus_int M, /* I Size of Matrix */ |
| opus_int32 *L_Q16, /* I/O Pointer to Square Upper triangular Matrix */ |
| inv_D_t *inv_D /* I/O Pointer to vector holding inverted diagonal elements of D */ |
| ); |
| |
| /* Solve Lx = b, when L is lower triangular and has ones on the diagonal */ |
| static OPUS_INLINE void silk_LS_SolveFirst_FIX( |
| const opus_int32 *L_Q16, /* I Pointer to Lower Triangular Matrix */ |
| opus_int M, /* I Dim of Matrix equation */ |
| const opus_int32 *b, /* I b Vector */ |
| opus_int32 *x_Q16 /* O x Vector */ |
| ); |
| |
| /* Solve L^t*x = b, where L is lower triangular with ones on the diagonal */ |
| static OPUS_INLINE void silk_LS_SolveLast_FIX( |
| const opus_int32 *L_Q16, /* I Pointer to Lower Triangular Matrix */ |
| const opus_int M, /* I Dim of Matrix equation */ |
| const opus_int32 *b, /* I b Vector */ |
| opus_int32 *x_Q16 /* O x Vector */ |
| ); |
| |
| static OPUS_INLINE void silk_LS_divide_Q16_FIX( |
| opus_int32 T[], /* I/O Numenator vector */ |
| inv_D_t *inv_D, /* I 1 / D vector */ |
| opus_int M /* I dimension */ |
| ); |
| |
| /* Solves Ax = b, assuming A is symmetric */ |
| void silk_solve_LDL_FIX( |
| opus_int32 *A, /* I Pointer to symetric square matrix A */ |
| opus_int M, /* I Size of matrix */ |
| const opus_int32 *b, /* I Pointer to b vector */ |
| opus_int32 *x_Q16 /* O Pointer to x solution vector */ |
| ) |
| { |
| VARDECL( opus_int32, L_Q16 ); |
| opus_int32 Y[ MAX_MATRIX_SIZE ]; |
| inv_D_t inv_D[ MAX_MATRIX_SIZE ]; |
| SAVE_STACK; |
| |
| silk_assert( M <= MAX_MATRIX_SIZE ); |
| ALLOC( L_Q16, M * M, opus_int32 ); |
| |
| /*************************************************** |
| Factorize A by LDL such that A = L*D*L', |
| where L is lower triangular with ones on diagonal |
| ****************************************************/ |
| silk_LDL_factorize_FIX( A, M, L_Q16, inv_D ); |
| |
| /**************************************************** |
| * substitute D*L'*x = Y. ie: |
| L*D*L'*x = b => L*Y = b <=> Y = inv(L)*b |
| ******************************************************/ |
| silk_LS_SolveFirst_FIX( L_Q16, M, b, Y ); |
| |
| /**************************************************** |
| D*L'*x = Y <=> L'*x = inv(D)*Y, because D is |
| diagonal just multiply with 1/d_i |
| ****************************************************/ |
| silk_LS_divide_Q16_FIX( Y, inv_D, M ); |
| |
| /**************************************************** |
| x = inv(L') * inv(D) * Y |
| *****************************************************/ |
| silk_LS_SolveLast_FIX( L_Q16, M, Y, x_Q16 ); |
| RESTORE_STACK; |
| } |
| |
| static OPUS_INLINE void silk_LDL_factorize_FIX( |
| opus_int32 *A, /* I/O Pointer to Symetric Square Matrix */ |
| opus_int M, /* I Size of Matrix */ |
| opus_int32 *L_Q16, /* I/O Pointer to Square Upper triangular Matrix */ |
| inv_D_t *inv_D /* I/O Pointer to vector holding inverted diagonal elements of D */ |
| ) |
| { |
| opus_int i, j, k, status, loop_count; |
| const opus_int32 *ptr1, *ptr2; |
| opus_int32 diag_min_value, tmp_32, err; |
| opus_int32 v_Q0[ MAX_MATRIX_SIZE ], D_Q0[ MAX_MATRIX_SIZE ]; |
| opus_int32 one_div_diag_Q36, one_div_diag_Q40, one_div_diag_Q48; |
| |
| silk_assert( M <= MAX_MATRIX_SIZE ); |
| |
| status = 1; |
| diag_min_value = silk_max_32( silk_SMMUL( silk_ADD_SAT32( A[ 0 ], A[ silk_SMULBB( M, M ) - 1 ] ), SILK_FIX_CONST( FIND_LTP_COND_FAC, 31 ) ), 1 << 9 ); |
| for( loop_count = 0; loop_count < M && status == 1; loop_count++ ) { |
| status = 0; |
| for( j = 0; j < M; j++ ) { |
| ptr1 = matrix_adr( L_Q16, j, 0, M ); |
| tmp_32 = 0; |
| for( i = 0; i < j; i++ ) { |
| v_Q0[ i ] = silk_SMULWW( D_Q0[ i ], ptr1[ i ] ); /* Q0 */ |
| tmp_32 = silk_SMLAWW( tmp_32, v_Q0[ i ], ptr1[ i ] ); /* Q0 */ |
| } |
| tmp_32 = silk_SUB32( matrix_ptr( A, j, j, M ), tmp_32 ); |
| |
| if( tmp_32 < diag_min_value ) { |
| tmp_32 = silk_SUB32( silk_SMULBB( loop_count + 1, diag_min_value ), tmp_32 ); |
| /* Matrix not positive semi-definite, or ill conditioned */ |
| for( i = 0; i < M; i++ ) { |
| matrix_ptr( A, i, i, M ) = silk_ADD32( matrix_ptr( A, i, i, M ), tmp_32 ); |
| } |
| status = 1; |
| break; |
| } |
| D_Q0[ j ] = tmp_32; /* always < max(Correlation) */ |
| |
| /* two-step division */ |
| one_div_diag_Q36 = silk_INVERSE32_varQ( tmp_32, 36 ); /* Q36 */ |
| one_div_diag_Q40 = silk_LSHIFT( one_div_diag_Q36, 4 ); /* Q40 */ |
| err = silk_SUB32( (opus_int32)1 << 24, silk_SMULWW( tmp_32, one_div_diag_Q40 ) ); /* Q24 */ |
| one_div_diag_Q48 = silk_SMULWW( err, one_div_diag_Q40 ); /* Q48 */ |
| |
| /* Save 1/Ds */ |
| inv_D[ j ].Q36_part = one_div_diag_Q36; |
| inv_D[ j ].Q48_part = one_div_diag_Q48; |
| |
| matrix_ptr( L_Q16, j, j, M ) = 65536; /* 1.0 in Q16 */ |
| ptr1 = matrix_adr( A, j, 0, M ); |
| ptr2 = matrix_adr( L_Q16, j + 1, 0, M ); |
| for( i = j + 1; i < M; i++ ) { |
| tmp_32 = 0; |
| for( k = 0; k < j; k++ ) { |
| tmp_32 = silk_SMLAWW( tmp_32, v_Q0[ k ], ptr2[ k ] ); /* Q0 */ |
| } |
| tmp_32 = silk_SUB32( ptr1[ i ], tmp_32 ); /* always < max(Correlation) */ |
| |
| /* tmp_32 / D_Q0[j] : Divide to Q16 */ |
| matrix_ptr( L_Q16, i, j, M ) = silk_ADD32( silk_SMMUL( tmp_32, one_div_diag_Q48 ), |
| silk_RSHIFT( silk_SMULWW( tmp_32, one_div_diag_Q36 ), 4 ) ); |
| |
| /* go to next column */ |
| ptr2 += M; |
| } |
| } |
| } |
| |
| silk_assert( status == 0 ); |
| } |
| |
| static OPUS_INLINE void silk_LS_divide_Q16_FIX( |
| opus_int32 T[], /* I/O Numenator vector */ |
| inv_D_t *inv_D, /* I 1 / D vector */ |
| opus_int M /* I dimension */ |
| ) |
| { |
| opus_int i; |
| opus_int32 tmp_32; |
| opus_int32 one_div_diag_Q36, one_div_diag_Q48; |
| |
| for( i = 0; i < M; i++ ) { |
| one_div_diag_Q36 = inv_D[ i ].Q36_part; |
| one_div_diag_Q48 = inv_D[ i ].Q48_part; |
| |
| tmp_32 = T[ i ]; |
| T[ i ] = silk_ADD32( silk_SMMUL( tmp_32, one_div_diag_Q48 ), silk_RSHIFT( silk_SMULWW( tmp_32, one_div_diag_Q36 ), 4 ) ); |
| } |
| } |
| |
| /* Solve Lx = b, when L is lower triangular and has ones on the diagonal */ |
| static OPUS_INLINE void silk_LS_SolveFirst_FIX( |
| const opus_int32 *L_Q16, /* I Pointer to Lower Triangular Matrix */ |
| opus_int M, /* I Dim of Matrix equation */ |
| const opus_int32 *b, /* I b Vector */ |
| opus_int32 *x_Q16 /* O x Vector */ |
| ) |
| { |
| opus_int i, j; |
| const opus_int32 *ptr32; |
| opus_int32 tmp_32; |
| |
| for( i = 0; i < M; i++ ) { |
| ptr32 = matrix_adr( L_Q16, i, 0, M ); |
| tmp_32 = 0; |
| for( j = 0; j < i; j++ ) { |
| tmp_32 = silk_SMLAWW( tmp_32, ptr32[ j ], x_Q16[ j ] ); |
| } |
| x_Q16[ i ] = silk_SUB32( b[ i ], tmp_32 ); |
| } |
| } |
| |
| /* Solve L^t*x = b, where L is lower triangular with ones on the diagonal */ |
| static OPUS_INLINE void silk_LS_SolveLast_FIX( |
| const opus_int32 *L_Q16, /* I Pointer to Lower Triangular Matrix */ |
| const opus_int M, /* I Dim of Matrix equation */ |
| const opus_int32 *b, /* I b Vector */ |
| opus_int32 *x_Q16 /* O x Vector */ |
| ) |
| { |
| opus_int i, j; |
| const opus_int32 *ptr32; |
| opus_int32 tmp_32; |
| |
| for( i = M - 1; i >= 0; i-- ) { |
| ptr32 = matrix_adr( L_Q16, 0, i, M ); |
| tmp_32 = 0; |
| for( j = M - 1; j > i; j-- ) { |
| tmp_32 = silk_SMLAWW( tmp_32, ptr32[ silk_SMULBB( j, M ) ], x_Q16[ j ] ); |
| } |
| x_Q16[ i ] = silk_SUB32( b[ i ], tmp_32 ); |
| } |
| } |