blob: 24d7dc18a92cfa5cfa6bd4d08263274f859a5843 [file] [log] [blame]
/*--------------------------------------------------------------------*/
/*--- Platform-specific syscalls stuff. syswrap-x86-linux.c ---*/
/*--------------------------------------------------------------------*/
/*
This file is part of Valgrind, a dynamic binary instrumentation
framework.
Copyright (C) 2000-2015 Nicholas Nethercote
njn@valgrind.org
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307, USA.
The GNU General Public License is contained in the file COPYING.
*/
#if defined(VGP_x86_linux)
/* TODO/FIXME jrs 20050207: assignments to the syscall return result
in interrupted_syscall() need to be reviewed. They don't seem
to assign the shadow state.
*/
#include "pub_core_basics.h"
#include "pub_core_vki.h"
#include "pub_core_vkiscnums.h"
#include "pub_core_threadstate.h"
#include "pub_core_aspacemgr.h"
#include "pub_core_debuglog.h"
#include "pub_core_libcbase.h"
#include "pub_core_libcassert.h"
#include "pub_core_libcprint.h"
#include "pub_core_libcproc.h"
#include "pub_core_libcsignal.h"
#include "pub_core_mallocfree.h"
#include "pub_core_options.h"
#include "pub_core_scheduler.h"
#include "pub_core_sigframe.h" // For VG_(sigframe_destroy)()
#include "pub_core_signals.h"
#include "pub_core_syscall.h"
#include "pub_core_syswrap.h"
#include "pub_core_tooliface.h"
#include "priv_types_n_macros.h"
#include "priv_syswrap-generic.h" /* for decls of generic wrappers */
#include "priv_syswrap-linux.h" /* for decls of linux-ish wrappers */
#include "priv_syswrap-linux-variants.h" /* decls of linux variant wrappers */
#include "priv_syswrap-main.h"
/* ---------------------------------------------------------------------
clone() handling
------------------------------------------------------------------ */
/* Call f(arg1), but first switch stacks, using 'stack' as the new
stack, and use 'retaddr' as f's return-to address. Also, clear all
the integer registers before entering f.*/
__attribute__((noreturn))
void ML_(call_on_new_stack_0_1) ( Addr stack,
Addr retaddr,
void (*f)(Word),
Word arg1 );
// 4(%esp) == stack
// 8(%esp) == retaddr
// 12(%esp) == f
// 16(%esp) == arg1
asm(
".text\n"
".globl vgModuleLocal_call_on_new_stack_0_1\n"
"vgModuleLocal_call_on_new_stack_0_1:\n"
" movl %esp, %esi\n" // remember old stack pointer
" movl 4(%esi), %esp\n" // set stack
" pushl 16(%esi)\n" // arg1 to stack
" pushl 8(%esi)\n" // retaddr to stack
" pushl 12(%esi)\n" // f to stack
" movl $0, %eax\n" // zero all GP regs
" movl $0, %ebx\n"
" movl $0, %ecx\n"
" movl $0, %edx\n"
" movl $0, %esi\n"
" movl $0, %edi\n"
" movl $0, %ebp\n"
" ret\n" // jump to f
" ud2\n" // should never get here
".previous\n"
);
/*
Perform a clone system call. clone is strange because it has
fork()-like return-twice semantics, so it needs special
handling here.
Upon entry, we have:
int (fn)(void*) in 0+FSZ(%esp)
void* child_stack in 4+FSZ(%esp)
int flags in 8+FSZ(%esp)
void* arg in 12+FSZ(%esp)
pid_t* child_tid in 16+FSZ(%esp)
pid_t* parent_tid in 20+FSZ(%esp)
void* tls_ptr in 24+FSZ(%esp)
System call requires:
int $__NR_clone in %eax
int flags in %ebx
void* child_stack in %ecx
pid_t* parent_tid in %edx
pid_t* child_tid in %edi
void* tls_ptr in %esi
Returns an Int encoded in the linux-x86 way, not a SysRes.
*/
#define FSZ "4+4+4+4" /* frame size = retaddr+ebx+edi+esi */
#define __NR_CLONE VG_STRINGIFY(__NR_clone)
#define __NR_EXIT VG_STRINGIFY(__NR_exit)
extern
Int do_syscall_clone_x86_linux ( Word (*fn)(void *),
void* stack,
Int flags,
void* arg,
Int* child_tid,
Int* parent_tid,
vki_modify_ldt_t * );
asm(
".text\n"
".globl do_syscall_clone_x86_linux\n"
"do_syscall_clone_x86_linux:\n"
" push %ebx\n"
" push %edi\n"
" push %esi\n"
/* set up child stack with function and arg */
" movl 4+"FSZ"(%esp), %ecx\n" /* syscall arg2: child stack */
" movl 12+"FSZ"(%esp), %ebx\n" /* fn arg */
" movl 0+"FSZ"(%esp), %eax\n" /* fn */
" lea -8(%ecx), %ecx\n" /* make space on stack */
" movl %ebx, 4(%ecx)\n" /* fn arg */
" movl %eax, 0(%ecx)\n" /* fn */
/* get other args to clone */
" movl 8+"FSZ"(%esp), %ebx\n" /* syscall arg1: flags */
" movl 20+"FSZ"(%esp), %edx\n" /* syscall arg3: parent tid * */
" movl 16+"FSZ"(%esp), %edi\n" /* syscall arg5: child tid * */
" movl 24+"FSZ"(%esp), %esi\n" /* syscall arg4: tls_ptr * */
" movl $"__NR_CLONE", %eax\n"
" int $0x80\n" /* clone() */
" testl %eax, %eax\n" /* child if retval == 0 */
" jnz 1f\n"
/* CHILD - call thread function */
" popl %eax\n"
" call *%eax\n" /* call fn */
/* exit with result */
" movl %eax, %ebx\n" /* arg1: return value from fn */
" movl $"__NR_EXIT", %eax\n"
" int $0x80\n"
/* Hm, exit returned */
" ud2\n"
"1:\n" /* PARENT or ERROR */
" pop %esi\n"
" pop %edi\n"
" pop %ebx\n"
" ret\n"
".previous\n"
);
#undef FSZ
#undef __NR_CLONE
#undef __NR_EXIT
// forward declarations
static void setup_child ( ThreadArchState*, ThreadArchState*, Bool );
static SysRes sys_set_thread_area ( ThreadId, vki_modify_ldt_t* );
/*
When a client clones, we need to keep track of the new thread. This means:
1. allocate a ThreadId+ThreadState+stack for the thread
2. initialize the thread's new VCPU state
3. create the thread using the same args as the client requested,
but using the scheduler entrypoint for EIP, and a separate stack
for ESP.
*/
static SysRes do_clone ( ThreadId ptid,
UInt flags, Addr esp,
Int* parent_tidptr,
Int* child_tidptr,
vki_modify_ldt_t *tlsinfo)
{
static const Bool debug = False;
ThreadId ctid = VG_(alloc_ThreadState)();
ThreadState* ptst = VG_(get_ThreadState)(ptid);
ThreadState* ctst = VG_(get_ThreadState)(ctid);
UWord* stack;
SysRes res;
Int eax;
vki_sigset_t blockall, savedmask;
VG_(sigfillset)(&blockall);
vg_assert(VG_(is_running_thread)(ptid));
vg_assert(VG_(is_valid_tid)(ctid));
stack = (UWord*)ML_(allocstack)(ctid);
if (stack == NULL) {
res = VG_(mk_SysRes_Error)( VKI_ENOMEM );
goto out;
}
/* Copy register state
Both parent and child return to the same place, and the code
following the clone syscall works out which is which, so we
don't need to worry about it.
The parent gets the child's new tid returned from clone, but the
child gets 0.
If the clone call specifies a NULL esp for the new thread, then
it actually gets a copy of the parent's esp.
*/
/* Note: the clone call done by the Quadrics Elan3 driver specifies
clone flags of 0xF00, and it seems to rely on the assumption
that the child inherits a copy of the parent's GDT.
setup_child takes care of setting that up. */
setup_child( &ctst->arch, &ptst->arch, True );
/* Make sys_clone appear to have returned Success(0) in the
child. */
ctst->arch.vex.guest_EAX = 0;
if (esp != 0)
ctst->arch.vex.guest_ESP = esp;
ctst->os_state.parent = ptid;
/* inherit signal mask */
ctst->sig_mask = ptst->sig_mask;
ctst->tmp_sig_mask = ptst->sig_mask;
/* Start the child with its threadgroup being the same as the
parent's. This is so that any exit_group calls that happen
after the child is created but before it sets its
os_state.threadgroup field for real (in thread_wrapper in
syswrap-linux.c), really kill the new thread. a.k.a this avoids
a race condition in which the thread is unkillable (via
exit_group) because its threadgroup is not set. The race window
is probably only a few hundred or a few thousand cycles long.
See #226116. */
ctst->os_state.threadgroup = ptst->os_state.threadgroup;
ML_(guess_and_register_stack) (esp, ctst);
/* Assume the clone will succeed, and tell any tool that wants to
know that this thread has come into existence. We cannot defer
it beyond this point because sys_set_thread_area, just below,
causes tCheck to assert by making references to the new ThreadId
if we don't state the new thread exists prior to that point.
If the clone fails, we'll send out a ll_exit notification for it
at the out: label below, to clean up. */
vg_assert(VG_(owns_BigLock_LL)(ptid));
VG_TRACK ( pre_thread_ll_create, ptid, ctid );
if (flags & VKI_CLONE_SETTLS) {
if (debug)
VG_(printf)("clone child has SETTLS: tls info at %p: idx=%u "
"base=%#lx limit=%x; esp=%#x fs=%x gs=%x\n",
tlsinfo, tlsinfo->entry_number,
tlsinfo->base_addr, tlsinfo->limit,
ptst->arch.vex.guest_ESP,
ctst->arch.vex.guest_FS, ctst->arch.vex.guest_GS);
res = sys_set_thread_area(ctid, tlsinfo);
if (sr_isError(res))
goto out;
}
flags &= ~VKI_CLONE_SETTLS;
/* start the thread with everything blocked */
VG_(sigprocmask)(VKI_SIG_SETMASK, &blockall, &savedmask);
/* Create the new thread */
eax = do_syscall_clone_x86_linux(
ML_(start_thread_NORETURN), stack, flags, &VG_(threads)[ctid],
child_tidptr, parent_tidptr, NULL
);
res = VG_(mk_SysRes_x86_linux)( eax );
VG_(sigprocmask)(VKI_SIG_SETMASK, &savedmask, NULL);
out:
if (sr_isError(res)) {
/* clone failed */
VG_(cleanup_thread)(&ctst->arch);
ctst->status = VgTs_Empty;
/* oops. Better tell the tool the thread exited in a hurry :-) */
VG_TRACK( pre_thread_ll_exit, ctid );
}
return res;
}
/* ---------------------------------------------------------------------
LDT/GDT simulation
------------------------------------------------------------------ */
/* Details of the LDT simulation
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When a program runs natively, the linux kernel allows each *thread*
in it to have its own LDT. Almost all programs never do this --
it's wildly unportable, after all -- and so the kernel never
allocates the structure, which is just as well as an LDT occupies
64k of memory (8192 entries of size 8 bytes).
A thread may choose to modify its LDT entries, by doing the
__NR_modify_ldt syscall. In such a situation the kernel will then
allocate an LDT structure for it. Each LDT entry is basically a
(base, limit) pair. A virtual address in a specific segment is
translated to a linear address by adding the segment's base value.
In addition, the virtual address must not exceed the limit value.
To use an LDT entry, a thread loads one of the segment registers
(%cs, %ss, %ds, %es, %fs, %gs) with the index of the LDT entry (0
.. 8191) it wants to use. In fact, the required value is (index <<
3) + 7, but that's not important right now. Any normal instruction
which includes an addressing mode can then be made relative to that
LDT entry by prefixing the insn with a so-called segment-override
prefix, a byte which indicates which of the 6 segment registers
holds the LDT index.
Now, a key constraint is that valgrind's address checks operate in
terms of linear addresses. So we have to explicitly translate
virtual addrs into linear addrs, and that means doing a complete
LDT simulation.
Calls to modify_ldt are intercepted. For each thread, we maintain
an LDT (with the same normally-never-allocated optimisation that
the kernel does). This is updated as expected via calls to
modify_ldt.
When a thread does an amode calculation involving a segment
override prefix, the relevant LDT entry for the thread is
consulted. It all works.
There is a conceptual problem, which appears when switching back to
native execution, either temporarily to pass syscalls to the
kernel, or permanently, when debugging V. Problem at such points
is that it's pretty pointless to copy the simulated machine's
segment registers to the real machine, because we'd also need to
copy the simulated LDT into the real one, and that's prohibitively
expensive.
Fortunately it looks like no syscalls rely on the segment regs or
LDT being correct, so we can get away with it. Apart from that the
simulation is pretty straightforward. All 6 segment registers are
tracked, although only %ds, %es, %fs and %gs are allowed as
prefixes. Perhaps it could be restricted even more than that -- I
am not sure what is and isn't allowed in user-mode.
*/
/* Translate a struct modify_ldt_ldt_s to a VexGuestX86SegDescr, using
the Linux kernel's logic (cut-n-paste of code in
linux/kernel/ldt.c). */
static
void translate_to_hw_format ( /* IN */ vki_modify_ldt_t* inn,
/* OUT */ VexGuestX86SegDescr* out,
Int oldmode )
{
UInt entry_1, entry_2;
vg_assert(8 == sizeof(VexGuestX86SegDescr));
if (0)
VG_(printf)("translate_to_hw_format: base %#lx, limit %u\n",
inn->base_addr, inn->limit );
/* Allow LDTs to be cleared by the user. */
if (inn->base_addr == 0 && inn->limit == 0) {
if (oldmode ||
(inn->contents == 0 &&
inn->read_exec_only == 1 &&
inn->seg_32bit == 0 &&
inn->limit_in_pages == 0 &&
inn->seg_not_present == 1 &&
inn->useable == 0 )) {
entry_1 = 0;
entry_2 = 0;
goto install;
}
}
entry_1 = ((inn->base_addr & 0x0000ffff) << 16) |
(inn->limit & 0x0ffff);
entry_2 = (inn->base_addr & 0xff000000) |
((inn->base_addr & 0x00ff0000) >> 16) |
(inn->limit & 0xf0000) |
((inn->read_exec_only ^ 1) << 9) |
(inn->contents << 10) |
((inn->seg_not_present ^ 1) << 15) |
(inn->seg_32bit << 22) |
(inn->limit_in_pages << 23) |
0x7000;
if (!oldmode)
entry_2 |= (inn->useable << 20);
/* Install the new entry ... */
install:
out->LdtEnt.Words.word1 = entry_1;
out->LdtEnt.Words.word2 = entry_2;
}
/* Create a zeroed-out GDT. */
static VexGuestX86SegDescr* alloc_zeroed_x86_GDT ( void )
{
Int nbytes = VEX_GUEST_X86_GDT_NENT * sizeof(VexGuestX86SegDescr);
return VG_(calloc)("di.syswrap-x86.azxG.1", nbytes, 1);
}
/* Create a zeroed-out LDT. */
static VexGuestX86SegDescr* alloc_zeroed_x86_LDT ( void )
{
Int nbytes = VEX_GUEST_X86_LDT_NENT * sizeof(VexGuestX86SegDescr);
return VG_(calloc)("di.syswrap-x86.azxL.1", nbytes, 1);
}
/* Free up an LDT or GDT allocated by the above fns. */
static void free_LDT_or_GDT ( VexGuestX86SegDescr* dt )
{
vg_assert(dt);
VG_(free)(dt);
}
/* Copy contents between two existing LDTs. */
static void copy_LDT_from_to ( VexGuestX86SegDescr* src,
VexGuestX86SegDescr* dst )
{
Int i;
vg_assert(src);
vg_assert(dst);
for (i = 0; i < VEX_GUEST_X86_LDT_NENT; i++)
dst[i] = src[i];
}
/* Copy contents between two existing GDTs. */
static void copy_GDT_from_to ( VexGuestX86SegDescr* src,
VexGuestX86SegDescr* dst )
{
Int i;
vg_assert(src);
vg_assert(dst);
for (i = 0; i < VEX_GUEST_X86_GDT_NENT; i++)
dst[i] = src[i];
}
/* Free this thread's DTs, if it has any. */
static void deallocate_LGDTs_for_thread ( VexGuestX86State* vex )
{
vg_assert(sizeof(HWord) == sizeof(void*));
if (0)
VG_(printf)("deallocate_LGDTs_for_thread: "
"ldt = 0x%lx, gdt = 0x%lx\n",
vex->guest_LDT, vex->guest_GDT );
if (vex->guest_LDT != (HWord)NULL) {
free_LDT_or_GDT( (VexGuestX86SegDescr*)vex->guest_LDT );
vex->guest_LDT = (HWord)NULL;
}
if (vex->guest_GDT != (HWord)NULL) {
free_LDT_or_GDT( (VexGuestX86SegDescr*)vex->guest_GDT );
vex->guest_GDT = (HWord)NULL;
}
}
/*
* linux/kernel/ldt.c
*
* Copyright (C) 1992 Krishna Balasubramanian and Linus Torvalds
* Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
*/
/*
* read_ldt() is not really atomic - this is not a problem since
* synchronization of reads and writes done to the LDT has to be
* assured by user-space anyway. Writes are atomic, to protect
* the security checks done on new descriptors.
*/
static
SysRes read_ldt ( ThreadId tid, UChar* ptr, UInt bytecount )
{
SysRes res;
UInt i, size;
UChar* ldt;
if (0)
VG_(printf)("read_ldt: tid = %u, ptr = %p, bytecount = %u\n",
tid, ptr, bytecount );
vg_assert(sizeof(HWord) == sizeof(VexGuestX86SegDescr*));
vg_assert(8 == sizeof(VexGuestX86SegDescr));
ldt = (UChar*)(VG_(threads)[tid].arch.vex.guest_LDT);
res = VG_(mk_SysRes_Success)( 0 );
if (ldt == NULL)
/* LDT not allocated, meaning all entries are null */
goto out;
size = VEX_GUEST_X86_LDT_NENT * sizeof(VexGuestX86SegDescr);
if (size > bytecount)
size = bytecount;
res = VG_(mk_SysRes_Success)( size );
for (i = 0; i < size; i++)
ptr[i] = ldt[i];
out:
return res;
}
static
SysRes write_ldt ( ThreadId tid, void* ptr, UInt bytecount, Int oldmode )
{
SysRes res;
VexGuestX86SegDescr* ldt;
vki_modify_ldt_t* ldt_info;
if (0)
VG_(printf)("write_ldt: tid = %u, ptr = %p, "
"bytecount = %u, oldmode = %d\n",
tid, ptr, bytecount, oldmode );
vg_assert(8 == sizeof(VexGuestX86SegDescr));
vg_assert(sizeof(HWord) == sizeof(VexGuestX86SegDescr*));
ldt = (VexGuestX86SegDescr*)VG_(threads)[tid].arch.vex.guest_LDT;
ldt_info = (vki_modify_ldt_t*)ptr;
res = VG_(mk_SysRes_Error)( VKI_EINVAL );
if (bytecount != sizeof(vki_modify_ldt_t))
goto out;
res = VG_(mk_SysRes_Error)( VKI_EINVAL );
if (ldt_info->entry_number >= VEX_GUEST_X86_LDT_NENT)
goto out;
if (ldt_info->contents == 3) {
if (oldmode)
goto out;
if (ldt_info->seg_not_present == 0)
goto out;
}
/* If this thread doesn't have an LDT, we'd better allocate it
now. */
if (ldt == NULL) {
ldt = alloc_zeroed_x86_LDT();
VG_(threads)[tid].arch.vex.guest_LDT = (HWord)ldt;
}
/* Install the new entry ... */
translate_to_hw_format ( ldt_info, &ldt[ldt_info->entry_number], oldmode );
res = VG_(mk_SysRes_Success)( 0 );
out:
return res;
}
static SysRes sys_modify_ldt ( ThreadId tid,
Int func, void* ptr, UInt bytecount )
{
SysRes ret = VG_(mk_SysRes_Error)( VKI_ENOSYS );
switch (func) {
case 0:
ret = read_ldt(tid, ptr, bytecount);
break;
case 1:
ret = write_ldt(tid, ptr, bytecount, 1);
break;
case 2:
VG_(unimplemented)("sys_modify_ldt: func == 2");
/* god knows what this is about */
/* ret = read_default_ldt(ptr, bytecount); */
/*UNREACHED*/
break;
case 0x11:
ret = write_ldt(tid, ptr, bytecount, 0);
break;
}
return ret;
}
static SysRes sys_set_thread_area ( ThreadId tid, vki_modify_ldt_t* info )
{
Int idx;
VexGuestX86SegDescr* gdt;
vg_assert(8 == sizeof(VexGuestX86SegDescr));
vg_assert(sizeof(HWord) == sizeof(VexGuestX86SegDescr*));
if (info == NULL)
return VG_(mk_SysRes_Error)( VKI_EFAULT );
gdt = (VexGuestX86SegDescr*)VG_(threads)[tid].arch.vex.guest_GDT;
/* If the thread doesn't have a GDT, allocate it now. */
if (!gdt) {
gdt = alloc_zeroed_x86_GDT();
VG_(threads)[tid].arch.vex.guest_GDT = (HWord)gdt;
}
idx = info->entry_number;
if (idx == -1) {
/* Find and use the first free entry. Don't allocate entry
zero, because the hardware will never do that, and apparently
doing so confuses some code (perhaps stuff running on
Wine). */
for (idx = 1; idx < VEX_GUEST_X86_GDT_NENT; idx++) {
if (gdt[idx].LdtEnt.Words.word1 == 0
&& gdt[idx].LdtEnt.Words.word2 == 0)
break;
}
if (idx == VEX_GUEST_X86_GDT_NENT)
return VG_(mk_SysRes_Error)( VKI_ESRCH );
} else if (idx < 0 || idx == 0 || idx >= VEX_GUEST_X86_GDT_NENT) {
/* Similarly, reject attempts to use GDT[0]. */
return VG_(mk_SysRes_Error)( VKI_EINVAL );
}
translate_to_hw_format(info, &gdt[idx], 0);
VG_TRACK( pre_mem_write, Vg_CoreSysCall, tid,
"set_thread_area(info->entry)",
(Addr) & info->entry_number, sizeof(unsigned int) );
info->entry_number = idx;
VG_TRACK( post_mem_write, Vg_CoreSysCall, tid,
(Addr) & info->entry_number, sizeof(unsigned int) );
return VG_(mk_SysRes_Success)( 0 );
}
static SysRes sys_get_thread_area ( ThreadId tid, vki_modify_ldt_t* info )
{
Int idx;
VexGuestX86SegDescr* gdt;
vg_assert(sizeof(HWord) == sizeof(VexGuestX86SegDescr*));
vg_assert(8 == sizeof(VexGuestX86SegDescr));
if (info == NULL)
return VG_(mk_SysRes_Error)( VKI_EFAULT );
idx = info->entry_number;
if (idx < 0 || idx >= VEX_GUEST_X86_GDT_NENT)
return VG_(mk_SysRes_Error)( VKI_EINVAL );
gdt = (VexGuestX86SegDescr*)VG_(threads)[tid].arch.vex.guest_GDT;
/* If the thread doesn't have a GDT, allocate it now. */
if (!gdt) {
gdt = alloc_zeroed_x86_GDT();
VG_(threads)[tid].arch.vex.guest_GDT = (HWord)gdt;
}
info->base_addr = ( gdt[idx].LdtEnt.Bits.BaseHi << 24 ) |
( gdt[idx].LdtEnt.Bits.BaseMid << 16 ) |
gdt[idx].LdtEnt.Bits.BaseLow;
info->limit = ( gdt[idx].LdtEnt.Bits.LimitHi << 16 ) |
gdt[idx].LdtEnt.Bits.LimitLow;
info->seg_32bit = gdt[idx].LdtEnt.Bits.Default_Big;
info->contents = ( gdt[idx].LdtEnt.Bits.Type >> 2 ) & 0x3;
info->read_exec_only = ( gdt[idx].LdtEnt.Bits.Type & 0x1 ) ^ 0x1;
info->limit_in_pages = gdt[idx].LdtEnt.Bits.Granularity;
info->seg_not_present = gdt[idx].LdtEnt.Bits.Pres ^ 0x1;
info->useable = gdt[idx].LdtEnt.Bits.Sys;
info->reserved = 0;
return VG_(mk_SysRes_Success)( 0 );
}
/* ---------------------------------------------------------------------
More thread stuff
------------------------------------------------------------------ */
void VG_(cleanup_thread) ( ThreadArchState* arch )
{
/* Release arch-specific resources held by this thread. */
/* On x86, we have to dump the LDT and GDT. */
deallocate_LGDTs_for_thread( &arch->vex );
}
static void setup_child ( /*OUT*/ ThreadArchState *child,
/*IN*/ ThreadArchState *parent,
Bool inherit_parents_GDT )
{
/* We inherit our parent's guest state. */
child->vex = parent->vex;
child->vex_shadow1 = parent->vex_shadow1;
child->vex_shadow2 = parent->vex_shadow2;
/* We inherit our parent's LDT. */
if (parent->vex.guest_LDT == (HWord)NULL) {
/* We hope this is the common case. */
child->vex.guest_LDT = (HWord)NULL;
} else {
/* No luck .. we have to take a copy of the parent's. */
child->vex.guest_LDT = (HWord)alloc_zeroed_x86_LDT();
copy_LDT_from_to( (VexGuestX86SegDescr*)parent->vex.guest_LDT,
(VexGuestX86SegDescr*)child->vex.guest_LDT );
}
/* Either we start with an empty GDT (the usual case) or inherit a
copy of our parents' one (Quadrics Elan3 driver -style clone
only). */
child->vex.guest_GDT = (HWord)NULL;
if (inherit_parents_GDT && parent->vex.guest_GDT != (HWord)NULL) {
child->vex.guest_GDT = (HWord)alloc_zeroed_x86_GDT();
copy_GDT_from_to( (VexGuestX86SegDescr*)parent->vex.guest_GDT,
(VexGuestX86SegDescr*)child->vex.guest_GDT );
}
}
/* ---------------------------------------------------------------------
PRE/POST wrappers for x86/Linux-specific syscalls
------------------------------------------------------------------ */
#define PRE(name) DEFN_PRE_TEMPLATE(x86_linux, name)
#define POST(name) DEFN_POST_TEMPLATE(x86_linux, name)
/* Add prototypes for the wrappers declared here, so that gcc doesn't
harass us for not having prototypes. Really this is a kludge --
the right thing to do is to make these wrappers 'static' since they
aren't visible outside this file, but that requires even more macro
magic. */
DECL_TEMPLATE(x86_linux, sys_stat64);
DECL_TEMPLATE(x86_linux, sys_fstatat64);
DECL_TEMPLATE(x86_linux, sys_fstat64);
DECL_TEMPLATE(x86_linux, sys_lstat64);
DECL_TEMPLATE(x86_linux, sys_clone);
DECL_TEMPLATE(x86_linux, old_mmap);
DECL_TEMPLATE(x86_linux, sys_mmap2);
DECL_TEMPLATE(x86_linux, sys_sigreturn);
DECL_TEMPLATE(x86_linux, sys_rt_sigreturn);
DECL_TEMPLATE(x86_linux, sys_modify_ldt);
DECL_TEMPLATE(x86_linux, sys_set_thread_area);
DECL_TEMPLATE(x86_linux, sys_get_thread_area);
DECL_TEMPLATE(x86_linux, sys_ptrace);
DECL_TEMPLATE(x86_linux, sys_sigsuspend);
DECL_TEMPLATE(x86_linux, old_select);
DECL_TEMPLATE(x86_linux, sys_vm86old);
DECL_TEMPLATE(x86_linux, sys_vm86);
DECL_TEMPLATE(x86_linux, sys_syscall223);
PRE(old_select)
{
/* struct sel_arg_struct {
unsigned long n;
fd_set *inp, *outp, *exp;
struct timeval *tvp;
};
*/
PRE_REG_READ1(long, "old_select", struct sel_arg_struct *, args);
PRE_MEM_READ( "old_select(args)", ARG1, 5*sizeof(UWord) );
*flags |= SfMayBlock;
{
UInt* arg_struct = (UInt*)ARG1;
UInt a1, a2, a3, a4, a5;
a1 = arg_struct[0];
a2 = arg_struct[1];
a3 = arg_struct[2];
a4 = arg_struct[3];
a5 = arg_struct[4];
PRINT("old_select ( %d, %#x, %#x, %#x, %#x )", (Int)a1,a2,a3,a4,a5);
if (a2 != (Addr)NULL)
PRE_MEM_READ( "old_select(readfds)", a2, a1/8 /* __FD_SETSIZE/8 */ );
if (a3 != (Addr)NULL)
PRE_MEM_READ( "old_select(writefds)", a3, a1/8 /* __FD_SETSIZE/8 */ );
if (a4 != (Addr)NULL)
PRE_MEM_READ( "old_select(exceptfds)", a4, a1/8 /* __FD_SETSIZE/8 */ );
if (a5 != (Addr)NULL)
PRE_MEM_READ( "old_select(timeout)", a5, sizeof(struct vki_timeval) );
}
}
PRE(sys_clone)
{
UInt cloneflags;
Bool badarg = False;
PRINT("sys_clone ( %lx, %#lx, %#lx, %#lx, %#lx )",ARG1,ARG2,ARG3,ARG4,ARG5);
PRE_REG_READ2(int, "clone",
unsigned long, flags,
void *, child_stack);
if (ARG1 & VKI_CLONE_PARENT_SETTID) {
if (VG_(tdict).track_pre_reg_read) {
PRA3("clone", int *, parent_tidptr);
}
PRE_MEM_WRITE("clone(parent_tidptr)", ARG3, sizeof(Int));
if (!VG_(am_is_valid_for_client)(ARG3, sizeof(Int),
VKI_PROT_WRITE)) {
badarg = True;
}
}
if (ARG1 & VKI_CLONE_SETTLS) {
if (VG_(tdict).track_pre_reg_read) {
PRA4("clone", vki_modify_ldt_t *, tlsinfo);
}
PRE_MEM_READ("clone(tlsinfo)", ARG4, sizeof(vki_modify_ldt_t));
if (!VG_(am_is_valid_for_client)(ARG4, sizeof(vki_modify_ldt_t),
VKI_PROT_READ)) {
badarg = True;
}
}
if (ARG1 & (VKI_CLONE_CHILD_SETTID | VKI_CLONE_CHILD_CLEARTID)) {
if (VG_(tdict).track_pre_reg_read) {
PRA5("clone", int *, child_tidptr);
}
PRE_MEM_WRITE("clone(child_tidptr)", ARG5, sizeof(Int));
if (!VG_(am_is_valid_for_client)(ARG5, sizeof(Int),
VKI_PROT_WRITE)) {
badarg = True;
}
}
if (badarg) {
SET_STATUS_Failure( VKI_EFAULT );
return;
}
cloneflags = ARG1;
if (!ML_(client_signal_OK)(ARG1 & VKI_CSIGNAL)) {
SET_STATUS_Failure( VKI_EINVAL );
return;
}
/* Be ultra-paranoid and filter out any clone-variants we don't understand:
- ??? specifies clone flags of 0x100011
- ??? specifies clone flags of 0x1200011.
- NPTL specifies clone flags of 0x7D0F00.
- The Quadrics Elan3 driver specifies clone flags of 0xF00.
- Newer Quadrics Elan3 drivers with NTPL support specify 0x410F00.
Everything else is rejected.
*/
if (
1 ||
/* 11 Nov 05: for the time being, disable this ultra-paranoia.
The switch below probably does a good enough job. */
(cloneflags == 0x100011 || cloneflags == 0x1200011
|| cloneflags == 0x7D0F00
|| cloneflags == 0x790F00
|| cloneflags == 0x3D0F00
|| cloneflags == 0x410F00
|| cloneflags == 0xF00
|| cloneflags == 0xF21)) {
/* OK */
}
else {
/* Nah. We don't like it. Go away. */
goto reject;
}
/* Only look at the flags we really care about */
switch (cloneflags & (VKI_CLONE_VM | VKI_CLONE_FS
| VKI_CLONE_FILES | VKI_CLONE_VFORK)) {
case VKI_CLONE_VM | VKI_CLONE_FS | VKI_CLONE_FILES:
/* thread creation */
SET_STATUS_from_SysRes(
do_clone(tid,
ARG1, /* flags */
(Addr)ARG2, /* child ESP */
(Int *)ARG3, /* parent_tidptr */
(Int *)ARG5, /* child_tidptr */
(vki_modify_ldt_t *)ARG4)); /* set_tls */
break;
case VKI_CLONE_VFORK | VKI_CLONE_VM: /* vfork */
/* FALLTHROUGH - assume vfork == fork */
cloneflags &= ~(VKI_CLONE_VFORK | VKI_CLONE_VM);
case 0: /* plain fork */
SET_STATUS_from_SysRes(
ML_(do_fork_clone)(tid,
cloneflags, /* flags */
(Int *)ARG3, /* parent_tidptr */
(Int *)ARG5)); /* child_tidptr */
break;
default:
reject:
/* should we just ENOSYS? */
VG_(message)(Vg_UserMsg, "\n");
VG_(message)(Vg_UserMsg, "Unsupported clone() flags: 0x%lx\n", ARG1);
VG_(message)(Vg_UserMsg, "\n");
VG_(message)(Vg_UserMsg, "The only supported clone() uses are:\n");
VG_(message)(Vg_UserMsg, " - via a threads library (LinuxThreads or NPTL)\n");
VG_(message)(Vg_UserMsg, " - via the implementation of fork or vfork\n");
VG_(message)(Vg_UserMsg, " - for the Quadrics Elan3 user-space driver\n");
VG_(unimplemented)
("Valgrind does not support general clone().");
}
if (SUCCESS) {
if (ARG1 & VKI_CLONE_PARENT_SETTID)
POST_MEM_WRITE(ARG3, sizeof(Int));
if (ARG1 & (VKI_CLONE_CHILD_SETTID | VKI_CLONE_CHILD_CLEARTID))
POST_MEM_WRITE(ARG5, sizeof(Int));
/* Thread creation was successful; let the child have the chance
to run */
*flags |= SfYieldAfter;
}
}
PRE(sys_sigreturn)
{
/* See comments on PRE(sys_rt_sigreturn) in syswrap-amd64-linux.c for
an explanation of what follows. */
ThreadState* tst;
PRINT("sys_sigreturn ( )");
vg_assert(VG_(is_valid_tid)(tid));
vg_assert(tid >= 1 && tid < VG_N_THREADS);
vg_assert(VG_(is_running_thread)(tid));
/* Adjust esp to point to start of frame; skip back up over
sigreturn sequence's "popl %eax" and handler ret addr */
tst = VG_(get_ThreadState)(tid);
tst->arch.vex.guest_ESP -= sizeof(Addr)+sizeof(Word);
/* XXX why does ESP change differ from rt_sigreturn case below? */
/* This is only so that the EIP is (might be) useful to report if
something goes wrong in the sigreturn */
ML_(fixup_guest_state_to_restart_syscall)(&tst->arch);
/* Restore register state from frame and remove it */
VG_(sigframe_destroy)(tid, False);
/* Tell the driver not to update the guest state with the "result",
and set a bogus result to keep it happy. */
*flags |= SfNoWriteResult;
SET_STATUS_Success(0);
/* Check to see if any signals arose as a result of this. */
*flags |= SfPollAfter;
}
PRE(sys_rt_sigreturn)
{
/* See comments on PRE(sys_rt_sigreturn) in syswrap-amd64-linux.c for
an explanation of what follows. */
ThreadState* tst;
PRINT("sys_rt_sigreturn ( )");
vg_assert(VG_(is_valid_tid)(tid));
vg_assert(tid >= 1 && tid < VG_N_THREADS);
vg_assert(VG_(is_running_thread)(tid));
/* Adjust esp to point to start of frame; skip back up over handler
ret addr */
tst = VG_(get_ThreadState)(tid);
tst->arch.vex.guest_ESP -= sizeof(Addr);
/* XXX why does ESP change differ from sigreturn case above? */
/* This is only so that the EIP is (might be) useful to report if
something goes wrong in the sigreturn */
ML_(fixup_guest_state_to_restart_syscall)(&tst->arch);
/* Restore register state from frame and remove it */
VG_(sigframe_destroy)(tid, True);
/* Tell the driver not to update the guest state with the "result",
and set a bogus result to keep it happy. */
*flags |= SfNoWriteResult;
SET_STATUS_Success(0);
/* Check to see if any signals arose as a result of this. */
*flags |= SfPollAfter;
}
PRE(sys_modify_ldt)
{
PRINT("sys_modify_ldt ( %ld, %#lx, %lu )", SARG1, ARG2, ARG3);
PRE_REG_READ3(int, "modify_ldt", int, func, void *, ptr,
unsigned long, bytecount);
if (ARG1 == 0) {
/* read the LDT into ptr */
PRE_MEM_WRITE( "modify_ldt(ptr)", ARG2, ARG3 );
}
if (ARG1 == 1 || ARG1 == 0x11) {
/* write the LDT with the entry pointed at by ptr */
PRE_MEM_READ( "modify_ldt(ptr)", ARG2, sizeof(vki_modify_ldt_t) );
}
/* "do" the syscall ourselves; the kernel never sees it */
SET_STATUS_from_SysRes( sys_modify_ldt( tid, ARG1, (void*)ARG2, ARG3 ) );
if (ARG1 == 0 && SUCCESS && RES > 0) {
POST_MEM_WRITE( ARG2, RES );
}
}
PRE(sys_set_thread_area)
{
PRINT("sys_set_thread_area ( %#lx )", ARG1);
PRE_REG_READ1(int, "set_thread_area", struct user_desc *, u_info)
PRE_MEM_READ( "set_thread_area(u_info)", ARG1, sizeof(vki_modify_ldt_t) );
/* "do" the syscall ourselves; the kernel never sees it */
SET_STATUS_from_SysRes( sys_set_thread_area( tid, (void *)ARG1 ) );
}
PRE(sys_get_thread_area)
{
PRINT("sys_get_thread_area ( %#lx )", ARG1);
PRE_REG_READ1(int, "get_thread_area", struct user_desc *, u_info)
PRE_MEM_WRITE( "get_thread_area(u_info)", ARG1, sizeof(vki_modify_ldt_t) );
/* "do" the syscall ourselves; the kernel never sees it */
SET_STATUS_from_SysRes( sys_get_thread_area( tid, (void *)ARG1 ) );
if (SUCCESS) {
POST_MEM_WRITE( ARG1, sizeof(vki_modify_ldt_t) );
}
}
// Parts of this are x86-specific, but the *PEEK* cases are generic.
//
// ARG3 is only used for pointers into the traced process's address
// space and for offsets into the traced process's struct
// user_regs_struct. It is never a pointer into this process's memory
// space, and we should therefore not check anything it points to.
PRE(sys_ptrace)
{
PRINT("sys_ptrace ( %ld, %ld, %#lx, %#lx )", SARG1, SARG2, ARG3, ARG4);
PRE_REG_READ4(int, "ptrace",
long, request, long, pid, unsigned long, addr,
unsigned long, data);
switch (ARG1) {
case VKI_PTRACE_PEEKTEXT:
case VKI_PTRACE_PEEKDATA:
case VKI_PTRACE_PEEKUSR:
PRE_MEM_WRITE( "ptrace(peek)", ARG4,
sizeof (long));
break;
case VKI_PTRACE_GETREGS:
PRE_MEM_WRITE( "ptrace(getregs)", ARG4,
sizeof (struct vki_user_regs_struct));
break;
case VKI_PTRACE_GETFPREGS:
PRE_MEM_WRITE( "ptrace(getfpregs)", ARG4,
sizeof (struct vki_user_i387_struct));
break;
case VKI_PTRACE_GETFPXREGS:
PRE_MEM_WRITE( "ptrace(getfpxregs)", ARG4,
sizeof(struct vki_user_fxsr_struct) );
break;
case VKI_PTRACE_GET_THREAD_AREA:
PRE_MEM_WRITE( "ptrace(get_thread_area)", ARG4,
sizeof(struct vki_user_desc) );
break;
case VKI_PTRACE_SETREGS:
PRE_MEM_READ( "ptrace(setregs)", ARG4,
sizeof (struct vki_user_regs_struct));
break;
case VKI_PTRACE_SETFPREGS:
PRE_MEM_READ( "ptrace(setfpregs)", ARG4,
sizeof (struct vki_user_i387_struct));
break;
case VKI_PTRACE_SETFPXREGS:
PRE_MEM_READ( "ptrace(setfpxregs)", ARG4,
sizeof(struct vki_user_fxsr_struct) );
break;
case VKI_PTRACE_SET_THREAD_AREA:
PRE_MEM_READ( "ptrace(set_thread_area)", ARG4,
sizeof(struct vki_user_desc) );
break;
case VKI_PTRACE_GETEVENTMSG:
PRE_MEM_WRITE( "ptrace(geteventmsg)", ARG4, sizeof(unsigned long));
break;
case VKI_PTRACE_GETSIGINFO:
PRE_MEM_WRITE( "ptrace(getsiginfo)", ARG4, sizeof(vki_siginfo_t));
break;
case VKI_PTRACE_SETSIGINFO:
PRE_MEM_READ( "ptrace(setsiginfo)", ARG4, sizeof(vki_siginfo_t));
break;
case VKI_PTRACE_GETREGSET:
ML_(linux_PRE_getregset)(tid, ARG3, ARG4);
break;
case VKI_PTRACE_SETREGSET:
ML_(linux_PRE_setregset)(tid, ARG3, ARG4);
break;
default:
break;
}
}
POST(sys_ptrace)
{
switch (ARG1) {
case VKI_PTRACE_PEEKTEXT:
case VKI_PTRACE_PEEKDATA:
case VKI_PTRACE_PEEKUSR:
POST_MEM_WRITE( ARG4, sizeof (long));
break;
case VKI_PTRACE_GETREGS:
POST_MEM_WRITE( ARG4, sizeof (struct vki_user_regs_struct));
break;
case VKI_PTRACE_GETFPREGS:
POST_MEM_WRITE( ARG4, sizeof (struct vki_user_i387_struct));
break;
case VKI_PTRACE_GETFPXREGS:
POST_MEM_WRITE( ARG4, sizeof(struct vki_user_fxsr_struct) );
break;
case VKI_PTRACE_GET_THREAD_AREA:
POST_MEM_WRITE( ARG4, sizeof(struct vki_user_desc) );
break;
case VKI_PTRACE_GETEVENTMSG:
POST_MEM_WRITE( ARG4, sizeof(unsigned long));
break;
case VKI_PTRACE_GETSIGINFO:
/* XXX: This is a simplification. Different parts of the
* siginfo_t are valid depending on the type of signal.
*/
POST_MEM_WRITE( ARG4, sizeof(vki_siginfo_t));
break;
case VKI_PTRACE_GETREGSET:
ML_(linux_POST_getregset)(tid, ARG3, ARG4);
break;
default:
break;
}
}
PRE(old_mmap)
{
/* struct mmap_arg_struct {
unsigned long addr;
unsigned long len;
unsigned long prot;
unsigned long flags;
unsigned long fd;
unsigned long offset;
}; */
UWord a1, a2, a3, a4, a5, a6;
SysRes r;
UWord* args = (UWord*)ARG1;
PRE_REG_READ1(long, "old_mmap", struct mmap_arg_struct *, args);
PRE_MEM_READ( "old_mmap(args)", (Addr)args, 6*sizeof(UWord) );
a1 = args[1-1];
a2 = args[2-1];
a3 = args[3-1];
a4 = args[4-1];
a5 = args[5-1];
a6 = args[6-1];
PRINT("old_mmap ( %#lx, %lu, %ld, %ld, %ld, %ld )",
a1, a2, (Word)a3, (Word)a4, (Word)a5, (Word)a6 );
r = ML_(generic_PRE_sys_mmap)( tid, a1, a2, a3, a4, a5, (Off64T)a6 );
SET_STATUS_from_SysRes(r);
}
PRE(sys_mmap2)
{
SysRes r;
// Exactly like old_mmap() except:
// - all 6 args are passed in regs, rather than in a memory-block.
// - the file offset is specified in pagesize units rather than bytes,
// so that it can be used for files bigger than 2^32 bytes.
// pagesize or 4K-size units in offset? For ppc32/64-linux, this is
// 4K-sized. Assert that the page size is 4K here for safety.
vg_assert(VKI_PAGE_SIZE == 4096);
PRINT("sys_mmap2 ( %#lx, %lu, %lu, %lu, %lu, %lu )",
ARG1, ARG2, ARG3, ARG4, ARG5, ARG6 );
PRE_REG_READ6(long, "mmap2",
unsigned long, start, unsigned long, length,
unsigned long, prot, unsigned long, flags,
unsigned long, fd, unsigned long, offset);
r = ML_(generic_PRE_sys_mmap)( tid, ARG1, ARG2, ARG3, ARG4, ARG5,
4096 * (Off64T)ARG6 );
SET_STATUS_from_SysRes(r);
}
// XXX: lstat64/fstat64/stat64 are generic, but not necessarily
// applicable to every architecture -- I think only to 32-bit archs.
// We're going to need something like linux/core_os32.h for such
// things, eventually, I think. --njn
PRE(sys_lstat64)
{
PRINT("sys_lstat64 ( %#lx(%s), %#lx )", ARG1, (HChar*)ARG1, ARG2);
PRE_REG_READ2(long, "lstat64", char *, file_name, struct stat64 *, buf);
PRE_MEM_RASCIIZ( "lstat64(file_name)", ARG1 );
PRE_MEM_WRITE( "lstat64(buf)", ARG2, sizeof(struct vki_stat64) );
}
POST(sys_lstat64)
{
vg_assert(SUCCESS);
if (RES == 0) {
POST_MEM_WRITE( ARG2, sizeof(struct vki_stat64) );
}
}
PRE(sys_stat64)
{
FUSE_COMPATIBLE_MAY_BLOCK();
PRINT("sys_stat64 ( %#lx(%s), %#lx )", ARG1, (HChar*)ARG1, ARG2);
PRE_REG_READ2(long, "stat64", char *, file_name, struct stat64 *, buf);
PRE_MEM_RASCIIZ( "stat64(file_name)", ARG1 );
PRE_MEM_WRITE( "stat64(buf)", ARG2, sizeof(struct vki_stat64) );
}
POST(sys_stat64)
{
POST_MEM_WRITE( ARG2, sizeof(struct vki_stat64) );
}
PRE(sys_fstatat64)
{
FUSE_COMPATIBLE_MAY_BLOCK();
// ARG4 = int flags; Flags are or'ed together, therefore writing them
// as a hex constant is more meaningful.
PRINT("sys_fstatat64 ( %ld, %#lx(%s), %#lx, %#lx )",
SARG1, ARG2, (HChar*)ARG2, ARG3, ARG4);
PRE_REG_READ4(long, "fstatat64",
int, dfd, char *, file_name, struct stat64 *, buf, int, flags);
PRE_MEM_RASCIIZ( "fstatat64(file_name)", ARG2 );
PRE_MEM_WRITE( "fstatat64(buf)", ARG3, sizeof(struct vki_stat64) );
}
POST(sys_fstatat64)
{
POST_MEM_WRITE( ARG3, sizeof(struct vki_stat64) );
}
PRE(sys_fstat64)
{
PRINT("sys_fstat64 ( %lu, %#lx )", ARG1, ARG2);
PRE_REG_READ2(long, "fstat64", unsigned long, fd, struct stat64 *, buf);
PRE_MEM_WRITE( "fstat64(buf)", ARG2, sizeof(struct vki_stat64) );
}
POST(sys_fstat64)
{
POST_MEM_WRITE( ARG2, sizeof(struct vki_stat64) );
}
/* NB: arm-linux has a clone of this one, and ppc32-linux has an almost
identical version. */
PRE(sys_sigsuspend)
{
/* The C library interface to sigsuspend just takes a pointer to
a signal mask but this system call has three arguments - the first
two don't appear to be used by the kernel and are always passed as
zero by glibc and the third is the first word of the signal mask
so only 32 signals are supported.
In fact glibc normally uses rt_sigsuspend if it is available as
that takes a pointer to the signal mask so supports more signals.
*/
*flags |= SfMayBlock;
PRINT("sys_sigsuspend ( %ld, %ld, %lu )", SARG1, SARG2, ARG3 );
PRE_REG_READ3(int, "sigsuspend",
int, history0, int, history1,
vki_old_sigset_t, mask);
}
PRE(sys_vm86old)
{
PRINT("sys_vm86old ( %#lx )", ARG1);
PRE_REG_READ1(int, "vm86old", struct vm86_struct *, info);
PRE_MEM_WRITE( "vm86old(info)", ARG1, sizeof(struct vki_vm86_struct));
}
POST(sys_vm86old)
{
POST_MEM_WRITE( ARG1, sizeof(struct vki_vm86_struct));
}
PRE(sys_vm86)
{
PRINT("sys_vm86 ( %lu, %#lx )", ARG1, ARG2);
PRE_REG_READ2(int, "vm86", unsigned long, fn, struct vm86plus_struct *, v86);
if (ARG1 == VKI_VM86_ENTER || ARG1 == VKI_VM86_ENTER_NO_BYPASS)
PRE_MEM_WRITE( "vm86(v86)", ARG2, sizeof(struct vki_vm86plus_struct));
}
POST(sys_vm86)
{
if (ARG1 == VKI_VM86_ENTER || ARG1 == VKI_VM86_ENTER_NO_BYPASS)
POST_MEM_WRITE( ARG2, sizeof(struct vki_vm86plus_struct));
}
/* ---------------------------------------------------------------
PRE/POST wrappers for x86/Linux-variant specific syscalls
------------------------------------------------------------ */
PRE(sys_syscall223)
{
Int err;
/* 223 is used by sys_bproc. If we're not on a declared bproc
variant, fail in the usual way. */
if (!KernelVariantiS(KernelVariant_bproc, VG_(clo_kernel_variant))) {
PRINT("non-existent syscall! (syscall 223)");
PRE_REG_READ0(long, "ni_syscall(223)");
SET_STATUS_Failure( VKI_ENOSYS );
return;
}
err = ML_(linux_variant_PRE_sys_bproc)( ARG1, ARG2, ARG3,
ARG4, ARG5, ARG6 );
if (err) {
SET_STATUS_Failure( err );
return;
}
/* Let it go through. */
*flags |= SfMayBlock; /* who knows? play safe. */
}
POST(sys_syscall223)
{
ML_(linux_variant_POST_sys_bproc)( ARG1, ARG2, ARG3,
ARG4, ARG5, ARG6 );
}
#undef PRE
#undef POST
/* ---------------------------------------------------------------------
The x86/Linux syscall table
------------------------------------------------------------------ */
/* Add an x86-linux specific wrapper to a syscall table. */
#define PLAX_(sysno, name) WRAPPER_ENTRY_X_(x86_linux, sysno, name)
#define PLAXY(sysno, name) WRAPPER_ENTRY_XY(x86_linux, sysno, name)
// This table maps from __NR_xxx syscall numbers (from
// linux/include/asm-i386/unistd.h) to the appropriate PRE/POST sys_foo()
// wrappers on x86 (as per sys_call_table in linux/arch/i386/kernel/entry.S).
//
// For those syscalls not handled by Valgrind, the annotation indicate its
// arch/OS combination, eg. */* (generic), */Linux (Linux only), ?/?
// (unknown).
static SyscallTableEntry syscall_table[] = {
//zz // (restart_syscall) // 0
GENX_(__NR_exit, sys_exit), // 1
GENX_(__NR_fork, sys_fork), // 2
GENXY(__NR_read, sys_read), // 3
GENX_(__NR_write, sys_write), // 4
GENXY(__NR_open, sys_open), // 5
GENXY(__NR_close, sys_close), // 6
GENXY(__NR_waitpid, sys_waitpid), // 7
GENXY(__NR_creat, sys_creat), // 8
GENX_(__NR_link, sys_link), // 9
GENX_(__NR_unlink, sys_unlink), // 10
GENX_(__NR_execve, sys_execve), // 11
GENX_(__NR_chdir, sys_chdir), // 12
GENXY(__NR_time, sys_time), // 13
GENX_(__NR_mknod, sys_mknod), // 14
GENX_(__NR_chmod, sys_chmod), // 15
//zz LINX_(__NR_lchown, sys_lchown16), // 16
GENX_(__NR_break, sys_ni_syscall), // 17
//zz // (__NR_oldstat, sys_stat), // 18 (obsolete)
LINX_(__NR_lseek, sys_lseek), // 19
GENX_(__NR_getpid, sys_getpid), // 20
LINX_(__NR_mount, sys_mount), // 21
LINX_(__NR_umount, sys_oldumount), // 22
LINX_(__NR_setuid, sys_setuid16), // 23 ## P
LINX_(__NR_getuid, sys_getuid16), // 24 ## P
LINX_(__NR_stime, sys_stime), // 25 * (SVr4,SVID,X/OPEN)
PLAXY(__NR_ptrace, sys_ptrace), // 26
GENX_(__NR_alarm, sys_alarm), // 27
//zz // (__NR_oldfstat, sys_fstat), // 28 * L -- obsolete
GENX_(__NR_pause, sys_pause), // 29
LINX_(__NR_utime, sys_utime), // 30
GENX_(__NR_stty, sys_ni_syscall), // 31
GENX_(__NR_gtty, sys_ni_syscall), // 32
GENX_(__NR_access, sys_access), // 33
GENX_(__NR_nice, sys_nice), // 34
GENX_(__NR_ftime, sys_ni_syscall), // 35
GENX_(__NR_sync, sys_sync), // 36
GENX_(__NR_kill, sys_kill), // 37
GENX_(__NR_rename, sys_rename), // 38
GENX_(__NR_mkdir, sys_mkdir), // 39
GENX_(__NR_rmdir, sys_rmdir), // 40
GENXY(__NR_dup, sys_dup), // 41
LINXY(__NR_pipe, sys_pipe), // 42
GENXY(__NR_times, sys_times), // 43
GENX_(__NR_prof, sys_ni_syscall), // 44
//zz
GENX_(__NR_brk, sys_brk), // 45
LINX_(__NR_setgid, sys_setgid16), // 46
LINX_(__NR_getgid, sys_getgid16), // 47
//zz // (__NR_signal, sys_signal), // 48 */* (ANSI C)
LINX_(__NR_geteuid, sys_geteuid16), // 49
LINX_(__NR_getegid, sys_getegid16), // 50
GENX_(__NR_acct, sys_acct), // 51
LINX_(__NR_umount2, sys_umount), // 52
GENX_(__NR_lock, sys_ni_syscall), // 53
LINXY(__NR_ioctl, sys_ioctl), // 54
LINXY(__NR_fcntl, sys_fcntl), // 55
GENX_(__NR_mpx, sys_ni_syscall), // 56
GENX_(__NR_setpgid, sys_setpgid), // 57
GENX_(__NR_ulimit, sys_ni_syscall), // 58
//zz // (__NR_oldolduname, sys_olduname), // 59 Linux -- obsolete
//zz
GENX_(__NR_umask, sys_umask), // 60
GENX_(__NR_chroot, sys_chroot), // 61
//zz // (__NR_ustat, sys_ustat) // 62 SVr4 -- deprecated
GENXY(__NR_dup2, sys_dup2), // 63
GENX_(__NR_getppid, sys_getppid), // 64
GENX_(__NR_getpgrp, sys_getpgrp), // 65
GENX_(__NR_setsid, sys_setsid), // 66
LINXY(__NR_sigaction, sys_sigaction), // 67
//zz // (__NR_sgetmask, sys_sgetmask), // 68 */* (ANSI C)
//zz // (__NR_ssetmask, sys_ssetmask), // 69 */* (ANSI C)
//zz
LINX_(__NR_setreuid, sys_setreuid16), // 70
LINX_(__NR_setregid, sys_setregid16), // 71
PLAX_(__NR_sigsuspend, sys_sigsuspend), // 72
LINXY(__NR_sigpending, sys_sigpending), // 73
GENX_(__NR_sethostname, sys_sethostname), // 74
//zz
GENX_(__NR_setrlimit, sys_setrlimit), // 75
GENXY(__NR_getrlimit, sys_old_getrlimit), // 76
GENXY(__NR_getrusage, sys_getrusage), // 77
GENXY(__NR_gettimeofday, sys_gettimeofday), // 78
GENX_(__NR_settimeofday, sys_settimeofday), // 79
LINXY(__NR_getgroups, sys_getgroups16), // 80
LINX_(__NR_setgroups, sys_setgroups16), // 81
PLAX_(__NR_select, old_select), // 82
GENX_(__NR_symlink, sys_symlink), // 83
//zz // (__NR_oldlstat, sys_lstat), // 84 -- obsolete
//zz
GENX_(__NR_readlink, sys_readlink), // 85
//zz // (__NR_uselib, sys_uselib), // 86 */Linux
//zz // (__NR_swapon, sys_swapon), // 87 */Linux
//zz // (__NR_reboot, sys_reboot), // 88 */Linux
//zz // (__NR_readdir, old_readdir), // 89 -- superseded
//zz
PLAX_(__NR_mmap, old_mmap), // 90
GENXY(__NR_munmap, sys_munmap), // 91
GENX_(__NR_truncate, sys_truncate), // 92
GENX_(__NR_ftruncate, sys_ftruncate), // 93
GENX_(__NR_fchmod, sys_fchmod), // 94
LINX_(__NR_fchown, sys_fchown16), // 95
GENX_(__NR_getpriority, sys_getpriority), // 96
GENX_(__NR_setpriority, sys_setpriority), // 97
GENX_(__NR_profil, sys_ni_syscall), // 98
GENXY(__NR_statfs, sys_statfs), // 99
GENXY(__NR_fstatfs, sys_fstatfs), // 100
LINX_(__NR_ioperm, sys_ioperm), // 101
LINXY(__NR_socketcall, sys_socketcall), // 102 x86/Linux-only
LINXY(__NR_syslog, sys_syslog), // 103
GENXY(__NR_setitimer, sys_setitimer), // 104
GENXY(__NR_getitimer, sys_getitimer), // 105
GENXY(__NR_stat, sys_newstat), // 106
GENXY(__NR_lstat, sys_newlstat), // 107
GENXY(__NR_fstat, sys_newfstat), // 108
//zz // (__NR_olduname, sys_uname), // 109 -- obsolete
//zz
GENX_(__NR_iopl, sys_iopl), // 110
LINX_(__NR_vhangup, sys_vhangup), // 111
GENX_(__NR_idle, sys_ni_syscall), // 112
PLAXY(__NR_vm86old, sys_vm86old), // 113 x86/Linux-only
GENXY(__NR_wait4, sys_wait4), // 114
//zz
//zz // (__NR_swapoff, sys_swapoff), // 115 */Linux
LINXY(__NR_sysinfo, sys_sysinfo), // 116
LINXY(__NR_ipc, sys_ipc), // 117
GENX_(__NR_fsync, sys_fsync), // 118
PLAX_(__NR_sigreturn, sys_sigreturn), // 119 ?/Linux
PLAX_(__NR_clone, sys_clone), // 120
//zz // (__NR_setdomainname, sys_setdomainname), // 121 */*(?)
GENXY(__NR_uname, sys_newuname), // 122
PLAX_(__NR_modify_ldt, sys_modify_ldt), // 123
LINXY(__NR_adjtimex, sys_adjtimex), // 124
GENXY(__NR_mprotect, sys_mprotect), // 125
LINXY(__NR_sigprocmask, sys_sigprocmask), // 126
//zz // Nb: create_module() was removed 2.4-->2.6
GENX_(__NR_create_module, sys_ni_syscall), // 127
LINX_(__NR_init_module, sys_init_module), // 128
LINX_(__NR_delete_module, sys_delete_module), // 129
//zz
//zz // Nb: get_kernel_syms() was removed 2.4-->2.6
GENX_(__NR_get_kernel_syms, sys_ni_syscall), // 130
LINX_(__NR_quotactl, sys_quotactl), // 131
GENX_(__NR_getpgid, sys_getpgid), // 132
GENX_(__NR_fchdir, sys_fchdir), // 133
//zz // (__NR_bdflush, sys_bdflush), // 134 */Linux
//zz
//zz // (__NR_sysfs, sys_sysfs), // 135 SVr4
LINX_(__NR_personality, sys_personality), // 136
GENX_(__NR_afs_syscall, sys_ni_syscall), // 137
LINX_(__NR_setfsuid, sys_setfsuid16), // 138
LINX_(__NR_setfsgid, sys_setfsgid16), // 139
LINXY(__NR__llseek, sys_llseek), // 140
GENXY(__NR_getdents, sys_getdents), // 141
GENX_(__NR__newselect, sys_select), // 142
GENX_(__NR_flock, sys_flock), // 143
GENX_(__NR_msync, sys_msync), // 144
GENXY(__NR_readv, sys_readv), // 145
GENX_(__NR_writev, sys_writev), // 146
GENX_(__NR_getsid, sys_getsid), // 147
GENX_(__NR_fdatasync, sys_fdatasync), // 148
LINXY(__NR__sysctl, sys_sysctl), // 149
GENX_(__NR_mlock, sys_mlock), // 150
GENX_(__NR_munlock, sys_munlock), // 151
GENX_(__NR_mlockall, sys_mlockall), // 152
LINX_(__NR_munlockall, sys_munlockall), // 153
LINXY(__NR_sched_setparam, sys_sched_setparam), // 154
LINXY(__NR_sched_getparam, sys_sched_getparam), // 155
LINX_(__NR_sched_setscheduler, sys_sched_setscheduler), // 156
LINX_(__NR_sched_getscheduler, sys_sched_getscheduler), // 157
LINX_(__NR_sched_yield, sys_sched_yield), // 158
LINX_(__NR_sched_get_priority_max, sys_sched_get_priority_max),// 159
LINX_(__NR_sched_get_priority_min, sys_sched_get_priority_min),// 160
LINXY(__NR_sched_rr_get_interval, sys_sched_rr_get_interval), // 161
GENXY(__NR_nanosleep, sys_nanosleep), // 162
GENX_(__NR_mremap, sys_mremap), // 163
LINX_(__NR_setresuid, sys_setresuid16), // 164
LINXY(__NR_getresuid, sys_getresuid16), // 165
PLAXY(__NR_vm86, sys_vm86), // 166 x86/Linux-only
GENX_(__NR_query_module, sys_ni_syscall), // 167
GENXY(__NR_poll, sys_poll), // 168
//zz // (__NR_nfsservctl, sys_nfsservctl), // 169 */Linux
//zz
LINX_(__NR_setresgid, sys_setresgid16), // 170
LINXY(__NR_getresgid, sys_getresgid16), // 171
LINXY(__NR_prctl, sys_prctl), // 172
PLAX_(__NR_rt_sigreturn, sys_rt_sigreturn), // 173 x86/Linux only?
LINXY(__NR_rt_sigaction, sys_rt_sigaction), // 174
LINXY(__NR_rt_sigprocmask, sys_rt_sigprocmask), // 175
LINXY(__NR_rt_sigpending, sys_rt_sigpending), // 176
LINXY(__NR_rt_sigtimedwait, sys_rt_sigtimedwait),// 177
LINXY(__NR_rt_sigqueueinfo, sys_rt_sigqueueinfo),// 178
LINX_(__NR_rt_sigsuspend, sys_rt_sigsuspend), // 179
GENXY(__NR_pread64, sys_pread64), // 180
GENX_(__NR_pwrite64, sys_pwrite64), // 181
LINX_(__NR_chown, sys_chown16), // 182
GENXY(__NR_getcwd, sys_getcwd), // 183
LINXY(__NR_capget, sys_capget), // 184
LINX_(__NR_capset, sys_capset), // 185
GENXY(__NR_sigaltstack, sys_sigaltstack), // 186
LINXY(__NR_sendfile, sys_sendfile), // 187
GENXY(__NR_getpmsg, sys_getpmsg), // 188
GENX_(__NR_putpmsg, sys_putpmsg), // 189
// Nb: we treat vfork as fork
GENX_(__NR_vfork, sys_fork), // 190
GENXY(__NR_ugetrlimit, sys_getrlimit), // 191
PLAX_(__NR_mmap2, sys_mmap2), // 192
GENX_(__NR_truncate64, sys_truncate64), // 193
GENX_(__NR_ftruncate64, sys_ftruncate64), // 194
PLAXY(__NR_stat64, sys_stat64), // 195
PLAXY(__NR_lstat64, sys_lstat64), // 196
PLAXY(__NR_fstat64, sys_fstat64), // 197
GENX_(__NR_lchown32, sys_lchown), // 198
GENX_(__NR_getuid32, sys_getuid), // 199
GENX_(__NR_getgid32, sys_getgid), // 200
GENX_(__NR_geteuid32, sys_geteuid), // 201
GENX_(__NR_getegid32, sys_getegid), // 202
GENX_(__NR_setreuid32, sys_setreuid), // 203
GENX_(__NR_setregid32, sys_setregid), // 204
GENXY(__NR_getgroups32, sys_getgroups), // 205
GENX_(__NR_setgroups32, sys_setgroups), // 206
GENX_(__NR_fchown32, sys_fchown), // 207
LINX_(__NR_setresuid32, sys_setresuid), // 208
LINXY(__NR_getresuid32, sys_getresuid), // 209
LINX_(__NR_setresgid32, sys_setresgid), // 210
LINXY(__NR_getresgid32, sys_getresgid), // 211
GENX_(__NR_chown32, sys_chown), // 212
GENX_(__NR_setuid32, sys_setuid), // 213
GENX_(__NR_setgid32, sys_setgid), // 214
LINX_(__NR_setfsuid32, sys_setfsuid), // 215
LINX_(__NR_setfsgid32, sys_setfsgid), // 216
LINX_(__NR_pivot_root, sys_pivot_root), // 217
GENXY(__NR_mincore, sys_mincore), // 218
GENX_(__NR_madvise, sys_madvise), // 219
GENXY(__NR_getdents64, sys_getdents64), // 220
LINXY(__NR_fcntl64, sys_fcntl64), // 221
GENX_(222, sys_ni_syscall), // 222
PLAXY(223, sys_syscall223), // 223 // sys_bproc?
LINX_(__NR_gettid, sys_gettid), // 224
LINX_(__NR_readahead, sys_readahead), // 225 */Linux
LINX_(__NR_setxattr, sys_setxattr), // 226
LINX_(__NR_lsetxattr, sys_lsetxattr), // 227
LINX_(__NR_fsetxattr, sys_fsetxattr), // 228
LINXY(__NR_getxattr, sys_getxattr), // 229
LINXY(__NR_lgetxattr, sys_lgetxattr), // 230
LINXY(__NR_fgetxattr, sys_fgetxattr), // 231
LINXY(__NR_listxattr, sys_listxattr), // 232
LINXY(__NR_llistxattr, sys_llistxattr), // 233
LINXY(__NR_flistxattr, sys_flistxattr), // 234
LINX_(__NR_removexattr, sys_removexattr), // 235
LINX_(__NR_lremovexattr, sys_lremovexattr), // 236
LINX_(__NR_fremovexattr, sys_fremovexattr), // 237
LINXY(__NR_tkill, sys_tkill), // 238 */Linux
LINXY(__NR_sendfile64, sys_sendfile64), // 239
LINXY(__NR_futex, sys_futex), // 240
LINX_(__NR_sched_setaffinity, sys_sched_setaffinity), // 241
LINXY(__NR_sched_getaffinity, sys_sched_getaffinity), // 242
PLAX_(__NR_set_thread_area, sys_set_thread_area), // 243
PLAX_(__NR_get_thread_area, sys_get_thread_area), // 244
LINXY(__NR_io_setup, sys_io_setup), // 245
LINX_(__NR_io_destroy, sys_io_destroy), // 246
LINXY(__NR_io_getevents, sys_io_getevents), // 247
LINX_(__NR_io_submit, sys_io_submit), // 248
LINXY(__NR_io_cancel, sys_io_cancel), // 249
LINX_(__NR_fadvise64, sys_fadvise64), // 250 */(Linux?)
GENX_(251, sys_ni_syscall), // 251
LINX_(__NR_exit_group, sys_exit_group), // 252
LINXY(__NR_lookup_dcookie, sys_lookup_dcookie), // 253
LINXY(__NR_epoll_create, sys_epoll_create), // 254
LINX_(__NR_epoll_ctl, sys_epoll_ctl), // 255
LINXY(__NR_epoll_wait, sys_epoll_wait), // 256
//zz // (__NR_remap_file_pages, sys_remap_file_pages), // 257 */Linux
LINX_(__NR_set_tid_address, sys_set_tid_address), // 258
LINXY(__NR_timer_create, sys_timer_create), // 259
LINXY(__NR_timer_settime, sys_timer_settime), // (timer_create+1)
LINXY(__NR_timer_gettime, sys_timer_gettime), // (timer_create+2)
LINX_(__NR_timer_getoverrun, sys_timer_getoverrun),//(timer_create+3)
LINX_(__NR_timer_delete, sys_timer_delete), // (timer_create+4)
LINX_(__NR_clock_settime, sys_clock_settime), // (timer_create+5)
LINXY(__NR_clock_gettime, sys_clock_gettime), // (timer_create+6)
LINXY(__NR_clock_getres, sys_clock_getres), // (timer_create+7)
LINXY(__NR_clock_nanosleep, sys_clock_nanosleep),// (timer_create+8) */*
GENXY(__NR_statfs64, sys_statfs64), // 268
GENXY(__NR_fstatfs64, sys_fstatfs64), // 269
LINX_(__NR_tgkill, sys_tgkill), // 270 */Linux
GENX_(__NR_utimes, sys_utimes), // 271
LINX_(__NR_fadvise64_64, sys_fadvise64_64), // 272 */(Linux?)
GENX_(__NR_vserver, sys_ni_syscall), // 273
LINX_(__NR_mbind, sys_mbind), // 274 ?/?
LINXY(__NR_get_mempolicy, sys_get_mempolicy), // 275 ?/?
LINX_(__NR_set_mempolicy, sys_set_mempolicy), // 276 ?/?
LINXY(__NR_mq_open, sys_mq_open), // 277
LINX_(__NR_mq_unlink, sys_mq_unlink), // (mq_open+1)
LINX_(__NR_mq_timedsend, sys_mq_timedsend), // (mq_open+2)
LINXY(__NR_mq_timedreceive, sys_mq_timedreceive),// (mq_open+3)
LINX_(__NR_mq_notify, sys_mq_notify), // (mq_open+4)
LINXY(__NR_mq_getsetattr, sys_mq_getsetattr), // (mq_open+5)
GENX_(__NR_sys_kexec_load, sys_ni_syscall), // 283
LINXY(__NR_waitid, sys_waitid), // 284
GENX_(285, sys_ni_syscall), // 285
LINX_(__NR_add_key, sys_add_key), // 286
LINX_(__NR_request_key, sys_request_key), // 287
LINXY(__NR_keyctl, sys_keyctl), // 288
LINX_(__NR_ioprio_set, sys_ioprio_set), // 289
LINX_(__NR_ioprio_get, sys_ioprio_get), // 290
LINX_(__NR_inotify_init, sys_inotify_init), // 291
LINX_(__NR_inotify_add_watch, sys_inotify_add_watch), // 292
LINX_(__NR_inotify_rm_watch, sys_inotify_rm_watch), // 293
// LINX_(__NR_migrate_pages, sys_migrate_pages), // 294
LINXY(__NR_openat, sys_openat), // 295
LINX_(__NR_mkdirat, sys_mkdirat), // 296
LINX_(__NR_mknodat, sys_mknodat), // 297
LINX_(__NR_fchownat, sys_fchownat), // 298
LINX_(__NR_futimesat, sys_futimesat), // 299
PLAXY(__NR_fstatat64, sys_fstatat64), // 300
LINX_(__NR_unlinkat, sys_unlinkat), // 301
LINX_(__NR_renameat, sys_renameat), // 302
LINX_(__NR_linkat, sys_linkat), // 303
LINX_(__NR_symlinkat, sys_symlinkat), // 304
LINX_(__NR_readlinkat, sys_readlinkat), // 305
LINX_(__NR_fchmodat, sys_fchmodat), // 306
LINX_(__NR_faccessat, sys_faccessat), // 307
LINX_(__NR_pselect6, sys_pselect6), // 308
LINXY(__NR_ppoll, sys_ppoll), // 309
LINX_(__NR_unshare, sys_unshare), // 310
LINX_(__NR_set_robust_list, sys_set_robust_list), // 311
LINXY(__NR_get_robust_list, sys_get_robust_list), // 312
LINX_(__NR_splice, sys_splice), // 313
LINX_(__NR_sync_file_range, sys_sync_file_range), // 314
LINX_(__NR_tee, sys_tee), // 315
LINXY(__NR_vmsplice, sys_vmsplice), // 316
LINXY(__NR_move_pages, sys_move_pages), // 317
LINXY(__NR_getcpu, sys_getcpu), // 318
LINXY(__NR_epoll_pwait, sys_epoll_pwait), // 319
LINX_(__NR_utimensat, sys_utimensat), // 320
LINXY(__NR_signalfd, sys_signalfd), // 321
LINXY(__NR_timerfd_create, sys_timerfd_create), // 322
LINXY(__NR_eventfd, sys_eventfd), // 323
LINX_(__NR_fallocate, sys_fallocate), // 324
LINXY(__NR_timerfd_settime, sys_timerfd_settime), // 325
LINXY(__NR_timerfd_gettime, sys_timerfd_gettime), // 326
LINXY(__NR_signalfd4, sys_signalfd4), // 327
LINXY(__NR_eventfd2, sys_eventfd2), // 328
LINXY(__NR_epoll_create1, sys_epoll_create1), // 329
LINXY(__NR_dup3, sys_dup3), // 330
LINXY(__NR_pipe2, sys_pipe2), // 331
LINXY(__NR_inotify_init1, sys_inotify_init1), // 332
LINXY(__NR_preadv, sys_preadv), // 333
LINX_(__NR_pwritev, sys_pwritev), // 334
LINXY(__NR_rt_tgsigqueueinfo, sys_rt_tgsigqueueinfo),// 335
LINXY(__NR_perf_event_open, sys_perf_event_open), // 336
LINXY(__NR_recvmmsg, sys_recvmmsg), // 337
LINXY(__NR_fanotify_init, sys_fanotify_init), // 338
LINX_(__NR_fanotify_mark, sys_fanotify_mark), // 339
LINXY(__NR_prlimit64, sys_prlimit64), // 340
LINXY(__NR_name_to_handle_at, sys_name_to_handle_at),// 341
LINXY(__NR_open_by_handle_at, sys_open_by_handle_at),// 342
LINXY(__NR_clock_adjtime, sys_clock_adjtime), // 343
LINX_(__NR_syncfs, sys_syncfs), // 344
LINXY(__NR_sendmmsg, sys_sendmmsg), // 345
// LINX_(__NR_setns, sys_ni_syscall), // 346
LINXY(__NR_process_vm_readv, sys_process_vm_readv), // 347
LINX_(__NR_process_vm_writev, sys_process_vm_writev),// 348
LINX_(__NR_kcmp, sys_kcmp), // 349
// LIN__(__NR_finit_module, sys_ni_syscall), // 350
// LIN__(__NR_sched_setattr, sys_ni_syscall), // 351
// LIN__(__NR_sched_getattr, sys_ni_syscall), // 352
// LIN__(__NR_renameat2, sys_ni_syscall), // 353
// LIN__(__NR_seccomp, sys_ni_syscall), // 354
LINXY(__NR_getrandom, sys_getrandom), // 355
LINXY(__NR_memfd_create, sys_memfd_create) // 356
// LIN__(__NR_bpf, sys_ni_syscall) // 357
};
SyscallTableEntry* ML_(get_linux_syscall_entry) ( UInt sysno )
{
const UInt syscall_table_size
= sizeof(syscall_table) / sizeof(syscall_table[0]);
/* Is it in the contiguous initial section of the table? */
if (sysno < syscall_table_size) {
SyscallTableEntry* sys = &syscall_table[sysno];
if (sys->before == NULL)
return NULL; /* no entry */
else
return sys;
}
/* Can't find a wrapper */
return NULL;
}
#endif // defined(VGP_x86_linux)
/*--------------------------------------------------------------------*/
/*--- end ---*/
/*--------------------------------------------------------------------*/