blob: 4d40392fa82f005eed63ba3fb3fb5e73bb3484e3 [file] [log] [blame]
/*
* Stack-less Just-In-Time compiler
*
* Copyright 2013-2013 Tilera Corporation(jiwang@tilera.com). All rights reserved.
* Copyright 2009-2012 Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are
* permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this list
* of conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
* SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* TileGX architecture. */
/* Contributed by Tilera Corporation. */
#include "sljitNativeTILEGX-encoder.c"
#define SIMM_8BIT_MAX (0x7f)
#define SIMM_8BIT_MIN (-0x80)
#define SIMM_16BIT_MAX (0x7fff)
#define SIMM_16BIT_MIN (-0x8000)
#define SIMM_17BIT_MAX (0xffff)
#define SIMM_17BIT_MIN (-0x10000)
#define SIMM_32BIT_MAX (0x7fffffff)
#define SIMM_32BIT_MIN (-0x7fffffff - 1)
#define SIMM_48BIT_MAX (0x7fffffff0000L)
#define SIMM_48BIT_MIN (-0x800000000000L)
#define IMM16(imm) ((imm) & 0xffff)
#define UIMM_16BIT_MAX (0xffff)
#define TMP_REG1 (SLJIT_NUMBER_OF_REGISTERS + 2)
#define TMP_REG2 (SLJIT_NUMBER_OF_REGISTERS + 3)
#define TMP_REG3 (SLJIT_NUMBER_OF_REGISTERS + 4)
#define ADDR_TMP (SLJIT_NUMBER_OF_REGISTERS + 5)
#define PIC_ADDR_REG TMP_REG2
static SLJIT_CONST sljit_ub reg_map[SLJIT_NUMBER_OF_REGISTERS + 6] = {
63, 0, 1, 2, 3, 4, 30, 31, 32, 33, 34, 54, 5, 16, 6, 7
};
#define SLJIT_LOCALS_REG_mapped 54
#define TMP_REG1_mapped 5
#define TMP_REG2_mapped 16
#define TMP_REG3_mapped 6
#define ADDR_TMP_mapped 7
/* Flags are keept in volatile registers. */
#define EQUAL_FLAG 8
/* And carry flag as well. */
#define ULESS_FLAG 9
#define UGREATER_FLAG 10
#define LESS_FLAG 11
#define GREATER_FLAG 12
#define OVERFLOW_FLAG 13
#define ZERO 63
#define RA 55
#define TMP_EREG1 14
#define TMP_EREG2 15
#define LOAD_DATA 0x01
#define WORD_DATA 0x00
#define BYTE_DATA 0x02
#define HALF_DATA 0x04
#define INT_DATA 0x06
#define SIGNED_DATA 0x08
#define DOUBLE_DATA 0x10
/* Separates integer and floating point registers */
#define GPR_REG 0xf
#define MEM_MASK 0x1f
#define WRITE_BACK 0x00020
#define ARG_TEST 0x00040
#define ALT_KEEP_CACHE 0x00080
#define CUMULATIVE_OP 0x00100
#define LOGICAL_OP 0x00200
#define IMM_OP 0x00400
#define SRC2_IMM 0x00800
#define UNUSED_DEST 0x01000
#define REG_DEST 0x02000
#define REG1_SOURCE 0x04000
#define REG2_SOURCE 0x08000
#define SLOW_SRC1 0x10000
#define SLOW_SRC2 0x20000
#define SLOW_DEST 0x40000
/* Only these flags are set. UNUSED_DEST is not set when no flags should be set.
*/
#define CHECK_FLAGS(list) (!(flags & UNUSED_DEST) || (op & GET_FLAGS(~(list))))
SLJIT_API_FUNC_ATTRIBUTE SLJIT_CONST char *sljit_get_platform_name(void)
{
return "TileGX" SLJIT_CPUINFO;
}
/* Length of an instruction word */
typedef sljit_uw sljit_ins;
struct jit_instr {
const struct tilegx_opcode* opcode;
tilegx_pipeline pipe;
unsigned long input_registers;
unsigned long output_registers;
int operand_value[4];
int line;
};
/* Opcode Helper Macros */
#define TILEGX_X_MODE 0
#define X_MODE create_Mode(TILEGX_X_MODE)
#define FNOP_X0 \
create_Opcode_X0(RRR_0_OPCODE_X0) | \
create_RRROpcodeExtension_X0(UNARY_RRR_0_OPCODE_X0) | \
create_UnaryOpcodeExtension_X0(FNOP_UNARY_OPCODE_X0)
#define FNOP_X1 \
create_Opcode_X1(RRR_0_OPCODE_X1) | \
create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \
create_UnaryOpcodeExtension_X1(FNOP_UNARY_OPCODE_X1)
#define NOP \
create_Mode(TILEGX_X_MODE) | FNOP_X0 | FNOP_X1
#define ANOP_X0 \
create_Opcode_X0(RRR_0_OPCODE_X0) | \
create_RRROpcodeExtension_X0(UNARY_RRR_0_OPCODE_X0) | \
create_UnaryOpcodeExtension_X0(NOP_UNARY_OPCODE_X0)
#define BPT create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \
create_UnaryOpcodeExtension_X1(ILL_UNARY_OPCODE_X1) | \
create_Dest_X1(0x1C) | create_SrcA_X1(0x25) | ANOP_X0
#define ADD_X1 \
create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
create_RRROpcodeExtension_X1(ADD_RRR_0_OPCODE_X1) | FNOP_X0
#define ADDI_X1 \
create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \
create_Imm8OpcodeExtension_X1(ADDI_IMM8_OPCODE_X1) | FNOP_X0
#define SUB_X1 \
create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
create_RRROpcodeExtension_X1(SUB_RRR_0_OPCODE_X1) | FNOP_X0
#define NOR_X1 \
create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
create_RRROpcodeExtension_X1(NOR_RRR_0_OPCODE_X1) | FNOP_X0
#define OR_X1 \
create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
create_RRROpcodeExtension_X1(OR_RRR_0_OPCODE_X1) | FNOP_X0
#define AND_X1 \
create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
create_RRROpcodeExtension_X1(AND_RRR_0_OPCODE_X1) | FNOP_X0
#define XOR_X1 \
create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
create_RRROpcodeExtension_X1(XOR_RRR_0_OPCODE_X1) | FNOP_X0
#define CMOVNEZ_X0 \
create_Mode(TILEGX_X_MODE) | create_Opcode_X0(RRR_0_OPCODE_X0) | \
create_RRROpcodeExtension_X0(CMOVNEZ_RRR_0_OPCODE_X0) | FNOP_X1
#define CMOVEQZ_X0 \
create_Mode(TILEGX_X_MODE) | create_Opcode_X0(RRR_0_OPCODE_X0) | \
create_RRROpcodeExtension_X0(CMOVEQZ_RRR_0_OPCODE_X0) | FNOP_X1
#define ADDLI_X1 \
create_Mode(TILEGX_X_MODE) | create_Opcode_X1(ADDLI_OPCODE_X1) | FNOP_X0
#define V4INT_L_X1 \
create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
create_RRROpcodeExtension_X1(V4INT_L_RRR_0_OPCODE_X1) | FNOP_X0
#define BFEXTU_X0 \
create_Mode(TILEGX_X_MODE) | create_Opcode_X0(BF_OPCODE_X0) | \
create_BFOpcodeExtension_X0(BFEXTU_BF_OPCODE_X0) | FNOP_X1
#define BFEXTS_X0 \
create_Mode(TILEGX_X_MODE) | create_Opcode_X0(BF_OPCODE_X0) | \
create_BFOpcodeExtension_X0(BFEXTS_BF_OPCODE_X0) | FNOP_X1
#define SHL16INSLI_X1 \
create_Mode(TILEGX_X_MODE) | create_Opcode_X1(SHL16INSLI_OPCODE_X1) | FNOP_X0
#define ST_X1 \
create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
create_RRROpcodeExtension_X1(ST_RRR_0_OPCODE_X1) | create_Dest_X1(0x0) | FNOP_X0
#define LD_X1 \
create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \
create_UnaryOpcodeExtension_X1(LD_UNARY_OPCODE_X1) | FNOP_X0
#define JR_X1 \
create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \
create_UnaryOpcodeExtension_X1(JR_UNARY_OPCODE_X1) | FNOP_X0
#define JALR_X1 \
create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \
create_UnaryOpcodeExtension_X1(JALR_UNARY_OPCODE_X1) | FNOP_X0
#define CLZ_X0 \
create_Mode(TILEGX_X_MODE) | create_Opcode_X0(RRR_0_OPCODE_X0) | \
create_RRROpcodeExtension_X0(UNARY_RRR_0_OPCODE_X0) | \
create_UnaryOpcodeExtension_X0(CNTLZ_UNARY_OPCODE_X0) | FNOP_X1
#define CMPLTUI_X1 \
create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \
create_Imm8OpcodeExtension_X1(CMPLTUI_IMM8_OPCODE_X1) | FNOP_X0
#define CMPLTU_X1 \
create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
create_RRROpcodeExtension_X1(CMPLTU_RRR_0_OPCODE_X1) | FNOP_X0
#define CMPLTS_X1 \
create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
create_RRROpcodeExtension_X1(CMPLTS_RRR_0_OPCODE_X1) | FNOP_X0
#define XORI_X1 \
create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \
create_Imm8OpcodeExtension_X1(XORI_IMM8_OPCODE_X1) | FNOP_X0
#define ORI_X1 \
create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \
create_Imm8OpcodeExtension_X1(ORI_IMM8_OPCODE_X1) | FNOP_X0
#define ANDI_X1 \
create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \
create_Imm8OpcodeExtension_X1(ANDI_IMM8_OPCODE_X1) | FNOP_X0
#define SHLI_X1 \
create_Mode(TILEGX_X_MODE) | create_Opcode_X1(SHIFT_OPCODE_X1) | \
create_ShiftOpcodeExtension_X1(SHLI_SHIFT_OPCODE_X1) | FNOP_X0
#define SHL_X1 \
create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
create_RRROpcodeExtension_X1(SHL_RRR_0_OPCODE_X1) | FNOP_X0
#define SHRSI_X1 \
create_Mode(TILEGX_X_MODE) | create_Opcode_X1(SHIFT_OPCODE_X1) | \
create_ShiftOpcodeExtension_X1(SHRSI_SHIFT_OPCODE_X1) | FNOP_X0
#define SHRS_X1 \
create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
create_RRROpcodeExtension_X1(SHRS_RRR_0_OPCODE_X1) | FNOP_X0
#define SHRUI_X1 \
create_Mode(TILEGX_X_MODE) | create_Opcode_X1(SHIFT_OPCODE_X1) | \
create_ShiftOpcodeExtension_X1(SHRUI_SHIFT_OPCODE_X1) | FNOP_X0
#define SHRU_X1 \
create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
create_RRROpcodeExtension_X1(SHRU_RRR_0_OPCODE_X1) | FNOP_X0
#define BEQZ_X1 \
create_Mode(TILEGX_X_MODE) | create_Opcode_X1(BRANCH_OPCODE_X1) | \
create_BrType_X1(BEQZ_BRANCH_OPCODE_X1) | FNOP_X0
#define BNEZ_X1 \
create_Mode(TILEGX_X_MODE) | create_Opcode_X1(BRANCH_OPCODE_X1) | \
create_BrType_X1(BNEZ_BRANCH_OPCODE_X1) | FNOP_X0
#define J_X1 \
create_Mode(TILEGX_X_MODE) | create_Opcode_X1(JUMP_OPCODE_X1) | \
create_JumpOpcodeExtension_X1(J_JUMP_OPCODE_X1) | FNOP_X0
#define JAL_X1 \
create_Mode(TILEGX_X_MODE) | create_Opcode_X1(JUMP_OPCODE_X1) | \
create_JumpOpcodeExtension_X1(JAL_JUMP_OPCODE_X1) | FNOP_X0
#define DEST_X0(x) create_Dest_X0(x)
#define SRCA_X0(x) create_SrcA_X0(x)
#define SRCB_X0(x) create_SrcB_X0(x)
#define DEST_X1(x) create_Dest_X1(x)
#define SRCA_X1(x) create_SrcA_X1(x)
#define SRCB_X1(x) create_SrcB_X1(x)
#define IMM16_X1(x) create_Imm16_X1(x)
#define IMM8_X1(x) create_Imm8_X1(x)
#define BFSTART_X0(x) create_BFStart_X0(x)
#define BFEND_X0(x) create_BFEnd_X0(x)
#define SHIFTIMM_X1(x) create_ShAmt_X1(x)
#define JOFF_X1(x) create_JumpOff_X1(x)
#define BOFF_X1(x) create_BrOff_X1(x)
static SLJIT_CONST tilegx_mnemonic data_transfer_insts[16] = {
/* u w s */ TILEGX_OPC_ST /* st */,
/* u w l */ TILEGX_OPC_LD /* ld */,
/* u b s */ TILEGX_OPC_ST1 /* st1 */,
/* u b l */ TILEGX_OPC_LD1U /* ld1u */,
/* u h s */ TILEGX_OPC_ST2 /* st2 */,
/* u h l */ TILEGX_OPC_LD2U /* ld2u */,
/* u i s */ TILEGX_OPC_ST4 /* st4 */,
/* u i l */ TILEGX_OPC_LD4U /* ld4u */,
/* s w s */ TILEGX_OPC_ST /* st */,
/* s w l */ TILEGX_OPC_LD /* ld */,
/* s b s */ TILEGX_OPC_ST1 /* st1 */,
/* s b l */ TILEGX_OPC_LD1S /* ld1s */,
/* s h s */ TILEGX_OPC_ST2 /* st2 */,
/* s h l */ TILEGX_OPC_LD2S /* ld2s */,
/* s i s */ TILEGX_OPC_ST4 /* st4 */,
/* s i l */ TILEGX_OPC_LD4S /* ld4s */,
};
#ifdef TILEGX_JIT_DEBUG
static sljit_si push_inst_debug(struct sljit_compiler *compiler, sljit_ins ins, int line)
{
sljit_ins *ptr = (sljit_ins *)ensure_buf(compiler, sizeof(sljit_ins));
FAIL_IF(!ptr);
*ptr = ins;
compiler->size++;
printf("|%04d|S0|:\t\t", line);
print_insn_tilegx(ptr);
return SLJIT_SUCCESS;
}
static sljit_si push_inst_nodebug(struct sljit_compiler *compiler, sljit_ins ins)
{
sljit_ins *ptr = (sljit_ins *)ensure_buf(compiler, sizeof(sljit_ins));
FAIL_IF(!ptr);
*ptr = ins;
compiler->size++;
return SLJIT_SUCCESS;
}
#define push_inst(a, b) push_inst_debug(a, b, __LINE__)
#else
static sljit_si push_inst(struct sljit_compiler *compiler, sljit_ins ins)
{
sljit_ins *ptr = (sljit_ins *)ensure_buf(compiler, sizeof(sljit_ins));
FAIL_IF(!ptr);
*ptr = ins;
compiler->size++;
return SLJIT_SUCCESS;
}
#endif
#define BUNDLE_FORMAT_MASK(p0, p1, p2) \
((p0) | ((p1) << 8) | ((p2) << 16))
#define BUNDLE_FORMAT(p0, p1, p2) \
{ \
{ \
(tilegx_pipeline)(p0), \
(tilegx_pipeline)(p1), \
(tilegx_pipeline)(p2) \
}, \
BUNDLE_FORMAT_MASK(1 << (p0), 1 << (p1), (1 << (p2))) \
}
#define NO_PIPELINE TILEGX_NUM_PIPELINE_ENCODINGS
#define tilegx_is_x_pipeline(p) ((int)(p) <= (int)TILEGX_PIPELINE_X1)
#define PI(encoding) \
push_inst(compiler, encoding)
#define PB3(opcode, dst, srca, srcb) \
push_3_buffer(compiler, opcode, dst, srca, srcb, __LINE__)
#define PB2(opcode, dst, src) \
push_2_buffer(compiler, opcode, dst, src, __LINE__)
#define JR(reg) \
push_jr_buffer(compiler, TILEGX_OPC_JR, reg, __LINE__)
#define ADD(dst, srca, srcb) \
push_3_buffer(compiler, TILEGX_OPC_ADD, dst, srca, srcb, __LINE__)
#define SUB(dst, srca, srcb) \
push_3_buffer(compiler, TILEGX_OPC_SUB, dst, srca, srcb, __LINE__)
#define MUL(dst, srca, srcb) \
push_3_buffer(compiler, TILEGX_OPC_MULX, dst, srca, srcb, __LINE__)
#define NOR(dst, srca, srcb) \
push_3_buffer(compiler, TILEGX_OPC_NOR, dst, srca, srcb, __LINE__)
#define OR(dst, srca, srcb) \
push_3_buffer(compiler, TILEGX_OPC_OR, dst, srca, srcb, __LINE__)
#define XOR(dst, srca, srcb) \
push_3_buffer(compiler, TILEGX_OPC_XOR, dst, srca, srcb, __LINE__)
#define AND(dst, srca, srcb) \
push_3_buffer(compiler, TILEGX_OPC_AND, dst, srca, srcb, __LINE__)
#define CLZ(dst, src) \
push_2_buffer(compiler, TILEGX_OPC_CLZ, dst, src, __LINE__)
#define SHLI(dst, srca, srcb) \
push_3_buffer(compiler, TILEGX_OPC_SHLI, dst, srca, srcb, __LINE__)
#define SHRUI(dst, srca, imm) \
push_3_buffer(compiler, TILEGX_OPC_SHRUI, dst, srca, imm, __LINE__)
#define XORI(dst, srca, imm) \
push_3_buffer(compiler, TILEGX_OPC_XORI, dst, srca, imm, __LINE__)
#define ORI(dst, srca, imm) \
push_3_buffer(compiler, TILEGX_OPC_ORI, dst, srca, imm, __LINE__)
#define CMPLTU(dst, srca, srcb) \
push_3_buffer(compiler, TILEGX_OPC_CMPLTU, dst, srca, srcb, __LINE__)
#define CMPLTS(dst, srca, srcb) \
push_3_buffer(compiler, TILEGX_OPC_CMPLTS, dst, srca, srcb, __LINE__)
#define CMPLTUI(dst, srca, imm) \
push_3_buffer(compiler, TILEGX_OPC_CMPLTUI, dst, srca, imm, __LINE__)
#define CMOVNEZ(dst, srca, srcb) \
push_3_buffer(compiler, TILEGX_OPC_CMOVNEZ, dst, srca, srcb, __LINE__)
#define CMOVEQZ(dst, srca, srcb) \
push_3_buffer(compiler, TILEGX_OPC_CMOVEQZ, dst, srca, srcb, __LINE__)
#define ADDLI(dst, srca, srcb) \
push_3_buffer(compiler, TILEGX_OPC_ADDLI, dst, srca, srcb, __LINE__)
#define SHL16INSLI(dst, srca, srcb) \
push_3_buffer(compiler, TILEGX_OPC_SHL16INSLI, dst, srca, srcb, __LINE__)
#define LD_ADD(dst, addr, adjust) \
push_3_buffer(compiler, TILEGX_OPC_LD_ADD, dst, addr, adjust, __LINE__)
#define ST_ADD(src, addr, adjust) \
push_3_buffer(compiler, TILEGX_OPC_ST_ADD, src, addr, adjust, __LINE__)
#define LD(dst, addr) \
push_2_buffer(compiler, TILEGX_OPC_LD, dst, addr, __LINE__)
#define BFEXTU(dst, src, start, end) \
push_4_buffer(compiler, TILEGX_OPC_BFEXTU, dst, src, start, end, __LINE__)
#define BFEXTS(dst, src, start, end) \
push_4_buffer(compiler, TILEGX_OPC_BFEXTS, dst, src, start, end, __LINE__)
#define ADD_SOLO(dest, srca, srcb) \
push_inst(compiler, ADD_X1 | DEST_X1(dest) | SRCA_X1(srca) | SRCB_X1(srcb))
#define ADDI_SOLO(dest, srca, imm) \
push_inst(compiler, ADDI_X1 | DEST_X1(dest) | SRCA_X1(srca) | IMM8_X1(imm))
#define ADDLI_SOLO(dest, srca, imm) \
push_inst(compiler, ADDLI_X1 | DEST_X1(dest) | SRCA_X1(srca) | IMM16_X1(imm))
#define SHL16INSLI_SOLO(dest, srca, imm) \
push_inst(compiler, SHL16INSLI_X1 | DEST_X1(dest) | SRCA_X1(srca) | IMM16_X1(imm))
#define JALR_SOLO(reg) \
push_inst(compiler, JALR_X1 | SRCA_X1(reg))
#define JR_SOLO(reg) \
push_inst(compiler, JR_X1 | SRCA_X1(reg))
struct Format {
/* Mapping of bundle issue slot to assigned pipe. */
tilegx_pipeline pipe[TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE];
/* Mask of pipes used by this bundle. */
unsigned int pipe_mask;
};
const struct Format formats[] =
{
/* In Y format we must always have something in Y2, since it has
* no fnop, so this conveys that Y2 must always be used. */
BUNDLE_FORMAT(TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y2, NO_PIPELINE),
BUNDLE_FORMAT(TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y2, NO_PIPELINE),
BUNDLE_FORMAT(TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y0, NO_PIPELINE),
BUNDLE_FORMAT(TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y1, NO_PIPELINE),
/* Y format has three instructions. */
BUNDLE_FORMAT(TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y2),
BUNDLE_FORMAT(TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y1),
BUNDLE_FORMAT(TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y2),
BUNDLE_FORMAT(TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y0),
BUNDLE_FORMAT(TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y1),
BUNDLE_FORMAT(TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y0),
/* X format has only two instructions. */
BUNDLE_FORMAT(TILEGX_PIPELINE_X0, TILEGX_PIPELINE_X1, NO_PIPELINE),
BUNDLE_FORMAT(TILEGX_PIPELINE_X1, TILEGX_PIPELINE_X0, NO_PIPELINE)
};
struct jit_instr inst_buf[TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE];
unsigned long inst_buf_index;
tilegx_pipeline get_any_valid_pipe(const struct tilegx_opcode* opcode)
{
/* FIXME: tile: we could pregenerate this. */
int pipe;
for (pipe = 0; ((opcode->pipes & (1 << pipe)) == 0 && pipe < TILEGX_NUM_PIPELINE_ENCODINGS); pipe++)
;
return (tilegx_pipeline)(pipe);
}
void insert_nop(tilegx_mnemonic opc, int line)
{
const struct tilegx_opcode* opcode = NULL;
memmove(&inst_buf[1], &inst_buf[0], inst_buf_index * sizeof inst_buf[0]);
opcode = &tilegx_opcodes[opc];
inst_buf[0].opcode = opcode;
inst_buf[0].pipe = get_any_valid_pipe(opcode);
inst_buf[0].input_registers = 0;
inst_buf[0].output_registers = 0;
inst_buf[0].line = line;
++inst_buf_index;
}
const struct Format* compute_format()
{
unsigned int compatible_pipes = BUNDLE_FORMAT_MASK(
inst_buf[0].opcode->pipes,
inst_buf[1].opcode->pipes,
(inst_buf_index == 3 ? inst_buf[2].opcode->pipes : (1 << NO_PIPELINE)));
const struct Format* match = NULL;
const struct Format *b = NULL;
unsigned int i;
for (i = 0; i < sizeof formats / sizeof formats[0]; i++) {
b = &formats[i];
if ((b->pipe_mask & compatible_pipes) == b->pipe_mask) {
match = b;
break;
}
}
return match;
}
sljit_si assign_pipes()
{
unsigned long output_registers = 0;
unsigned int i = 0;
if (inst_buf_index == 1) {
tilegx_mnemonic opc = inst_buf[0].opcode->can_bundle
? TILEGX_OPC_FNOP : TILEGX_OPC_NOP;
insert_nop(opc, __LINE__);
}
const struct Format* match = compute_format();
if (match == NULL)
return -1;
for (i = 0; i < inst_buf_index; i++) {
if ((i > 0) && ((inst_buf[i].input_registers & output_registers) != 0))
return -1;
if ((i > 0) && ((inst_buf[i].output_registers & output_registers) != 0))
return -1;
/* Don't include Rzero in the match set, to avoid triggering
needlessly on 'prefetch' instrs. */
output_registers |= inst_buf[i].output_registers & 0xFFFFFFFFFFFFFFL;
inst_buf[i].pipe = match->pipe[i];
}
/* If only 2 instrs, and in Y-mode, insert a nop. */
if (inst_buf_index == 2 && !tilegx_is_x_pipeline(match->pipe[0])) {
insert_nop(TILEGX_OPC_FNOP, __LINE__);
/* Select the yet unassigned pipe. */
tilegx_pipeline pipe = (tilegx_pipeline)(((TILEGX_PIPELINE_Y0
+ TILEGX_PIPELINE_Y1 + TILEGX_PIPELINE_Y2)
- (inst_buf[1].pipe + inst_buf[2].pipe)));
inst_buf[0].pipe = pipe;
}
return 0;
}
tilegx_bundle_bits get_bundle_bit(struct jit_instr *inst)
{
int i, val;
const struct tilegx_opcode* opcode = inst->opcode;
tilegx_bundle_bits bits = opcode->fixed_bit_values[inst->pipe];
const struct tilegx_operand* operand = NULL;
for (i = 0; i < opcode->num_operands; i++) {
operand = &tilegx_operands[opcode->operands[inst->pipe][i]];
val = inst->operand_value[i];
bits |= operand->insert(val);
}
return bits;
}
static sljit_si update_buffer(struct sljit_compiler *compiler)
{
int i;
int orig_index = inst_buf_index;
struct jit_instr inst0 = inst_buf[0];
struct jit_instr inst1 = inst_buf[1];
struct jit_instr inst2 = inst_buf[2];
tilegx_bundle_bits bits = 0;
/* If the bundle is valid as is, perform the encoding and return 1. */
if (assign_pipes() == 0) {
for (i = 0; i < inst_buf_index; i++) {
bits |= get_bundle_bit(inst_buf + i);
#ifdef TILEGX_JIT_DEBUG
printf("|%04d", inst_buf[i].line);
#endif
}
#ifdef TILEGX_JIT_DEBUG
if (inst_buf_index == 3)
printf("|M0|:\t");
else
printf("|M0|:\t\t");
print_insn_tilegx(&bits);
#endif
inst_buf_index = 0;
#ifdef TILEGX_JIT_DEBUG
return push_inst_nodebug(compiler, bits);
#else
return push_inst(compiler, bits);
#endif
}
/* If the bundle is invalid, split it in two. First encode the first two
(or possibly 1) instructions, and then the last, separately. Note that
assign_pipes may have re-ordered the instrs (by inserting no-ops in
lower slots) so we need to reset them. */
inst_buf_index = orig_index - 1;
inst_buf[0] = inst0;
inst_buf[1] = inst1;
inst_buf[2] = inst2;
if (assign_pipes() == 0) {
for (i = 0; i < inst_buf_index; i++) {
bits |= get_bundle_bit(inst_buf + i);
#ifdef TILEGX_JIT_DEBUG
printf("|%04d", inst_buf[i].line);
#endif
}
#ifdef TILEGX_JIT_DEBUG
if (inst_buf_index == 3)
printf("|M1|:\t");
else
printf("|M1|:\t\t");
print_insn_tilegx(&bits);
#endif
if ((orig_index - 1) == 2) {
inst_buf[0] = inst2;
inst_buf_index = 1;
} else if ((orig_index - 1) == 1) {
inst_buf[0] = inst1;
inst_buf_index = 1;
} else
SLJIT_ASSERT_STOP();
#ifdef TILEGX_JIT_DEBUG
return push_inst_nodebug(compiler, bits);
#else
return push_inst(compiler, bits);
#endif
} else {
/* We had 3 instrs of which the first 2 can't live in the same bundle.
Split those two. Note that we don't try to then combine the second
and third instr into a single bundle. First instruction: */
inst_buf_index = 1;
inst_buf[0] = inst0;
inst_buf[1] = inst1;
inst_buf[2] = inst2;
if (assign_pipes() == 0) {
for (i = 0; i < inst_buf_index; i++) {
bits |= get_bundle_bit(inst_buf + i);
#ifdef TILEGX_JIT_DEBUG
printf("|%04d", inst_buf[i].line);
#endif
}
#ifdef TILEGX_JIT_DEBUG
if (inst_buf_index == 3)
printf("|M2|:\t");
else
printf("|M2|:\t\t");
print_insn_tilegx(&bits);
#endif
inst_buf[0] = inst1;
inst_buf[1] = inst2;
inst_buf_index = orig_index - 1;
#ifdef TILEGX_JIT_DEBUG
return push_inst_nodebug(compiler, bits);
#else
return push_inst(compiler, bits);
#endif
} else
SLJIT_ASSERT_STOP();
}
SLJIT_ASSERT_STOP();
}
static sljit_si flush_buffer(struct sljit_compiler *compiler)
{
while (inst_buf_index != 0) {
FAIL_IF(update_buffer(compiler));
}
return SLJIT_SUCCESS;
}
static sljit_si push_4_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int op0, int op1, int op2, int op3, int line)
{
if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE)
FAIL_IF(update_buffer(compiler));
const struct tilegx_opcode* opcode = &tilegx_opcodes[opc];
inst_buf[inst_buf_index].opcode = opcode;
inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode);
inst_buf[inst_buf_index].operand_value[0] = op0;
inst_buf[inst_buf_index].operand_value[1] = op1;
inst_buf[inst_buf_index].operand_value[2] = op2;
inst_buf[inst_buf_index].operand_value[3] = op3;
inst_buf[inst_buf_index].input_registers = 1L << op1;
inst_buf[inst_buf_index].output_registers = 1L << op0;
inst_buf[inst_buf_index].line = line;
inst_buf_index++;
return SLJIT_SUCCESS;
}
static sljit_si push_3_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int op0, int op1, int op2, int line)
{
if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE)
FAIL_IF(update_buffer(compiler));
const struct tilegx_opcode* opcode = &tilegx_opcodes[opc];
inst_buf[inst_buf_index].opcode = opcode;
inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode);
inst_buf[inst_buf_index].operand_value[0] = op0;
inst_buf[inst_buf_index].operand_value[1] = op1;
inst_buf[inst_buf_index].operand_value[2] = op2;
inst_buf[inst_buf_index].line = line;
switch (opc) {
case TILEGX_OPC_ST_ADD:
inst_buf[inst_buf_index].input_registers = (1L << op0) | (1L << op1);
inst_buf[inst_buf_index].output_registers = 1L << op0;
break;
case TILEGX_OPC_LD_ADD:
inst_buf[inst_buf_index].input_registers = 1L << op1;
inst_buf[inst_buf_index].output_registers = (1L << op0) | (1L << op1);
break;
case TILEGX_OPC_ADD:
case TILEGX_OPC_AND:
case TILEGX_OPC_SUB:
case TILEGX_OPC_MULX:
case TILEGX_OPC_OR:
case TILEGX_OPC_XOR:
case TILEGX_OPC_NOR:
case TILEGX_OPC_SHL:
case TILEGX_OPC_SHRU:
case TILEGX_OPC_SHRS:
case TILEGX_OPC_CMPLTU:
case TILEGX_OPC_CMPLTS:
case TILEGX_OPC_CMOVEQZ:
case TILEGX_OPC_CMOVNEZ:
inst_buf[inst_buf_index].input_registers = (1L << op1) | (1L << op2);
inst_buf[inst_buf_index].output_registers = 1L << op0;
break;
case TILEGX_OPC_ADDLI:
case TILEGX_OPC_XORI:
case TILEGX_OPC_ORI:
case TILEGX_OPC_SHLI:
case TILEGX_OPC_SHRUI:
case TILEGX_OPC_SHRSI:
case TILEGX_OPC_SHL16INSLI:
case TILEGX_OPC_CMPLTUI:
case TILEGX_OPC_CMPLTSI:
inst_buf[inst_buf_index].input_registers = 1L << op1;
inst_buf[inst_buf_index].output_registers = 1L << op0;
break;
default:
printf("unrecoginzed opc: %s\n", opcode->name);
SLJIT_ASSERT_STOP();
}
inst_buf_index++;
return SLJIT_SUCCESS;
}
static sljit_si push_2_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int op0, int op1, int line)
{
if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE)
FAIL_IF(update_buffer(compiler));
const struct tilegx_opcode* opcode = &tilegx_opcodes[opc];
inst_buf[inst_buf_index].opcode = opcode;
inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode);
inst_buf[inst_buf_index].operand_value[0] = op0;
inst_buf[inst_buf_index].operand_value[1] = op1;
inst_buf[inst_buf_index].line = line;
switch (opc) {
case TILEGX_OPC_BEQZ:
case TILEGX_OPC_BNEZ:
inst_buf[inst_buf_index].input_registers = 1L << op0;
break;
case TILEGX_OPC_ST:
case TILEGX_OPC_ST1:
case TILEGX_OPC_ST2:
case TILEGX_OPC_ST4:
inst_buf[inst_buf_index].input_registers = (1L << op0) | (1L << op1);
inst_buf[inst_buf_index].output_registers = 0;
break;
case TILEGX_OPC_CLZ:
case TILEGX_OPC_LD:
case TILEGX_OPC_LD1U:
case TILEGX_OPC_LD1S:
case TILEGX_OPC_LD2U:
case TILEGX_OPC_LD2S:
case TILEGX_OPC_LD4U:
case TILEGX_OPC_LD4S:
inst_buf[inst_buf_index].input_registers = 1L << op1;
inst_buf[inst_buf_index].output_registers = 1L << op0;
break;
default:
printf("unrecoginzed opc: %s\n", opcode->name);
SLJIT_ASSERT_STOP();
}
inst_buf_index++;
return SLJIT_SUCCESS;
}
static sljit_si push_0_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int line)
{
if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE)
FAIL_IF(update_buffer(compiler));
const struct tilegx_opcode* opcode = &tilegx_opcodes[opc];
inst_buf[inst_buf_index].opcode = opcode;
inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode);
inst_buf[inst_buf_index].input_registers = 0;
inst_buf[inst_buf_index].output_registers = 0;
inst_buf[inst_buf_index].line = line;
inst_buf_index++;
return SLJIT_SUCCESS;
}
static sljit_si push_jr_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int op0, int line)
{
if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE)
FAIL_IF(update_buffer(compiler));
const struct tilegx_opcode* opcode = &tilegx_opcodes[opc];
inst_buf[inst_buf_index].opcode = opcode;
inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode);
inst_buf[inst_buf_index].operand_value[0] = op0;
inst_buf[inst_buf_index].input_registers = 1L << op0;
inst_buf[inst_buf_index].output_registers = 0;
inst_buf[inst_buf_index].line = line;
inst_buf_index++;
return flush_buffer(compiler);
}
static SLJIT_INLINE sljit_ins * detect_jump_type(struct sljit_jump *jump, sljit_ins *code_ptr, sljit_ins *code)
{
sljit_sw diff;
sljit_uw target_addr;
sljit_ins *inst;
if (jump->flags & SLJIT_REWRITABLE_JUMP)
return code_ptr;
if (jump->flags & JUMP_ADDR)
target_addr = jump->u.target;
else {
SLJIT_ASSERT(jump->flags & JUMP_LABEL);
target_addr = (sljit_uw)(code + jump->u.label->size);
}
inst = (sljit_ins *)jump->addr;
if (jump->flags & IS_COND)
inst--;
diff = ((sljit_sw) target_addr - (sljit_sw) inst) >> 3;
if (diff <= SIMM_17BIT_MAX && diff >= SIMM_17BIT_MIN) {
jump->flags |= PATCH_B;
if (!(jump->flags & IS_COND)) {
if (jump->flags & IS_JAL) {
jump->flags &= ~(PATCH_B);
jump->flags |= PATCH_J;
inst[0] = JAL_X1;
#ifdef TILEGX_JIT_DEBUG
printf("[runtime relocate]%04d:\t", __LINE__);
print_insn_tilegx(inst);
#endif
} else {
inst[0] = BEQZ_X1 | SRCA_X1(ZERO);
#ifdef TILEGX_JIT_DEBUG
printf("[runtime relocate]%04d:\t", __LINE__);
print_insn_tilegx(inst);
#endif
}
return inst;
}
inst[0] = inst[0] ^ (0x7L << 55);
#ifdef TILEGX_JIT_DEBUG
printf("[runtime relocate]%04d:\t", __LINE__);
print_insn_tilegx(inst);
#endif
jump->addr -= sizeof(sljit_ins);
return inst;
}
if (jump->flags & IS_COND) {
if ((target_addr & ~0x3FFFFFFFL) == ((jump->addr + sizeof(sljit_ins)) & ~0x3FFFFFFFL)) {
jump->flags |= PATCH_J;
inst[0] = (inst[0] & ~(BOFF_X1(-1))) | BOFF_X1(2);
inst[1] = J_X1;
return inst + 1;
}
return code_ptr;
}
if ((target_addr & ~0x3FFFFFFFL) == ((jump->addr + sizeof(sljit_ins)) & ~0x3FFFFFFFL)) {
jump->flags |= PATCH_J;
if (jump->flags & IS_JAL) {
inst[0] = JAL_X1;
#ifdef TILEGX_JIT_DEBUG
printf("[runtime relocate]%04d:\t", __LINE__);
print_insn_tilegx(inst);
#endif
} else {
inst[0] = J_X1;
#ifdef TILEGX_JIT_DEBUG
printf("[runtime relocate]%04d:\t", __LINE__);
print_insn_tilegx(inst);
#endif
}
return inst;
}
return code_ptr;
}
SLJIT_API_FUNC_ATTRIBUTE void * sljit_generate_code(struct sljit_compiler *compiler)
{
struct sljit_memory_fragment *buf;
sljit_ins *code;
sljit_ins *code_ptr;
sljit_ins *buf_ptr;
sljit_ins *buf_end;
sljit_uw word_count;
sljit_uw addr;
struct sljit_label *label;
struct sljit_jump *jump;
struct sljit_const *const_;
CHECK_ERROR_PTR();
CHECK_PTR(check_sljit_generate_code(compiler));
reverse_buf(compiler);
code = (sljit_ins *)SLJIT_MALLOC_EXEC(compiler->size * sizeof(sljit_ins));
PTR_FAIL_WITH_EXEC_IF(code);
buf = compiler->buf;
code_ptr = code;
word_count = 0;
label = compiler->labels;
jump = compiler->jumps;
const_ = compiler->consts;
do {
buf_ptr = (sljit_ins *)buf->memory;
buf_end = buf_ptr + (buf->used_size >> 3);
do {
*code_ptr = *buf_ptr++;
SLJIT_ASSERT(!label || label->size >= word_count);
SLJIT_ASSERT(!jump || jump->addr >= word_count);
SLJIT_ASSERT(!const_ || const_->addr >= word_count);
/* These structures are ordered by their address. */
if (label && label->size == word_count) {
/* Just recording the address. */
label->addr = (sljit_uw) code_ptr;
label->size = code_ptr - code;
label = label->next;
}
if (jump && jump->addr == word_count) {
if (jump->flags & IS_JAL)
jump->addr = (sljit_uw)(code_ptr - 4);
else
jump->addr = (sljit_uw)(code_ptr - 3);
code_ptr = detect_jump_type(jump, code_ptr, code);
jump = jump->next;
}
if (const_ && const_->addr == word_count) {
/* Just recording the address. */
const_->addr = (sljit_uw) code_ptr;
const_ = const_->next;
}
code_ptr++;
word_count++;
} while (buf_ptr < buf_end);
buf = buf->next;
} while (buf);
if (label && label->size == word_count) {
label->addr = (sljit_uw) code_ptr;
label->size = code_ptr - code;
label = label->next;
}
SLJIT_ASSERT(!label);
SLJIT_ASSERT(!jump);
SLJIT_ASSERT(!const_);
SLJIT_ASSERT(code_ptr - code <= (sljit_sw)compiler->size);
jump = compiler->jumps;
while (jump) {
do {
addr = (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target;
buf_ptr = (sljit_ins *)jump->addr;
if (jump->flags & PATCH_B) {
addr = (sljit_sw)(addr - (jump->addr)) >> 3;
SLJIT_ASSERT((sljit_sw) addr <= SIMM_17BIT_MAX && (sljit_sw) addr >= SIMM_17BIT_MIN);
buf_ptr[0] = (buf_ptr[0] & ~(BOFF_X1(-1))) | BOFF_X1(addr);
#ifdef TILEGX_JIT_DEBUG
printf("[runtime relocate]%04d:\t", __LINE__);
print_insn_tilegx(buf_ptr);
#endif
break;
}
if (jump->flags & PATCH_J) {
SLJIT_ASSERT((addr & ~0x3FFFFFFFL) == ((jump->addr + sizeof(sljit_ins)) & ~0x3FFFFFFFL));
addr = (sljit_sw)(addr - (jump->addr)) >> 3;
buf_ptr[0] = (buf_ptr[0] & ~(JOFF_X1(-1))) | JOFF_X1(addr);
#ifdef TILEGX_JIT_DEBUG
printf("[runtime relocate]%04d:\t", __LINE__);
print_insn_tilegx(buf_ptr);
#endif
break;
}
SLJIT_ASSERT(!(jump->flags & IS_JAL));
/* Set the fields of immediate loads. */
buf_ptr[0] = (buf_ptr[0] & ~(0xFFFFL << 43)) | (((addr >> 32) & 0xFFFFL) << 43);
buf_ptr[1] = (buf_ptr[1] & ~(0xFFFFL << 43)) | (((addr >> 16) & 0xFFFFL) << 43);
buf_ptr[2] = (buf_ptr[2] & ~(0xFFFFL << 43)) | ((addr & 0xFFFFL) << 43);
} while (0);
jump = jump->next;
}
compiler->error = SLJIT_ERR_COMPILED;
compiler->executable_size = (code_ptr - code) * sizeof(sljit_ins);
SLJIT_CACHE_FLUSH(code, code_ptr);
return code;
}
static sljit_si load_immediate(struct sljit_compiler *compiler, sljit_si dst_ar, sljit_sw imm)
{
if (imm <= SIMM_16BIT_MAX && imm >= SIMM_16BIT_MIN)
return ADDLI(dst_ar, ZERO, imm);
if (imm <= SIMM_32BIT_MAX && imm >= SIMM_32BIT_MIN) {
FAIL_IF(ADDLI(dst_ar, ZERO, imm >> 16));
return SHL16INSLI(dst_ar, dst_ar, imm);
}
if (imm <= SIMM_48BIT_MAX && imm >= SIMM_48BIT_MIN) {
FAIL_IF(ADDLI(dst_ar, ZERO, imm >> 32));
FAIL_IF(SHL16INSLI(dst_ar, dst_ar, imm >> 16));
return SHL16INSLI(dst_ar, dst_ar, imm);
}
FAIL_IF(ADDLI(dst_ar, ZERO, imm >> 48));
FAIL_IF(SHL16INSLI(dst_ar, dst_ar, imm >> 32));
FAIL_IF(SHL16INSLI(dst_ar, dst_ar, imm >> 16));
return SHL16INSLI(dst_ar, dst_ar, imm);
}
static sljit_si emit_const(struct sljit_compiler *compiler, sljit_si dst_ar, sljit_sw imm, int flush)
{
/* Should *not* be optimized as load_immediate, as pcre relocation
mechanism will match this fixed 4-instruction pattern. */
if (flush) {
FAIL_IF(ADDLI_SOLO(dst_ar, ZERO, imm >> 32));
FAIL_IF(SHL16INSLI_SOLO(dst_ar, dst_ar, imm >> 16));
return SHL16INSLI_SOLO(dst_ar, dst_ar, imm);
}
FAIL_IF(ADDLI(dst_ar, ZERO, imm >> 32));
FAIL_IF(SHL16INSLI(dst_ar, dst_ar, imm >> 16));
return SHL16INSLI(dst_ar, dst_ar, imm);
}
static sljit_si emit_const_64(struct sljit_compiler *compiler, sljit_si dst_ar, sljit_sw imm, int flush)
{
/* Should *not* be optimized as load_immediate, as pcre relocation
mechanism will match this fixed 4-instruction pattern. */
if (flush) {
FAIL_IF(ADDLI_SOLO(reg_map[dst_ar], ZERO, imm >> 48));
FAIL_IF(SHL16INSLI_SOLO(reg_map[dst_ar], reg_map[dst_ar], imm >> 32));
FAIL_IF(SHL16INSLI_SOLO(reg_map[dst_ar], reg_map[dst_ar], imm >> 16));
return SHL16INSLI_SOLO(reg_map[dst_ar], reg_map[dst_ar], imm);
}
FAIL_IF(ADDLI(reg_map[dst_ar], ZERO, imm >> 48));
FAIL_IF(SHL16INSLI(reg_map[dst_ar], reg_map[dst_ar], imm >> 32));
FAIL_IF(SHL16INSLI(reg_map[dst_ar], reg_map[dst_ar], imm >> 16));
return SHL16INSLI(reg_map[dst_ar], reg_map[dst_ar], imm);
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_enter(struct sljit_compiler *compiler,
sljit_si options, sljit_si args, sljit_si scratches, sljit_si saveds,
sljit_si fscratches, sljit_si fsaveds, sljit_si local_size)
{
sljit_ins base;
sljit_si i, tmp;
CHECK_ERROR();
CHECK(check_sljit_emit_enter(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size));
set_emit_enter(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size);
local_size += GET_SAVED_REGISTERS_SIZE(scratches, saveds, 1);
local_size = (local_size + 7) & ~7;
compiler->local_size = local_size;
if (local_size <= SIMM_16BIT_MAX) {
/* Frequent case. */
FAIL_IF(ADDLI(SLJIT_LOCALS_REG_mapped, SLJIT_LOCALS_REG_mapped, -local_size));
base = SLJIT_LOCALS_REG_mapped;
} else {
FAIL_IF(load_immediate(compiler, TMP_REG1_mapped, local_size));
FAIL_IF(ADD(TMP_REG2_mapped, SLJIT_LOCALS_REG_mapped, ZERO));
FAIL_IF(SUB(SLJIT_LOCALS_REG_mapped, SLJIT_LOCALS_REG_mapped, TMP_REG1_mapped));
base = TMP_REG2_mapped;
local_size = 0;
}
/* Save the return address. */
FAIL_IF(ADDLI(ADDR_TMP_mapped, base, local_size - 8));
FAIL_IF(ST_ADD(ADDR_TMP_mapped, RA, -8));
/* Save the S registers. */
tmp = saveds < SLJIT_NUMBER_OF_SAVED_REGISTERS ? (SLJIT_S0 + 1 - saveds) : SLJIT_FIRST_SAVED_REG;
for (i = SLJIT_S0; i >= tmp; i--) {
FAIL_IF(ST_ADD(ADDR_TMP_mapped, reg_map[i], -8));
}
/* Save the R registers that need to be reserved. */
for (i = scratches; i >= SLJIT_FIRST_SAVED_REG; i--) {
FAIL_IF(ST_ADD(ADDR_TMP_mapped, reg_map[i], -8));
}
/* Move the arguments to S registers. */
for (i = 0; i < args; i++) {
FAIL_IF(ADD(reg_map[SLJIT_S0 - i], i, ZERO));
}
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_set_context(struct sljit_compiler *compiler,
sljit_si options, sljit_si args, sljit_si scratches, sljit_si saveds,
sljit_si fscratches, sljit_si fsaveds, sljit_si local_size)
{
CHECK_ERROR();
CHECK(check_sljit_set_context(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size));
set_set_context(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size);
local_size += GET_SAVED_REGISTERS_SIZE(scratches, saveds, 1);
compiler->local_size = (local_size + 7) & ~7;
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_return(struct sljit_compiler *compiler, sljit_si op, sljit_si src, sljit_sw srcw)
{
sljit_si local_size;
sljit_ins base;
sljit_si i, tmp;
sljit_si saveds;
CHECK_ERROR();
CHECK(check_sljit_emit_return(compiler, op, src, srcw));
FAIL_IF(emit_mov_before_return(compiler, op, src, srcw));
local_size = compiler->local_size;
if (local_size <= SIMM_16BIT_MAX)
base = SLJIT_LOCALS_REG_mapped;
else {
FAIL_IF(load_immediate(compiler, TMP_REG1_mapped, local_size));
FAIL_IF(ADD(TMP_REG1_mapped, SLJIT_LOCALS_REG_mapped, TMP_REG1_mapped));
base = TMP_REG1_mapped;
local_size = 0;
}
/* Restore the return address. */
FAIL_IF(ADDLI(ADDR_TMP_mapped, base, local_size - 8));
FAIL_IF(LD_ADD(RA, ADDR_TMP_mapped, -8));
/* Restore the S registers. */
saveds = compiler->saveds;
tmp = saveds < SLJIT_NUMBER_OF_SAVED_REGISTERS ? (SLJIT_S0 + 1 - saveds) : SLJIT_FIRST_SAVED_REG;
for (i = SLJIT_S0; i >= tmp; i--) {
FAIL_IF(LD_ADD(reg_map[i], ADDR_TMP_mapped, -8));
}
/* Restore the R registers that need to be reserved. */
for (i = compiler->scratches; i >= SLJIT_FIRST_SAVED_REG; i--) {
FAIL_IF(LD_ADD(reg_map[i], ADDR_TMP_mapped, -8));
}
if (compiler->local_size <= SIMM_16BIT_MAX)
FAIL_IF(ADDLI(SLJIT_LOCALS_REG_mapped, SLJIT_LOCALS_REG_mapped, compiler->local_size));
else
FAIL_IF(ADD(SLJIT_LOCALS_REG_mapped, TMP_REG1_mapped, ZERO));
return JR(RA);
}
/* reg_ar is an absoulute register! */
/* Can perform an operation using at most 1 instruction. */
static sljit_si getput_arg_fast(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg_ar, sljit_si arg, sljit_sw argw)
{
SLJIT_ASSERT(arg & SLJIT_MEM);
if ((!(flags & WRITE_BACK) || !(arg & REG_MASK))
&& !(arg & OFFS_REG_MASK) && argw <= SIMM_16BIT_MAX && argw >= SIMM_16BIT_MIN) {
/* Works for both absoulte and relative addresses. */
if (SLJIT_UNLIKELY(flags & ARG_TEST))
return 1;
FAIL_IF(ADDLI(ADDR_TMP_mapped, reg_map[arg & REG_MASK], argw));
if (flags & LOAD_DATA)
FAIL_IF(PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, ADDR_TMP_mapped));
else
FAIL_IF(PB2(data_transfer_insts[flags & MEM_MASK], ADDR_TMP_mapped, reg_ar));
return -1;
}
return 0;
}
/* See getput_arg below.
Note: can_cache is called only for binary operators. Those
operators always uses word arguments without write back. */
static sljit_si can_cache(sljit_si arg, sljit_sw argw, sljit_si next_arg, sljit_sw next_argw)
{
SLJIT_ASSERT((arg & SLJIT_MEM) && (next_arg & SLJIT_MEM));
/* Simple operation except for updates. */
if (arg & OFFS_REG_MASK) {
argw &= 0x3;
next_argw &= 0x3;
if (argw && argw == next_argw
&& (arg == next_arg || (arg & OFFS_REG_MASK) == (next_arg & OFFS_REG_MASK)))
return 1;
return 0;
}
if (arg == next_arg) {
if (((next_argw - argw) <= SIMM_16BIT_MAX
&& (next_argw - argw) >= SIMM_16BIT_MIN))
return 1;
return 0;
}
return 0;
}
/* Emit the necessary instructions. See can_cache above. */
static sljit_si getput_arg(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg_ar, sljit_si arg, sljit_sw argw, sljit_si next_arg, sljit_sw next_argw)
{
sljit_si tmp_ar, base;
SLJIT_ASSERT(arg & SLJIT_MEM);
if (!(next_arg & SLJIT_MEM)) {
next_arg = 0;
next_argw = 0;
}
if ((flags & MEM_MASK) <= GPR_REG && (flags & LOAD_DATA))
tmp_ar = reg_ar;
else
tmp_ar = TMP_REG1_mapped;
base = arg & REG_MASK;
if (SLJIT_UNLIKELY(arg & OFFS_REG_MASK)) {
argw &= 0x3;
if ((flags & WRITE_BACK) && reg_ar == reg_map[base]) {
SLJIT_ASSERT(!(flags & LOAD_DATA) && reg_map[TMP_REG1] != reg_ar);
FAIL_IF(ADD(TMP_REG1_mapped, reg_ar, ZERO));
reg_ar = TMP_REG1_mapped;
}
/* Using the cache. */
if (argw == compiler->cache_argw) {
if (!(flags & WRITE_BACK)) {
if (arg == compiler->cache_arg) {
if (flags & LOAD_DATA)
return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped);
else
return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar);
}
if ((SLJIT_MEM | (arg & OFFS_REG_MASK)) == compiler->cache_arg) {
if (arg == next_arg && argw == (next_argw & 0x3)) {
compiler->cache_arg = arg;
compiler->cache_argw = argw;
FAIL_IF(ADD(TMP_REG3_mapped, reg_map[base], TMP_REG3_mapped));
if (flags & LOAD_DATA)
return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped);
else
return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar);
}
FAIL_IF(ADD(tmp_ar, reg_map[base], TMP_REG3_mapped));
if (flags & LOAD_DATA)
return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, tmp_ar);
else
return PB2(data_transfer_insts[flags & MEM_MASK], tmp_ar, reg_ar);
}
} else {
if ((SLJIT_MEM | (arg & OFFS_REG_MASK)) == compiler->cache_arg) {
FAIL_IF(ADD(reg_map[base], reg_map[base], TMP_REG3_mapped));
if (flags & LOAD_DATA)
return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, reg_map[base]);
else
return PB2(data_transfer_insts[flags & MEM_MASK], reg_map[base], reg_ar);
}
}
}
if (SLJIT_UNLIKELY(argw)) {
compiler->cache_arg = SLJIT_MEM | (arg & OFFS_REG_MASK);
compiler->cache_argw = argw;
FAIL_IF(SHLI(TMP_REG3_mapped, reg_map[OFFS_REG(arg)], argw));
}
if (!(flags & WRITE_BACK)) {
if (arg == next_arg && argw == (next_argw & 0x3)) {
compiler->cache_arg = arg;
compiler->cache_argw = argw;
FAIL_IF(ADD(TMP_REG3_mapped, reg_map[base], reg_map[!argw ? OFFS_REG(arg) : TMP_REG3]));
tmp_ar = TMP_REG3_mapped;
} else
FAIL_IF(ADD(tmp_ar, reg_map[base], reg_map[!argw ? OFFS_REG(arg) : TMP_REG3]));
if (flags & LOAD_DATA)
return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, tmp_ar);
else
return PB2(data_transfer_insts[flags & MEM_MASK], tmp_ar, reg_ar);
}
FAIL_IF(ADD(reg_map[base], reg_map[base], reg_map[!argw ? OFFS_REG(arg) : TMP_REG3]));
if (flags & LOAD_DATA)
return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, reg_map[base]);
else
return PB2(data_transfer_insts[flags & MEM_MASK], reg_map[base], reg_ar);
}
if (SLJIT_UNLIKELY(flags & WRITE_BACK) && base) {
/* Update only applies if a base register exists. */
if (reg_ar == reg_map[base]) {
SLJIT_ASSERT(!(flags & LOAD_DATA) && TMP_REG1_mapped != reg_ar);
if (argw <= SIMM_16BIT_MAX && argw >= SIMM_16BIT_MIN) {
FAIL_IF(ADDLI(ADDR_TMP_mapped, reg_map[base], argw));
if (flags & LOAD_DATA)
FAIL_IF(PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, ADDR_TMP_mapped));
else
FAIL_IF(PB2(data_transfer_insts[flags & MEM_MASK], ADDR_TMP_mapped, reg_ar));
if (argw)
return ADDLI(reg_map[base], reg_map[base], argw);
return SLJIT_SUCCESS;
}
FAIL_IF(ADD(TMP_REG1_mapped, reg_ar, ZERO));
reg_ar = TMP_REG1_mapped;
}
if (argw <= SIMM_16BIT_MAX && argw >= SIMM_16BIT_MIN) {
if (argw)
FAIL_IF(ADDLI(reg_map[base], reg_map[base], argw));
} else {
if (compiler->cache_arg == SLJIT_MEM
&& argw - compiler->cache_argw <= SIMM_16BIT_MAX
&& argw - compiler->cache_argw >= SIMM_16BIT_MIN) {
if (argw != compiler->cache_argw) {
FAIL_IF(ADD(TMP_REG3_mapped, TMP_REG3_mapped, argw - compiler->cache_argw));
compiler->cache_argw = argw;
}
FAIL_IF(ADD(reg_map[base], reg_map[base], TMP_REG3_mapped));
} else {
compiler->cache_arg = SLJIT_MEM;
compiler->cache_argw = argw;
FAIL_IF(load_immediate(compiler, TMP_REG3_mapped, argw));
FAIL_IF(ADD(reg_map[base], reg_map[base], TMP_REG3_mapped));
}
}
if (flags & LOAD_DATA)
return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, reg_map[base]);
else
return PB2(data_transfer_insts[flags & MEM_MASK], reg_map[base], reg_ar);
}
if (compiler->cache_arg == arg
&& argw - compiler->cache_argw <= SIMM_16BIT_MAX
&& argw - compiler->cache_argw >= SIMM_16BIT_MIN) {
if (argw != compiler->cache_argw) {
FAIL_IF(ADDLI(TMP_REG3_mapped, TMP_REG3_mapped, argw - compiler->cache_argw));
compiler->cache_argw = argw;
}
if (flags & LOAD_DATA)
return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped);
else
return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar);
}
if (compiler->cache_arg == SLJIT_MEM
&& argw - compiler->cache_argw <= SIMM_16BIT_MAX
&& argw - compiler->cache_argw >= SIMM_16BIT_MIN) {
if (argw != compiler->cache_argw)
FAIL_IF(ADDLI(TMP_REG3_mapped, TMP_REG3_mapped, argw - compiler->cache_argw));
} else {
compiler->cache_arg = SLJIT_MEM;
FAIL_IF(load_immediate(compiler, TMP_REG3_mapped, argw));
}
compiler->cache_argw = argw;
if (!base) {
if (flags & LOAD_DATA)
return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped);
else
return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar);
}
if (arg == next_arg
&& next_argw - argw <= SIMM_16BIT_MAX
&& next_argw - argw >= SIMM_16BIT_MIN) {
compiler->cache_arg = arg;
FAIL_IF(ADD(TMP_REG3_mapped, TMP_REG3_mapped, reg_map[base]));
if (flags & LOAD_DATA)
return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped);
else
return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar);
}
FAIL_IF(ADD(tmp_ar, TMP_REG3_mapped, reg_map[base]));
if (flags & LOAD_DATA)
return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, tmp_ar);
else
return PB2(data_transfer_insts[flags & MEM_MASK], tmp_ar, reg_ar);
}
static SLJIT_INLINE sljit_si emit_op_mem(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg_ar, sljit_si arg, sljit_sw argw)
{
if (getput_arg_fast(compiler, flags, reg_ar, arg, argw))
return compiler->error;
compiler->cache_arg = 0;
compiler->cache_argw = 0;
return getput_arg(compiler, flags, reg_ar, arg, argw, 0, 0);
}
static SLJIT_INLINE sljit_si emit_op_mem2(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg, sljit_si arg1, sljit_sw arg1w, sljit_si arg2, sljit_sw arg2w)
{
if (getput_arg_fast(compiler, flags, reg, arg1, arg1w))
return compiler->error;
return getput_arg(compiler, flags, reg, arg1, arg1w, arg2, arg2w);
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw)
{
CHECK_ERROR();
CHECK(check_sljit_emit_fast_enter(compiler, dst, dstw));
ADJUST_LOCAL_OFFSET(dst, dstw);
/* For UNUSED dst. Uncommon, but possible. */
if (dst == SLJIT_UNUSED)
return SLJIT_SUCCESS;
if (FAST_IS_REG(dst))
return ADD(reg_map[dst], RA, ZERO);
/* Memory. */
return emit_op_mem(compiler, WORD_DATA, RA, dst, dstw);
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fast_return(struct sljit_compiler *compiler, sljit_si src, sljit_sw srcw)
{
CHECK_ERROR();
CHECK(check_sljit_emit_fast_return(compiler, src, srcw));
ADJUST_LOCAL_OFFSET(src, srcw);
if (FAST_IS_REG(src))
FAIL_IF(ADD(RA, reg_map[src], ZERO));
else if (src & SLJIT_MEM)
FAIL_IF(emit_op_mem(compiler, WORD_DATA | LOAD_DATA, RA, src, srcw));
else if (src & SLJIT_IMM)
FAIL_IF(load_immediate(compiler, RA, srcw));
return JR(RA);
}
static SLJIT_INLINE sljit_si emit_single_op(struct sljit_compiler *compiler, sljit_si op, sljit_si flags, sljit_si dst, sljit_si src1, sljit_sw src2)
{
sljit_si overflow_ra = 0;
switch (GET_OPCODE(op)) {
case SLJIT_MOV:
case SLJIT_MOV_P:
SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
if (dst != src2)
return ADD(reg_map[dst], reg_map[src2], ZERO);
return SLJIT_SUCCESS;
case SLJIT_MOV_UI:
case SLJIT_MOV_SI:
SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
if (op == SLJIT_MOV_SI)
return BFEXTS(reg_map[dst], reg_map[src2], 0, 31);
return BFEXTU(reg_map[dst], reg_map[src2], 0, 31);
} else if (dst != src2) {
SLJIT_ASSERT(src2 == 0);
return ADD(reg_map[dst], reg_map[src2], ZERO);
}
return SLJIT_SUCCESS;
case SLJIT_MOV_UB:
case SLJIT_MOV_SB:
SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
if (op == SLJIT_MOV_SB)
return BFEXTS(reg_map[dst], reg_map[src2], 0, 7);
return BFEXTU(reg_map[dst], reg_map[src2], 0, 7);
} else if (dst != src2) {
SLJIT_ASSERT(src2 == 0);
return ADD(reg_map[dst], reg_map[src2], ZERO);
}
return SLJIT_SUCCESS;
case SLJIT_MOV_UH:
case SLJIT_MOV_SH:
SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
if (op == SLJIT_MOV_SH)
return BFEXTS(reg_map[dst], reg_map[src2], 0, 15);
return BFEXTU(reg_map[dst], reg_map[src2], 0, 15);
} else if (dst != src2) {
SLJIT_ASSERT(src2 == 0);
return ADD(reg_map[dst], reg_map[src2], ZERO);
}
return SLJIT_SUCCESS;
case SLJIT_NOT:
SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
if (op & SLJIT_SET_E)
FAIL_IF(NOR(EQUAL_FLAG, reg_map[src2], reg_map[src2]));
if (CHECK_FLAGS(SLJIT_SET_E))
FAIL_IF(NOR(reg_map[dst], reg_map[src2], reg_map[src2]));
return SLJIT_SUCCESS;
case SLJIT_CLZ:
SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
if (op & SLJIT_SET_E)
FAIL_IF(CLZ(EQUAL_FLAG, reg_map[src2]));
if (CHECK_FLAGS(SLJIT_SET_E))
FAIL_IF(CLZ(reg_map[dst], reg_map[src2]));
return SLJIT_SUCCESS;
case SLJIT_ADD:
if (flags & SRC2_IMM) {
if (op & SLJIT_SET_O) {
FAIL_IF(SHRUI(TMP_EREG1, reg_map[src1], 63));
if (src2 < 0)
FAIL_IF(XORI(TMP_EREG1, TMP_EREG1, 1));
}
if (op & SLJIT_SET_E)
FAIL_IF(ADDLI(EQUAL_FLAG, reg_map[src1], src2));
if (op & SLJIT_SET_C) {
if (src2 >= 0)
FAIL_IF(ORI(ULESS_FLAG ,reg_map[src1], src2));
else {
FAIL_IF(ADDLI(ULESS_FLAG ,ZERO, src2));
FAIL_IF(OR(ULESS_FLAG,reg_map[src1],ULESS_FLAG));
}
}
/* dst may be the same as src1 or src2. */
if (CHECK_FLAGS(SLJIT_SET_E))
FAIL_IF(ADDLI(reg_map[dst], reg_map[src1], src2));
if (op & SLJIT_SET_O) {
FAIL_IF(SHRUI(OVERFLOW_FLAG, reg_map[dst], 63));
if (src2 < 0)
FAIL_IF(XORI(OVERFLOW_FLAG, OVERFLOW_FLAG, 1));
}
} else {
if (op & SLJIT_SET_O) {
FAIL_IF(XOR(TMP_EREG1, reg_map[src1], reg_map[src2]));
FAIL_IF(SHRUI(TMP_EREG1, TMP_EREG1, 63));
if (src1 != dst)
overflow_ra = reg_map[src1];
else if (src2 != dst)
overflow_ra = reg_map[src2];
else {
/* Rare ocasion. */
FAIL_IF(ADD(TMP_EREG2, reg_map[src1], ZERO));
overflow_ra = TMP_EREG2;
}
}
if (op & SLJIT_SET_E)
FAIL_IF(ADD(EQUAL_FLAG ,reg_map[src1], reg_map[src2]));
if (op & SLJIT_SET_C)
FAIL_IF(OR(ULESS_FLAG,reg_map[src1], reg_map[src2]));
/* dst may be the same as src1 or src2. */
if (CHECK_FLAGS(SLJIT_SET_E))
FAIL_IF(ADD(reg_map[dst],reg_map[src1], reg_map[src2]));
if (op & SLJIT_SET_O) {
FAIL_IF(XOR(OVERFLOW_FLAG,reg_map[dst], overflow_ra));
FAIL_IF(SHRUI(OVERFLOW_FLAG, OVERFLOW_FLAG, 63));
}
}
/* a + b >= a | b (otherwise, the carry should be set to 1). */
if (op & SLJIT_SET_C)
FAIL_IF(CMPLTU(ULESS_FLAG ,reg_map[dst] ,ULESS_FLAG));
if (op & SLJIT_SET_O)
return CMOVNEZ(OVERFLOW_FLAG, TMP_EREG1, ZERO);
return SLJIT_SUCCESS;
case SLJIT_ADDC:
if (flags & SRC2_IMM) {
if (op & SLJIT_SET_C) {
if (src2 >= 0)
FAIL_IF(ORI(TMP_EREG1, reg_map[src1], src2));
else {
FAIL_IF(ADDLI(TMP_EREG1, ZERO, src2));
FAIL_IF(OR(TMP_EREG1, reg_map[src1], TMP_EREG1));
}
}
FAIL_IF(ADDLI(reg_map[dst], reg_map[src1], src2));
} else {
if (op & SLJIT_SET_C)
FAIL_IF(OR(TMP_EREG1, reg_map[src1], reg_map[src2]));
/* dst may be the same as src1 or src2. */
FAIL_IF(ADD(reg_map[dst], reg_map[src1], reg_map[src2]));
}
if (op & SLJIT_SET_C)
FAIL_IF(CMPLTU(TMP_EREG1, reg_map[dst], TMP_EREG1));
FAIL_IF(ADD(reg_map[dst], reg_map[dst], ULESS_FLAG));
if (!(op & SLJIT_SET_C))
return SLJIT_SUCCESS;
/* Set TMP_EREG2 (dst == 0) && (ULESS_FLAG == 1). */
FAIL_IF(CMPLTUI(TMP_EREG2, reg_map[dst], 1));
FAIL_IF(AND(TMP_EREG2, TMP_EREG2, ULESS_FLAG));
/* Set carry flag. */
return OR(ULESS_FLAG, TMP_EREG2, TMP_EREG1);
case SLJIT_SUB:
if ((flags & SRC2_IMM) && ((op & (SLJIT_SET_U | SLJIT_SET_S)) || src2 == SIMM_16BIT_MIN)) {
FAIL_IF(ADDLI(TMP_REG2_mapped, ZERO, src2));
src2 = TMP_REG2;
flags &= ~SRC2_IMM;
}
if (flags & SRC2_IMM) {
if (op & SLJIT_SET_O) {
FAIL_IF(SHRUI(TMP_EREG1,reg_map[src1], 63));
if (src2 < 0)
FAIL_IF(XORI(TMP_EREG1, TMP_EREG1, 1));
if (src1 != dst)
overflow_ra = reg_map[src1];
else {
/* Rare ocasion. */
FAIL_IF(ADD(TMP_EREG2, reg_map[src1], ZERO));
overflow_ra = TMP_EREG2;
}
}
if (op & SLJIT_SET_E)
FAIL_IF(ADDLI(EQUAL_FLAG, reg_map[src1], -src2));
if (op & SLJIT_SET_C) {
FAIL_IF(load_immediate(compiler, ADDR_TMP_mapped, src2));
FAIL_IF(CMPLTU(ULESS_FLAG, reg_map[src1], ADDR_TMP_mapped));
}
/* dst may be the same as src1 or src2. */
if (CHECK_FLAGS(SLJIT_SET_E))
FAIL_IF(ADDLI(reg_map[dst], reg_map[src1], -src2));
} else {
if (op & SLJIT_SET_O) {
FAIL_IF(XOR(TMP_EREG1, reg_map[src1], reg_map[src2]));
FAIL_IF(SHRUI(TMP_EREG1, TMP_EREG1, 63));
if (src1 != dst)
overflow_ra = reg_map[src1];
else {
/* Rare ocasion. */
FAIL_IF(ADD(TMP_EREG2, reg_map[src1], ZERO));
overflow_ra = TMP_EREG2;
}
}
if (op & SLJIT_SET_E)
FAIL_IF(SUB(EQUAL_FLAG, reg_map[src1], reg_map[src2]));
if (op & (SLJIT_SET_U | SLJIT_SET_C))
FAIL_IF(CMPLTU(ULESS_FLAG, reg_map[src1], reg_map[src2]));
if (op & SLJIT_SET_U)
FAIL_IF(CMPLTU(UGREATER_FLAG, reg_map[src2], reg_map[src1]));
if (op & SLJIT_SET_S) {
FAIL_IF(CMPLTS(LESS_FLAG ,reg_map[src1] ,reg_map[src2]));
FAIL_IF(CMPLTS(GREATER_FLAG ,reg_map[src2] ,reg_map[src1]));
}
/* dst may be the same as src1 or src2. */
if (CHECK_FLAGS(SLJIT_SET_E | SLJIT_SET_U | SLJIT_SET_S | SLJIT_SET_C))
FAIL_IF(SUB(reg_map[dst], reg_map[src1], reg_map[src2]));
}
if (op & SLJIT_SET_O) {
FAIL_IF(XOR(OVERFLOW_FLAG, reg_map[dst], overflow_ra));
FAIL_IF(SHRUI(OVERFLOW_FLAG, OVERFLOW_FLAG, 63));
return CMOVEQZ(OVERFLOW_FLAG, TMP_EREG1, ZERO);
}
return SLJIT_SUCCESS;
case SLJIT_SUBC:
if ((flags & SRC2_IMM) && src2 == SIMM_16BIT_MIN) {
FAIL_IF(ADDLI(TMP_REG2_mapped, ZERO, src2));
src2 = TMP_REG2;
flags &= ~SRC2_IMM;
}
if (flags & SRC2_IMM) {
if (op & SLJIT_SET_C) {
FAIL_IF(load_immediate(compiler, ADDR_TMP_mapped, -src2));
FAIL_IF(CMPLTU(TMP_EREG1, reg_map[src1], ADDR_TMP_mapped));
}
/* dst may be the same as src1 or src2. */
FAIL_IF(ADDLI(reg_map[dst], reg_map[src1], -src2));
} else {
if (op & SLJIT_SET_C)
FAIL_IF(CMPLTU(TMP_EREG1, reg_map[src1], reg_map[src2]));
/* dst may be the same as src1 or src2. */
FAIL_IF(SUB(reg_map[dst], reg_map[src1], reg_map[src2]));
}
if (op & SLJIT_SET_C)
FAIL_IF(CMOVEQZ(TMP_EREG1, reg_map[dst], ULESS_FLAG));
FAIL_IF(SUB(reg_map[dst], reg_map[dst], ULESS_FLAG));
if (op & SLJIT_SET_C)
FAIL_IF(ADD(ULESS_FLAG, TMP_EREG1, ZERO));
return SLJIT_SUCCESS;
case SLJIT_MUL:
if (flags & SRC2_IMM) {
FAIL_IF(load_immediate(compiler, TMP_REG2_mapped, src2));
src2 = TMP_REG2;
flags &= ~SRC2_IMM;
}
FAIL_IF(MUL(reg_map[dst], reg_map[src1], reg_map[src2]));
return SLJIT_SUCCESS;
#define EMIT_LOGICAL(op_imm, op_norm) \
if (flags & SRC2_IMM) { \
FAIL_IF(load_immediate(compiler, ADDR_TMP_mapped, src2)); \
if (op & SLJIT_SET_E) \
FAIL_IF(push_3_buffer( \
compiler, op_norm, EQUAL_FLAG, reg_map[src1], \
ADDR_TMP_mapped, __LINE__)); \
if (CHECK_FLAGS(SLJIT_SET_E)) \
FAIL_IF(push_3_buffer( \
compiler, op_norm, reg_map[dst], reg_map[src1], \
ADDR_TMP_mapped, __LINE__)); \
} else { \
if (op & SLJIT_SET_E) \
FAIL_IF(push_3_buffer( \
compiler, op_norm, EQUAL_FLAG, reg_map[src1], \
reg_map[src2], __LINE__)); \
if (CHECK_FLAGS(SLJIT_SET_E)) \
FAIL_IF(push_3_buffer( \
compiler, op_norm, reg_map[dst], reg_map[src1], \
reg_map[src2], __LINE__)); \
}
case SLJIT_AND:
EMIT_LOGICAL(TILEGX_OPC_ANDI, TILEGX_OPC_AND);
return SLJIT_SUCCESS;
case SLJIT_OR:
EMIT_LOGICAL(TILEGX_OPC_ORI, TILEGX_OPC_OR);
return SLJIT_SUCCESS;
case SLJIT_XOR:
EMIT_LOGICAL(TILEGX_OPC_XORI, TILEGX_OPC_XOR);
return SLJIT_SUCCESS;
#define EMIT_SHIFT(op_imm, op_norm) \
if (flags & SRC2_IMM) { \
if (op & SLJIT_SET_E) \
FAIL_IF(push_3_buffer( \
compiler, op_imm, EQUAL_FLAG, reg_map[src1], \
src2 & 0x3F, __LINE__)); \
if (CHECK_FLAGS(SLJIT_SET_E)) \
FAIL_IF(push_3_buffer( \
compiler, op_imm, reg_map[dst], reg_map[src1], \
src2 & 0x3F, __LINE__)); \
} else { \
if (op & SLJIT_SET_E) \
FAIL_IF(push_3_buffer( \
compiler, op_norm, EQUAL_FLAG, reg_map[src1], \
reg_map[src2], __LINE__)); \
if (CHECK_FLAGS(SLJIT_SET_E)) \
FAIL_IF(push_3_buffer( \
compiler, op_norm, reg_map[dst], reg_map[src1], \
reg_map[src2], __LINE__)); \
}
case SLJIT_SHL:
EMIT_SHIFT(TILEGX_OPC_SHLI, TILEGX_OPC_SHL);
return SLJIT_SUCCESS;
case SLJIT_LSHR:
EMIT_SHIFT(TILEGX_OPC_SHRUI, TILEGX_OPC_SHRU);
return SLJIT_SUCCESS;
case SLJIT_ASHR:
EMIT_SHIFT(TILEGX_OPC_SHRSI, TILEGX_OPC_SHRS);
return SLJIT_SUCCESS;
}
SLJIT_ASSERT_STOP();
return SLJIT_SUCCESS;
}
static sljit_si emit_op(struct sljit_compiler *compiler, sljit_si op, sljit_si flags, sljit_si dst, sljit_sw dstw, sljit_si src1, sljit_sw src1w, sljit_si src2, sljit_sw src2w)
{
/* arg1 goes to TMP_REG1 or src reg.
arg2 goes to TMP_REG2, imm or src reg.
TMP_REG3 can be used for caching.
result goes to TMP_REG2, so put result can use TMP_REG1 and TMP_REG3. */
sljit_si dst_r = TMP_REG2;
sljit_si src1_r;
sljit_sw src2_r = 0;
sljit_si sugg_src2_r = TMP_REG2;
if (!(flags & ALT_KEEP_CACHE)) {
compiler->cache_arg = 0;
compiler->cache_argw = 0;
}
if (SLJIT_UNLIKELY(dst == SLJIT_UNUSED)) {
if (op >= SLJIT_MOV && op <= SLJIT_MOVU_SI && !(src2 & SLJIT_MEM))
return SLJIT_SUCCESS;
if (GET_FLAGS(op))
flags |= UNUSED_DEST;
} else if (FAST_IS_REG(dst)) {
dst_r = dst;
flags |= REG_DEST;
if (op >= SLJIT_MOV && op <= SLJIT_MOVU_SI)
sugg_src2_r = dst_r;
} else if ((dst & SLJIT_MEM) && !getput_arg_fast(compiler, flags | ARG_TEST, TMP_REG1_mapped, dst, dstw))
flags |= SLOW_DEST;
if (flags & IMM_OP) {
if ((src2 & SLJIT_IMM) && src2w) {
if ((!(flags & LOGICAL_OP)
&& (src2w <= SIMM_16BIT_MAX && src2w >= SIMM_16BIT_MIN))
|| ((flags & LOGICAL_OP) && !(src2w & ~UIMM_16BIT_MAX))) {
flags |= SRC2_IMM;
src2_r = src2w;
}
}
if (!(flags & SRC2_IMM) && (flags & CUMULATIVE_OP) && (src1 & SLJIT_IMM) && src1w) {
if ((!(flags & LOGICAL_OP)
&& (src1w <= SIMM_16BIT_MAX && src1w >= SIMM_16BIT_MIN))
|| ((flags & LOGICAL_OP) && !(src1w & ~UIMM_16BIT_MAX))) {
flags |= SRC2_IMM;
src2_r = src1w;
/* And swap arguments. */
src1 = src2;
src1w = src2w;
src2 = SLJIT_IMM;
/* src2w = src2_r unneeded. */
}
}
}
/* Source 1. */
if (FAST_IS_REG(src1)) {
src1_r = src1;
flags |= REG1_SOURCE;
} else if (src1 & SLJIT_IMM) {
if (src1w) {
FAIL_IF(load_immediate(compiler, TMP_REG1_mapped, src1w));
src1_r = TMP_REG1;
} else
src1_r = 0;
} else {
if (getput_arg_fast(compiler, flags | LOAD_DATA, TMP_REG1_mapped, src1, src1w))
FAIL_IF(compiler->error);
else
flags |= SLOW_SRC1;
src1_r = TMP_REG1;
}
/* Source 2. */
if (FAST_IS_REG(src2)) {
src2_r = src2;
flags |= REG2_SOURCE;
if (!(flags & REG_DEST) && op >= SLJIT_MOV && op <= SLJIT_MOVU_SI)
dst_r = src2_r;
} else if (src2 & SLJIT_IMM) {
if (!(flags & SRC2_IMM)) {
if (src2w) {
FAIL_IF(load_immediate(compiler, reg_map[sugg_src2_r], src2w));
src2_r = sugg_src2_r;
} else {
src2_r = 0;
if ((op >= SLJIT_MOV && op <= SLJIT_MOVU_SI) && (dst & SLJIT_MEM))
dst_r = 0;
}
}
} else {
if (getput_arg_fast(compiler, flags | LOAD_DATA, reg_map[sugg_src2_r], src2, src2w))
FAIL_IF(compiler->error);
else
flags |= SLOW_SRC2;
src2_r = sugg_src2_r;
}
if ((flags & (SLOW_SRC1 | SLOW_SRC2)) == (SLOW_SRC1 | SLOW_SRC2)) {
SLJIT_ASSERT(src2_r == TMP_REG2);
if (!can_cache(src1, src1w, src2, src2w) && can_cache(src1, src1w, dst, dstw)) {
FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG2_mapped, src2, src2w, src1, src1w));
FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG1_mapped, src1, src1w, dst, dstw));
} else {
FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG1_mapped, src1, src1w, src2, src2w));
FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG2_mapped, src2, src2w, dst, dstw));
}
} else if (flags & SLOW_SRC1)
FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG1_mapped, src1, src1w, dst, dstw));
else if (flags & SLOW_SRC2)
FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, reg_map[sugg_src2_r], src2, src2w, dst, dstw));
FAIL_IF(emit_single_op(compiler, op, flags, dst_r, src1_r, src2_r));
if (dst & SLJIT_MEM) {
if (!(flags & SLOW_DEST)) {
getput_arg_fast(compiler, flags, reg_map[dst_r], dst, dstw);
return compiler->error;
}
return getput_arg(compiler, flags, reg_map[dst_r], dst, dstw, 0, 0);
}
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_si op, sljit_si dst, sljit_sw dstw, sljit_si src, sljit_sw srcw, sljit_si type)
{
sljit_si sugg_dst_ar, dst_ar;
sljit_si flags = GET_ALL_FLAGS(op);
sljit_si mem_type = (op & SLJIT_INT_OP) ? (INT_DATA | SIGNED_DATA) : WORD_DATA;
CHECK_ERROR();
CHECK(check_sljit_emit_op_flags(compiler, op, dst, dstw, src, srcw, type));
ADJUST_LOCAL_OFFSET(dst, dstw);
if (dst == SLJIT_UNUSED)
return SLJIT_SUCCESS;
op = GET_OPCODE(op);
if (op == SLJIT_MOV_SI || op == SLJIT_MOV_UI)
mem_type = INT_DATA | SIGNED_DATA;
sugg_dst_ar = reg_map[(op < SLJIT_ADD && FAST_IS_REG(dst)) ? dst : TMP_REG2];
compiler->cache_arg = 0;
compiler->cache_argw = 0;
if (op >= SLJIT_ADD && (src & SLJIT_MEM)) {
ADJUST_LOCAL_OFFSET(src, srcw);
FAIL_IF(emit_op_mem2(compiler, mem_type | LOAD_DATA, TMP_REG1_mapped, src, srcw, dst, dstw));
src = TMP_REG1;
srcw = 0;
}
switch (type & 0xff) {
case SLJIT_EQUAL:
case SLJIT_NOT_EQUAL:
FAIL_IF(CMPLTUI(sugg_dst_ar, EQUAL_FLAG, 1));
dst_ar = sugg_dst_ar;
break;
case SLJIT_LESS:
case SLJIT_GREATER_EQUAL:
dst_ar = ULESS_FLAG;
break;
case SLJIT_GREATER:
case SLJIT_LESS_EQUAL:
dst_ar = UGREATER_FLAG;
break;
case SLJIT_SIG_LESS:
case SLJIT_SIG_GREATER_EQUAL:
dst_ar = LESS_FLAG;
break;
case SLJIT_SIG_GREATER:
case SLJIT_SIG_LESS_EQUAL:
dst_ar = GREATER_FLAG;
break;
case SLJIT_OVERFLOW:
case SLJIT_NOT_OVERFLOW:
dst_ar = OVERFLOW_FLAG;
break;
case SLJIT_MUL_OVERFLOW:
case SLJIT_MUL_NOT_OVERFLOW:
FAIL_IF(CMPLTUI(sugg_dst_ar, OVERFLOW_FLAG, 1));
dst_ar = sugg_dst_ar;
type ^= 0x1; /* Flip type bit for the XORI below. */
break;
default:
SLJIT_ASSERT_STOP();
dst_ar = sugg_dst_ar;
break;
}
if (type & 0x1) {
FAIL_IF(XORI(sugg_dst_ar, dst_ar, 1));
dst_ar = sugg_dst_ar;
}
if (op >= SLJIT_ADD) {
if (TMP_REG2_mapped != dst_ar)
FAIL_IF(ADD(TMP_REG2_mapped, dst_ar, ZERO));
return emit_op(compiler, op | flags, mem_type | CUMULATIVE_OP | LOGICAL_OP | IMM_OP | ALT_KEEP_CACHE, dst, dstw, src, srcw, TMP_REG2, 0);
}
if (dst & SLJIT_MEM)
return emit_op_mem(compiler, mem_type, dst_ar, dst, dstw);
if (sugg_dst_ar != dst_ar)
return ADD(sugg_dst_ar, dst_ar, ZERO);
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op0(struct sljit_compiler *compiler, sljit_si op) {
CHECK_ERROR();
CHECK(check_sljit_emit_op0(compiler, op));
op = GET_OPCODE(op);
switch (op) {
case SLJIT_NOP:
return push_0_buffer(compiler, TILEGX_OPC_FNOP, __LINE__);
case SLJIT_BREAKPOINT:
return PI(BPT);
case SLJIT_LUMUL:
case SLJIT_LSMUL:
case SLJIT_UDIVI:
case SLJIT_SDIVI:
SLJIT_ASSERT_STOP();
}
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op1(struct sljit_compiler *compiler, sljit_si op, sljit_si dst, sljit_sw dstw, sljit_si src, sljit_sw srcw)
{
CHECK_ERROR();
CHECK(check_sljit_emit_op1(compiler, op, dst, dstw, src, srcw));
ADJUST_LOCAL_OFFSET(dst, dstw);
ADJUST_LOCAL_OFFSET(src, srcw);
switch (GET_OPCODE(op)) {
case SLJIT_MOV:
case SLJIT_MOV_P:
return emit_op(compiler, SLJIT_MOV, WORD_DATA, dst, dstw, TMP_REG1, 0, src, srcw);
case SLJIT_MOV_UI:
return emit_op(compiler, SLJIT_MOV_UI, INT_DATA, dst, dstw, TMP_REG1, 0, src, srcw);
case SLJIT_MOV_SI:
return emit_op(compiler, SLJIT_MOV_SI, INT_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, srcw);
case SLJIT_MOV_UB:
return emit_op(compiler, SLJIT_MOV_UB, BYTE_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_ub) srcw : srcw);
case SLJIT_MOV_SB:
return emit_op(compiler, SLJIT_MOV_SB, BYTE_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_sb) srcw : srcw);
case SLJIT_MOV_UH:
return emit_op(compiler, SLJIT_MOV_UH, HALF_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_uh) srcw : srcw);
case SLJIT_MOV_SH:
return emit_op(compiler, SLJIT_MOV_SH, HALF_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_sh) srcw : srcw);
case SLJIT_MOVU:
case SLJIT_MOVU_P:
return emit_op(compiler, SLJIT_MOV, WORD_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);
case SLJIT_MOVU_UI:
return emit_op(compiler, SLJIT_MOV_UI, INT_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);
case SLJIT_MOVU_SI:
return emit_op(compiler, SLJIT_MOV_SI, INT_DATA | SIGNED_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);
case SLJIT_MOVU_UB:
return emit_op(compiler, SLJIT_MOV_UB, BYTE_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_ub) srcw : srcw);
case SLJIT_MOVU_SB:
return emit_op(compiler, SLJIT_MOV_SB, BYTE_DATA | SIGNED_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_sb) srcw : srcw);
case SLJIT_MOVU_UH:
return emit_op(compiler, SLJIT_MOV_UH, HALF_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_uh) srcw : srcw);
case SLJIT_MOVU_SH:
return emit_op(compiler, SLJIT_MOV_SH, HALF_DATA | SIGNED_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_sh) srcw : srcw);
case SLJIT_NOT:
return emit_op(compiler, op, 0, dst, dstw, TMP_REG1, 0, src, srcw);
case SLJIT_NEG:
return emit_op(compiler, SLJIT_SUB | GET_ALL_FLAGS(op), IMM_OP, dst, dstw, SLJIT_IMM, 0, src, srcw);
case SLJIT_CLZ:
return emit_op(compiler, op, (op & SLJIT_INT_OP) ? INT_DATA : WORD_DATA, dst, dstw, TMP_REG1, 0, src, srcw);
}
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op2(struct sljit_compiler *compiler, sljit_si op, sljit_si dst, sljit_sw dstw, sljit_si src1, sljit_sw src1w, sljit_si src2, sljit_sw src2w)
{
CHECK_ERROR();
CHECK(check_sljit_emit_op2(compiler, op, dst, dstw, src1, src1w, src2, src2w));
ADJUST_LOCAL_OFFSET(dst, dstw);
ADJUST_LOCAL_OFFSET(src1, src1w);
ADJUST_LOCAL_OFFSET(src2, src2w);
switch (GET_OPCODE(op)) {
case SLJIT_ADD:
case SLJIT_ADDC:
return emit_op(compiler, op, CUMULATIVE_OP | IMM_OP, dst, dstw, src1, src1w, src2, src2w);
case SLJIT_SUB:
case SLJIT_SUBC:
return emit_op(compiler, op, IMM_OP, dst, dstw, src1, src1w, src2, src2w);
case SLJIT_MUL:
return emit_op(compiler, op, CUMULATIVE_OP, dst, dstw, src1, src1w, src2, src2w);
case SLJIT_AND:
case SLJIT_OR:
case SLJIT_XOR:
return emit_op(compiler, op, CUMULATIVE_OP | LOGICAL_OP | IMM_OP, dst, dstw, src1, src1w, src2, src2w);
case SLJIT_SHL:
case SLJIT_LSHR:
case SLJIT_ASHR:
if (src2 & SLJIT_IMM)
src2w &= 0x3f;
if (op & SLJIT_INT_OP)
src2w &= 0x1f;
return emit_op(compiler, op, IMM_OP, dst, dstw, src1, src1w, src2, src2w);
}
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE struct sljit_label * sljit_emit_label(struct sljit_compiler *compiler)
{
struct sljit_label *label;
flush_buffer(compiler);
CHECK_ERROR_PTR();
CHECK_PTR(check_sljit_emit_label(compiler));
if (compiler->last_label && compiler->last_label->size == compiler->size)
return compiler->last_label;
label = (struct sljit_label *)ensure_abuf(compiler, sizeof(struct sljit_label));
PTR_FAIL_IF(!label);
set_label(label, compiler);
return label;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_ijump(struct sljit_compiler *compiler, sljit_si type, sljit_si src, sljit_sw srcw)
{
sljit_si src_r = TMP_REG2;
struct sljit_jump *jump = NULL;
flush_buffer(compiler);
CHECK_ERROR();
CHECK(check_sljit_emit_ijump(compiler, type, src, srcw));
ADJUST_LOCAL_OFFSET(src, srcw);
if (FAST_IS_REG(src)) {
if (reg_map[src] != 0)
src_r = src;
else
FAIL_IF(ADD_SOLO(TMP_REG2_mapped, reg_map[src], ZERO));
}
if (type >= SLJIT_CALL0) {
SLJIT_ASSERT(reg_map[PIC_ADDR_REG] == 16 && PIC_ADDR_REG == TMP_REG2);
if (src & (SLJIT_IMM | SLJIT_MEM)) {
if (src & SLJIT_IMM)
FAIL_IF(emit_const(compiler, reg_map[PIC_ADDR_REG], srcw, 1));
else {
SLJIT_ASSERT(src_r == TMP_REG2 && (src & SLJIT_MEM));
FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, TMP_REG2, 0, TMP_REG1, 0, src, srcw));
}
FAIL_IF(ADD_SOLO(0, reg_map[SLJIT_R0], ZERO));
FAIL_IF(ADDI_SOLO(54, 54, -16));
FAIL_IF(JALR_SOLO(reg_map[PIC_ADDR_REG]));
return ADDI_SOLO(54, 54, 16);
}
/* Register input. */
if (type >= SLJIT_CALL1)
FAIL_IF(ADD_SOLO(0, reg_map[SLJIT_R0], ZERO));
FAIL_IF(ADD_SOLO(reg_map[PIC_ADDR_REG], reg_map[src_r], ZERO));
FAIL_IF(ADDI_SOLO(54, 54, -16));
FAIL_IF(JALR_SOLO(reg_map[src_r]));
return ADDI_SOLO(54, 54, 16);
}
if (src & SLJIT_IMM) {
jump = (struct sljit_jump *)ensure_abuf(compiler, sizeof(struct sljit_jump));
FAIL_IF(!jump);
set_jump(jump, compiler, JUMP_ADDR | ((type >= SLJIT_FAST_CALL) ? IS_JAL : 0));
jump->u.target = srcw;
FAIL_IF(emit_const(compiler, TMP_REG2_mapped, 0, 1));
if (type >= SLJIT_FAST_CALL) {
FAIL_IF(ADD_SOLO(ZERO, ZERO, ZERO));
jump->addr = compiler->size;
FAIL_IF(JR_SOLO(reg_map[src_r]));
} else {
jump->addr = compiler->size;
FAIL_IF(JR_SOLO(reg_map[src_r]));
}
return SLJIT_SUCCESS;
} else if (src & SLJIT_MEM) {
FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, TMP_REG2, 0, TMP_REG1, 0, src, srcw));
flush_buffer(compiler);
}
FAIL_IF(JR_SOLO(reg_map[src_r]));
if (jump)
jump->addr = compiler->size;
return SLJIT_SUCCESS;
}
#define BR_Z(src) \
inst = BEQZ_X1 | SRCA_X1(src); \
flags = IS_COND;
#define BR_NZ(src) \
inst = BNEZ_X1 | SRCA_X1(src); \
flags = IS_COND;
SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump * sljit_emit_jump(struct sljit_compiler *compiler, sljit_si type)
{
struct sljit_jump *jump;
sljit_ins inst;
sljit_si flags = 0;
flush_buffer(compiler);
CHECK_ERROR_PTR();
CHECK_PTR(check_sljit_emit_jump(compiler, type));
jump = (struct sljit_jump *)ensure_abuf(compiler, sizeof(struct sljit_jump));
PTR_FAIL_IF(!jump);
set_jump(jump, compiler, type & SLJIT_REWRITABLE_JUMP);
type &= 0xff;
switch (type) {
case SLJIT_EQUAL:
BR_NZ(EQUAL_FLAG);
break;
case SLJIT_NOT_EQUAL:
BR_Z(EQUAL_FLAG);
break;
case SLJIT_LESS:
BR_Z(ULESS_FLAG);
break;
case SLJIT_GREATER_EQUAL:
BR_NZ(ULESS_FLAG);
break;
case SLJIT_GREATER:
BR_Z(UGREATER_FLAG);
break;
case SLJIT_LESS_EQUAL:
BR_NZ(UGREATER_FLAG);
break;
case SLJIT_SIG_LESS:
BR_Z(LESS_FLAG);
break;
case SLJIT_SIG_GREATER_EQUAL:
BR_NZ(LESS_FLAG);
break;
case SLJIT_SIG_GREATER:
BR_Z(GREATER_FLAG);
break;
case SLJIT_SIG_LESS_EQUAL:
BR_NZ(GREATER_FLAG);
break;
case SLJIT_OVERFLOW:
case SLJIT_MUL_OVERFLOW:
BR_Z(OVERFLOW_FLAG);
break;
case SLJIT_NOT_OVERFLOW:
case SLJIT_MUL_NOT_OVERFLOW:
BR_NZ(OVERFLOW_FLAG);
break;
default:
/* Not conditional branch. */
inst = 0;
break;
}
jump->flags |= flags;
if (inst) {
inst = inst | ((type <= SLJIT_JUMP) ? BOFF_X1(5) : BOFF_X1(6));
PTR_FAIL_IF(PI(inst));
}
PTR_FAIL_IF(emit_const(compiler, TMP_REG2_mapped, 0, 1));
if (type <= SLJIT_JUMP) {
jump->addr = compiler->size;
PTR_FAIL_IF(JR_SOLO(TMP_REG2_mapped));
} else {
SLJIT_ASSERT(reg_map[PIC_ADDR_REG] == 16 && PIC_ADDR_REG == TMP_REG2);
/* Cannot be optimized out if type is >= CALL0. */
jump->flags |= IS_JAL | (type >= SLJIT_CALL0 ? SLJIT_REWRITABLE_JUMP : 0);
PTR_FAIL_IF(ADD_SOLO(0, reg_map[SLJIT_R0], ZERO));
jump->addr = compiler->size;
PTR_FAIL_IF(JALR_SOLO(TMP_REG2_mapped));
}
return jump;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_is_fpu_available(void)
{
return 0;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fop1(struct sljit_compiler *compiler, sljit_si op, sljit_si dst, sljit_sw dstw, sljit_si src, sljit_sw srcw)
{
SLJIT_ASSERT_STOP();
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fop2(struct sljit_compiler *compiler, sljit_si op, sljit_si dst, sljit_sw dstw, sljit_si src1, sljit_sw src1w, sljit_si src2, sljit_sw src2w)
{
SLJIT_ASSERT_STOP();
}
SLJIT_API_FUNC_ATTRIBUTE struct sljit_const * sljit_emit_const(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw, sljit_sw init_value)
{
struct sljit_const *const_;
sljit_si reg;
flush_buffer(compiler);
CHECK_ERROR_PTR();
CHECK_PTR(check_sljit_emit_const(compiler, dst, dstw, init_value));
ADJUST_LOCAL_OFFSET(dst, dstw);
const_ = (struct sljit_const *)ensure_abuf(compiler, sizeof(struct sljit_const));
PTR_FAIL_IF(!const_);
set_const(const_, compiler);
reg = FAST_IS_REG(dst) ? dst : TMP_REG2;
PTR_FAIL_IF(emit_const_64(compiler, reg, init_value, 1));
if (dst & SLJIT_MEM)
PTR_FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, dst, dstw, TMP_REG1, 0, TMP_REG2, 0));
return const_;
}
SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_addr)
{
sljit_ins *inst = (sljit_ins *)addr;
inst[0] = (inst[0] & ~(0xFFFFL << 43)) | (((new_addr >> 32) & 0xffff) << 43);
inst[1] = (inst[1] & ~(0xFFFFL << 43)) | (((new_addr >> 16) & 0xffff) << 43);
inst[2] = (inst[2] & ~(0xFFFFL << 43)) | ((new_addr & 0xffff) << 43);
SLJIT_CACHE_FLUSH(inst, inst + 3);
}
SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant)
{
sljit_ins *inst = (sljit_ins *)addr;
inst[0] = (inst[0] & ~(0xFFFFL << 43)) | (((new_constant >> 48) & 0xFFFFL) << 43);
inst[1] = (inst[1] & ~(0xFFFFL << 43)) | (((new_constant >> 32) & 0xFFFFL) << 43);
inst[2] = (inst[2] & ~(0xFFFFL << 43)) | (((new_constant >> 16) & 0xFFFFL) << 43);
inst[3] = (inst[3] & ~(0xFFFFL << 43)) | ((new_constant & 0xFFFFL) << 43);
SLJIT_CACHE_FLUSH(inst, inst + 4);
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_get_register_index(sljit_si reg)
{
CHECK_REG_INDEX(check_sljit_get_register_index(reg));
return reg_map[reg];
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op_custom(struct sljit_compiler *compiler,
void *instruction, sljit_si size)
{
CHECK_ERROR();
CHECK(check_sljit_emit_op_custom(compiler, instruction, size));
return SLJIT_ERR_UNSUPPORTED;
}