blob: bba6f5a1d3cef2971d80112f8fdd54ef07a8f98e [file] [log] [blame]
/*
* Create a squashfs filesystem. This is a highly compressed read only
* filesystem.
*
* Copyright (c) 2014
* Phillip Lougher <phillip@squashfs.org.uk>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2,
* or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* process_fragments.c
*/
#include <pthread.h>
#include <sys/ioctl.h>
#include <unistd.h>
#include <signal.h>
#include <sys/time.h>
#include <string.h>
#include <stdio.h>
#include <math.h>
#include <stdarg.h>
#include <errno.h>
#include <stdlib.h>
#include <dirent.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include "caches-queues-lists.h"
#include "squashfs_fs.h"
#include "mksquashfs.h"
#include "error.h"
#include "progressbar.h"
#include "info.h"
#include "compressor.h"
#include "process_fragments.h"
#define FALSE 0
#define TRUE 1
extern struct queue *to_process_frag;
extern struct seq_queue *to_main;
extern int sparse_files;
/*
* Compute 16 bit BSD checksum over the data, and check for sparseness
*/
static int checksum_sparse(struct file_buffer *file_buffer)
{
unsigned char *b = (unsigned char *) file_buffer->data;
unsigned short chksum = 0;
int bytes = file_buffer->size, sparse = TRUE, value;
while(bytes --) {
chksum = (chksum & 1) ? (chksum >> 1) | 0x8000 : chksum >> 1;
value = *b++;
if(value) {
sparse = FALSE;
chksum += value;
}
}
file_buffer->checksum = chksum;
return sparse;
}
static int read_filesystem(int fd, long long byte, int bytes, void *buff)
{
off_t off = byte;
TRACE("read_filesystem: reading from position 0x%llx, bytes %d\n",
byte, bytes);
if(lseek(fd, off, SEEK_SET) == -1) {
ERROR("read_filesystem: Lseek on destination failed because %s, "
"offset=0x%llx\n", strerror(errno), off);
return 0;
} else if(read_bytes(fd, buff, bytes) < bytes) {
ERROR("Read on destination failed\n");
return 0;
}
return 1;
}
static struct file_buffer *get_fragment(struct fragment *fragment,
char *data_buffer, int fd)
{
struct squashfs_fragment_entry *disk_fragment;
struct file_buffer *buffer, *compressed_buffer;
long long start_block;
int res, size, index = fragment->index;
char locked;
/*
* Lookup fragment block in cache.
* If the fragment block doesn't exist, then get the compressed version
* from the writer cache or off disk, and decompress it.
*
* This routine has two things which complicate the code:
*
* 1. Multiple threads can simultaneously lookup/create the
* same buffer. This means a buffer needs to be "locked"
* when it is being filled in, to prevent other threads from
* using it when it is not ready. This is because we now do
* fragment duplicate checking in parallel.
* 2. We have two caches which need to be checked for the
* presence of fragment blocks: the normal fragment cache
* and a "reserve" cache. The reserve cache is used to
* prevent an unnecessary pipeline stall when the fragment cache
* is full of fragments waiting to be compressed.
*/
pthread_cleanup_push((void *) pthread_mutex_unlock, &dup_mutex);
pthread_mutex_lock(&dup_mutex);
again:
buffer = cache_lookup_nowait(fragment_buffer, index, &locked);
if(buffer) {
pthread_mutex_unlock(&dup_mutex);
if(locked)
/* got a buffer being filled in. Wait for it */
cache_wait_unlock(buffer);
goto finished;
}
/* not in fragment cache, is it in the reserve cache? */
buffer = cache_lookup_nowait(reserve_cache, index, &locked);
if(buffer) {
pthread_mutex_unlock(&dup_mutex);
if(locked)
/* got a buffer being filled in. Wait for it */
cache_wait_unlock(buffer);
goto finished;
}
/* in neither cache, try to get it from the fragment cache */
buffer = cache_get_nowait(fragment_buffer, index);
if(!buffer) {
/*
* no room, get it from the reserve cache, this is
* dimensioned so it will always have space (no more than
* processors + 1 can have an outstanding reserve buffer)
*/
buffer = cache_get_nowait(reserve_cache, index);
if(!buffer) {
/* failsafe */
ERROR("no space in reserve cache\n");
goto again;
}
}
pthread_mutex_unlock(&dup_mutex);
compressed_buffer = cache_lookup(fwriter_buffer, index);
pthread_cleanup_push((void *) pthread_mutex_unlock, &fragment_mutex);
pthread_mutex_lock(&fragment_mutex);
disk_fragment = &fragment_table[index];
size = SQUASHFS_COMPRESSED_SIZE_BLOCK(disk_fragment->size);
start_block = disk_fragment->start_block;
pthread_cleanup_pop(1);
if(SQUASHFS_COMPRESSED_BLOCK(disk_fragment->size)) {
int error;
char *data;
if(compressed_buffer)
data = compressed_buffer->data;
else {
res = read_filesystem(fd, start_block, size, data_buffer);
if(res == 0) {
ERROR("Failed to read fragment from output"
" filesystem\n");
BAD_ERROR("Output filesystem corrupted?\n");
}
data = data_buffer;
}
res = compressor_uncompress(comp, buffer->data, data, size,
block_size, &error);
if(res == -1)
BAD_ERROR("%s uncompress failed with error code %d\n",
comp->name, error);
} else if(compressed_buffer)
memcpy(buffer->data, compressed_buffer->data, size);
else {
res = read_filesystem(fd, start_block, size, buffer->data);
if(res == 0) {
ERROR("Failed to read fragment from output "
"filesystem\n");
BAD_ERROR("Output filesystem corrupted?\n");
}
}
cache_unlock(buffer);
cache_block_put(compressed_buffer);
finished:
pthread_cleanup_pop(0);
return buffer;
}
struct file_buffer *get_fragment_cksum(struct file_info *file,
char *data_buffer, int fd, unsigned short *checksum)
{
struct file_buffer *frag_buffer;
struct append_file *append;
int index = file->fragment->index;
frag_buffer = get_fragment(file->fragment, data_buffer, fd);
pthread_cleanup_push((void *) pthread_mutex_unlock, &dup_mutex);
for(append = file_mapping[index]; append; append = append->next) {
int offset = append->file->fragment->offset;
int size = append->file->fragment->size;
char *data = frag_buffer->data + offset;
unsigned short cksum = get_checksum_mem(data, size);
if(file == append->file)
*checksum = cksum;
pthread_mutex_lock(&dup_mutex);
append->file->fragment_checksum = cksum;
append->file->have_frag_checksum = TRUE;
pthread_mutex_unlock(&dup_mutex);
}
pthread_cleanup_pop(0);
return frag_buffer;
}
void *frag_thrd(void *destination_file)
{
sigset_t sigmask, old_mask;
char *data_buffer;
int fd;
sigemptyset(&sigmask);
sigaddset(&sigmask, SIGINT);
sigaddset(&sigmask, SIGTERM);
sigaddset(&sigmask, SIGUSR1);
pthread_sigmask(SIG_BLOCK, &sigmask, &old_mask);
fd = open(destination_file, O_RDONLY);
if(fd == -1)
BAD_ERROR("frag_thrd: can't open destination for reading\n");
data_buffer = malloc(SQUASHFS_FILE_MAX_SIZE);
if(data_buffer == NULL)
MEM_ERROR();
pthread_cleanup_push((void *) pthread_mutex_unlock, &dup_mutex);
while(1) {
struct file_buffer *file_buffer = queue_get(to_process_frag);
struct file_buffer *buffer;
int sparse = checksum_sparse(file_buffer);
struct file_info *dupl_ptr;
long long file_size;
unsigned short checksum;
char flag;
int res;
if(sparse_files && sparse) {
file_buffer->c_byte = 0;
file_buffer->fragment = FALSE;
} else
file_buffer->c_byte = file_buffer->size;
/*
* Specutively pull into the fragment cache any fragment blocks
* which contain fragments which *this* fragment may be
* be a duplicate.
*
* By ensuring the fragment block is in cache ahead of time
* should eliminate the parallelisation stall when the
* main thread needs to read the fragment block to do a
* duplicate check on it.
*
* If this is a fragment belonging to a larger file
* (with additional blocks) then ignore it. Here we're
* interested in the "low hanging fruit" of files which
* consist of only a fragment
*/
if(file_buffer->file_size != file_buffer->size) {
seq_queue_put(to_main, file_buffer);
continue;
}
file_size = file_buffer->file_size;
pthread_mutex_lock(&dup_mutex);
dupl_ptr = dupl[DUP_HASH(file_size)];
pthread_mutex_unlock(&dup_mutex);
file_buffer->dupl_start = dupl_ptr;
file_buffer->duplicate = FALSE;
for(; dupl_ptr; dupl_ptr = dupl_ptr->next) {
if(file_size != dupl_ptr->file_size ||
file_size != dupl_ptr->fragment->size)
continue;
pthread_mutex_lock(&dup_mutex);
flag = dupl_ptr->have_frag_checksum;
checksum = dupl_ptr->fragment_checksum;
pthread_mutex_unlock(&dup_mutex);
/*
* If we have the checksum and it matches then
* read in the fragment block.
*
* If we *don't* have the checksum, then we are
* appending, and the fragment block is on the
* "old" filesystem. Read it in and checksum
* the entire fragment buffer
*/
if(!flag) {
buffer = get_fragment_cksum(dupl_ptr,
data_buffer, fd, &checksum);
if(checksum != file_buffer->checksum) {
cache_block_put(buffer);
continue;
}
} else if(checksum == file_buffer->checksum)
buffer = get_fragment(dupl_ptr->fragment,
data_buffer, fd);
else
continue;
res = memcmp(file_buffer->data, buffer->data +
dupl_ptr->fragment->offset, file_size);
cache_block_put(buffer);
if(res == 0) {
struct file_buffer *dup = malloc(sizeof(*dup));
if(dup == NULL)
MEM_ERROR();
memcpy(dup, file_buffer, sizeof(*dup));
cache_block_put(file_buffer);
dup->dupl_start = dupl_ptr;
dup->duplicate = TRUE;
file_buffer = dup;
break;
}
}
seq_queue_put(to_main, file_buffer);
}
pthread_cleanup_pop(0);
}