blob: 4953202d45a74c7648419930850a883ba0c7c792 [file] [log] [blame]
/*
* Copyright (c) 2013 Paul B Mahol
* Copyright (c) 2006-2008 Rob Sykes <robs@users.sourceforge.net>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
* 2-pole filters designed by Robert Bristow-Johnson <rbj@audioimagination.com>
* see http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt
*
* 1-pole filters based on code (c) 2000 Chris Bagwell <cbagwell@sprynet.com>
* Algorithms: Recursive single pole low/high pass filter
* Reference: The Scientist and Engineer's Guide to Digital Signal Processing
*
* low-pass: output[N] = input[N] * A + output[N-1] * B
* X = exp(-2.0 * pi * Fc)
* A = 1 - X
* B = X
* Fc = cutoff freq / sample rate
*
* Mimics an RC low-pass filter:
*
* ---/\/\/\/\----------->
* |
* --- C
* ---
* |
* |
* V
*
* high-pass: output[N] = A0 * input[N] + A1 * input[N-1] + B1 * output[N-1]
* X = exp(-2.0 * pi * Fc)
* A0 = (1 + X) / 2
* A1 = -(1 + X) / 2
* B1 = X
* Fc = cutoff freq / sample rate
*
* Mimics an RC high-pass filter:
*
* || C
* ----||--------->
* || |
* <
* > R
* <
* |
* V
*/
#include "libavutil/avassert.h"
#include "libavutil/opt.h"
#include "audio.h"
#include "avfilter.h"
#include "internal.h"
enum FilterType {
biquad,
equalizer,
bass,
treble,
band,
bandpass,
bandreject,
allpass,
highpass,
lowpass,
};
enum WidthType {
NONE,
HERTZ,
OCTAVE,
QFACTOR,
SLOPE,
};
typedef struct ChanCache {
double i1, i2;
double o1, o2;
} ChanCache;
typedef struct BiquadsContext {
const AVClass *class;
enum FilterType filter_type;
int width_type;
int poles;
int csg;
double gain;
double frequency;
double width;
double a0, a1, a2;
double b0, b1, b2;
ChanCache *cache;
int clippings;
void (*filter)(struct BiquadsContext *s, const void *ibuf, void *obuf, int len,
double *i1, double *i2, double *o1, double *o2,
double b0, double b1, double b2, double a1, double a2);
} BiquadsContext;
static av_cold int init(AVFilterContext *ctx)
{
BiquadsContext *s = ctx->priv;
if (s->filter_type != biquad) {
if (s->frequency <= 0 || s->width <= 0) {
av_log(ctx, AV_LOG_ERROR, "Invalid frequency %f and/or width %f <= 0\n",
s->frequency, s->width);
return AVERROR(EINVAL);
}
}
return 0;
}
static int query_formats(AVFilterContext *ctx)
{
AVFilterFormats *formats;
AVFilterChannelLayouts *layouts;
static const enum AVSampleFormat sample_fmts[] = {
AV_SAMPLE_FMT_S16P,
AV_SAMPLE_FMT_S32P,
AV_SAMPLE_FMT_FLTP,
AV_SAMPLE_FMT_DBLP,
AV_SAMPLE_FMT_NONE
};
int ret;
layouts = ff_all_channel_counts();
if (!layouts)
return AVERROR(ENOMEM);
ret = ff_set_common_channel_layouts(ctx, layouts);
if (ret < 0)
return ret;
formats = ff_make_format_list(sample_fmts);
if (!formats)
return AVERROR(ENOMEM);
ret = ff_set_common_formats(ctx, formats);
if (ret < 0)
return ret;
formats = ff_all_samplerates();
if (!formats)
return AVERROR(ENOMEM);
return ff_set_common_samplerates(ctx, formats);
}
#define BIQUAD_FILTER(name, type, min, max, need_clipping) \
static void biquad_## name (BiquadsContext *s, \
const void *input, void *output, int len, \
double *in1, double *in2, \
double *out1, double *out2, \
double b0, double b1, double b2, \
double a1, double a2) \
{ \
const type *ibuf = input; \
type *obuf = output; \
double i1 = *in1; \
double i2 = *in2; \
double o1 = *out1; \
double o2 = *out2; \
int i; \
a1 = -a1; \
a2 = -a2; \
\
for (i = 0; i+1 < len; i++) { \
o2 = i2 * b2 + i1 * b1 + ibuf[i] * b0 + o2 * a2 + o1 * a1; \
i2 = ibuf[i]; \
if (need_clipping && o2 < min) { \
s->clippings++; \
obuf[i] = min; \
} else if (need_clipping && o2 > max) { \
s->clippings++; \
obuf[i] = max; \
} else { \
obuf[i] = o2; \
} \
i++; \
o1 = i1 * b2 + i2 * b1 + ibuf[i] * b0 + o1 * a2 + o2 * a1; \
i1 = ibuf[i]; \
if (need_clipping && o1 < min) { \
s->clippings++; \
obuf[i] = min; \
} else if (need_clipping && o1 > max) { \
s->clippings++; \
obuf[i] = max; \
} else { \
obuf[i] = o1; \
} \
} \
if (i < len) { \
double o0 = ibuf[i] * b0 + i1 * b1 + i2 * b2 + o1 * a1 + o2 * a2; \
i2 = i1; \
i1 = ibuf[i]; \
o2 = o1; \
o1 = o0; \
if (need_clipping && o0 < min) { \
s->clippings++; \
obuf[i] = min; \
} else if (need_clipping && o0 > max) { \
s->clippings++; \
obuf[i] = max; \
} else { \
obuf[i] = o0; \
} \
} \
*in1 = i1; \
*in2 = i2; \
*out1 = o1; \
*out2 = o2; \
}
BIQUAD_FILTER(s16, int16_t, INT16_MIN, INT16_MAX, 1)
BIQUAD_FILTER(s32, int32_t, INT32_MIN, INT32_MAX, 1)
BIQUAD_FILTER(flt, float, -1., 1., 0)
BIQUAD_FILTER(dbl, double, -1., 1., 0)
static int config_output(AVFilterLink *outlink)
{
AVFilterContext *ctx = outlink->src;
BiquadsContext *s = ctx->priv;
AVFilterLink *inlink = ctx->inputs[0];
double A = exp(s->gain / 40 * log(10.));
double w0 = 2 * M_PI * s->frequency / inlink->sample_rate;
double alpha;
if (w0 > M_PI) {
av_log(ctx, AV_LOG_ERROR,
"Invalid frequency %f. Frequency must be less than half the sample-rate %d.\n",
s->frequency, inlink->sample_rate);
return AVERROR(EINVAL);
}
switch (s->width_type) {
case NONE:
alpha = 0.0;
break;
case HERTZ:
alpha = sin(w0) / (2 * s->frequency / s->width);
break;
case OCTAVE:
alpha = sin(w0) * sinh(log(2.) / 2 * s->width * w0 / sin(w0));
break;
case QFACTOR:
alpha = sin(w0) / (2 * s->width);
break;
case SLOPE:
alpha = sin(w0) / 2 * sqrt((A + 1 / A) * (1 / s->width - 1) + 2);
break;
default:
av_assert0(0);
}
switch (s->filter_type) {
case biquad:
break;
case equalizer:
s->a0 = 1 + alpha / A;
s->a1 = -2 * cos(w0);
s->a2 = 1 - alpha / A;
s->b0 = 1 + alpha * A;
s->b1 = -2 * cos(w0);
s->b2 = 1 - alpha * A;
break;
case bass:
s->a0 = (A + 1) + (A - 1) * cos(w0) + 2 * sqrt(A) * alpha;
s->a1 = -2 * ((A - 1) + (A + 1) * cos(w0));
s->a2 = (A + 1) + (A - 1) * cos(w0) - 2 * sqrt(A) * alpha;
s->b0 = A * ((A + 1) - (A - 1) * cos(w0) + 2 * sqrt(A) * alpha);
s->b1 = 2 * A * ((A - 1) - (A + 1) * cos(w0));
s->b2 = A * ((A + 1) - (A - 1) * cos(w0) - 2 * sqrt(A) * alpha);
break;
case treble:
s->a0 = (A + 1) - (A - 1) * cos(w0) + 2 * sqrt(A) * alpha;
s->a1 = 2 * ((A - 1) - (A + 1) * cos(w0));
s->a2 = (A + 1) - (A - 1) * cos(w0) - 2 * sqrt(A) * alpha;
s->b0 = A * ((A + 1) + (A - 1) * cos(w0) + 2 * sqrt(A) * alpha);
s->b1 =-2 * A * ((A - 1) + (A + 1) * cos(w0));
s->b2 = A * ((A + 1) + (A - 1) * cos(w0) - 2 * sqrt(A) * alpha);
break;
case bandpass:
if (s->csg) {
s->a0 = 1 + alpha;
s->a1 = -2 * cos(w0);
s->a2 = 1 - alpha;
s->b0 = sin(w0) / 2;
s->b1 = 0;
s->b2 = -sin(w0) / 2;
} else {
s->a0 = 1 + alpha;
s->a1 = -2 * cos(w0);
s->a2 = 1 - alpha;
s->b0 = alpha;
s->b1 = 0;
s->b2 = -alpha;
}
break;
case bandreject:
s->a0 = 1 + alpha;
s->a1 = -2 * cos(w0);
s->a2 = 1 - alpha;
s->b0 = 1;
s->b1 = -2 * cos(w0);
s->b2 = 1;
break;
case lowpass:
if (s->poles == 1) {
s->a0 = 1;
s->a1 = -exp(-w0);
s->a2 = 0;
s->b0 = 1 + s->a1;
s->b1 = 0;
s->b2 = 0;
} else {
s->a0 = 1 + alpha;
s->a1 = -2 * cos(w0);
s->a2 = 1 - alpha;
s->b0 = (1 - cos(w0)) / 2;
s->b1 = 1 - cos(w0);
s->b2 = (1 - cos(w0)) / 2;
}
break;
case highpass:
if (s->poles == 1) {
s->a0 = 1;
s->a1 = -exp(-w0);
s->a2 = 0;
s->b0 = (1 - s->a1) / 2;
s->b1 = -s->b0;
s->b2 = 0;
} else {
s->a0 = 1 + alpha;
s->a1 = -2 * cos(w0);
s->a2 = 1 - alpha;
s->b0 = (1 + cos(w0)) / 2;
s->b1 = -(1 + cos(w0));
s->b2 = (1 + cos(w0)) / 2;
}
break;
case allpass:
s->a0 = 1 + alpha;
s->a1 = -2 * cos(w0);
s->a2 = 1 - alpha;
s->b0 = 1 - alpha;
s->b1 = -2 * cos(w0);
s->b2 = 1 + alpha;
break;
default:
av_assert0(0);
}
s->a1 /= s->a0;
s->a2 /= s->a0;
s->b0 /= s->a0;
s->b1 /= s->a0;
s->b2 /= s->a0;
s->cache = av_realloc_f(s->cache, sizeof(ChanCache), inlink->channels);
if (!s->cache)
return AVERROR(ENOMEM);
memset(s->cache, 0, sizeof(ChanCache) * inlink->channels);
switch (inlink->format) {
case AV_SAMPLE_FMT_S16P: s->filter = biquad_s16; break;
case AV_SAMPLE_FMT_S32P: s->filter = biquad_s32; break;
case AV_SAMPLE_FMT_FLTP: s->filter = biquad_flt; break;
case AV_SAMPLE_FMT_DBLP: s->filter = biquad_dbl; break;
default: av_assert0(0);
}
return 0;
}
static int filter_frame(AVFilterLink *inlink, AVFrame *buf)
{
AVFilterContext *ctx = inlink->dst;
BiquadsContext *s = ctx->priv;
AVFilterLink *outlink = ctx->outputs[0];
AVFrame *out_buf;
int nb_samples = buf->nb_samples;
int ch;
if (av_frame_is_writable(buf)) {
out_buf = buf;
} else {
out_buf = ff_get_audio_buffer(inlink, nb_samples);
if (!out_buf) {
av_frame_free(&buf);
return AVERROR(ENOMEM);
}
av_frame_copy_props(out_buf, buf);
}
for (ch = 0; ch < av_frame_get_channels(buf); ch++)
s->filter(s, buf->extended_data[ch],
out_buf->extended_data[ch], nb_samples,
&s->cache[ch].i1, &s->cache[ch].i2,
&s->cache[ch].o1, &s->cache[ch].o2,
s->b0, s->b1, s->b2, s->a1, s->a2);
if (s->clippings > 0)
av_log(ctx, AV_LOG_WARNING, "clipping %d times. Please reduce gain.\n", s->clippings);
if (buf != out_buf)
av_frame_free(&buf);
return ff_filter_frame(outlink, out_buf);
}
static av_cold void uninit(AVFilterContext *ctx)
{
BiquadsContext *s = ctx->priv;
av_freep(&s->cache);
}
static const AVFilterPad inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_AUDIO,
.filter_frame = filter_frame,
},
{ NULL }
};
static const AVFilterPad outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_AUDIO,
.config_props = config_output,
},
{ NULL }
};
#define OFFSET(x) offsetof(BiquadsContext, x)
#define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
#define DEFINE_BIQUAD_FILTER(name_, description_) \
AVFILTER_DEFINE_CLASS(name_); \
static av_cold int name_##_init(AVFilterContext *ctx) \
{ \
BiquadsContext *s = ctx->priv; \
s->class = &name_##_class; \
s->filter_type = name_; \
return init(ctx); \
} \
\
AVFilter ff_af_##name_ = { \
.name = #name_, \
.description = NULL_IF_CONFIG_SMALL(description_), \
.priv_size = sizeof(BiquadsContext), \
.init = name_##_init, \
.uninit = uninit, \
.query_formats = query_formats, \
.inputs = inputs, \
.outputs = outputs, \
.priv_class = &name_##_class, \
}
#if CONFIG_EQUALIZER_FILTER
static const AVOption equalizer_options[] = {
{"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=0}, 0, 999999, FLAGS},
{"f", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=0}, 0, 999999, FLAGS},
{"width_type", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=QFACTOR}, HERTZ, SLOPE, FLAGS, "width_type"},
{"h", "Hz", 0, AV_OPT_TYPE_CONST, {.i64=HERTZ}, 0, 0, FLAGS, "width_type"},
{"q", "Q-Factor", 0, AV_OPT_TYPE_CONST, {.i64=QFACTOR}, 0, 0, FLAGS, "width_type"},
{"o", "octave", 0, AV_OPT_TYPE_CONST, {.i64=OCTAVE}, 0, 0, FLAGS, "width_type"},
{"s", "slope", 0, AV_OPT_TYPE_CONST, {.i64=SLOPE}, 0, 0, FLAGS, "width_type"},
{"width", "set band-width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0, 999, FLAGS},
{"w", "set band-width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0, 999, FLAGS},
{"gain", "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS},
{"g", "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS},
{NULL}
};
DEFINE_BIQUAD_FILTER(equalizer, "Apply two-pole peaking equalization (EQ) filter.");
#endif /* CONFIG_EQUALIZER_FILTER */
#if CONFIG_BASS_FILTER
static const AVOption bass_options[] = {
{"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=100}, 0, 999999, FLAGS},
{"f", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=100}, 0, 999999, FLAGS},
{"width_type", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=QFACTOR}, HERTZ, SLOPE, FLAGS, "width_type"},
{"h", "Hz", 0, AV_OPT_TYPE_CONST, {.i64=HERTZ}, 0, 0, FLAGS, "width_type"},
{"q", "Q-Factor", 0, AV_OPT_TYPE_CONST, {.i64=QFACTOR}, 0, 0, FLAGS, "width_type"},
{"o", "octave", 0, AV_OPT_TYPE_CONST, {.i64=OCTAVE}, 0, 0, FLAGS, "width_type"},
{"s", "slope", 0, AV_OPT_TYPE_CONST, {.i64=SLOPE}, 0, 0, FLAGS, "width_type"},
{"width", "set shelf transition steep", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0, 99999, FLAGS},
{"w", "set shelf transition steep", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0, 99999, FLAGS},
{"gain", "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS},
{"g", "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS},
{NULL}
};
DEFINE_BIQUAD_FILTER(bass, "Boost or cut lower frequencies.");
#endif /* CONFIG_BASS_FILTER */
#if CONFIG_TREBLE_FILTER
static const AVOption treble_options[] = {
{"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
{"f", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
{"width_type", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=QFACTOR}, HERTZ, SLOPE, FLAGS, "width_type"},
{"h", "Hz", 0, AV_OPT_TYPE_CONST, {.i64=HERTZ}, 0, 0, FLAGS, "width_type"},
{"q", "Q-Factor", 0, AV_OPT_TYPE_CONST, {.i64=QFACTOR}, 0, 0, FLAGS, "width_type"},
{"o", "octave", 0, AV_OPT_TYPE_CONST, {.i64=OCTAVE}, 0, 0, FLAGS, "width_type"},
{"s", "slope", 0, AV_OPT_TYPE_CONST, {.i64=SLOPE}, 0, 0, FLAGS, "width_type"},
{"width", "set shelf transition steep", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0, 99999, FLAGS},
{"w", "set shelf transition steep", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0, 99999, FLAGS},
{"gain", "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS},
{"g", "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS},
{NULL}
};
DEFINE_BIQUAD_FILTER(treble, "Boost or cut upper frequencies.");
#endif /* CONFIG_TREBLE_FILTER */
#if CONFIG_BANDPASS_FILTER
static const AVOption bandpass_options[] = {
{"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
{"f", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
{"width_type", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=QFACTOR}, HERTZ, SLOPE, FLAGS, "width_type"},
{"h", "Hz", 0, AV_OPT_TYPE_CONST, {.i64=HERTZ}, 0, 0, FLAGS, "width_type"},
{"q", "Q-Factor", 0, AV_OPT_TYPE_CONST, {.i64=QFACTOR}, 0, 0, FLAGS, "width_type"},
{"o", "octave", 0, AV_OPT_TYPE_CONST, {.i64=OCTAVE}, 0, 0, FLAGS, "width_type"},
{"s", "slope", 0, AV_OPT_TYPE_CONST, {.i64=SLOPE}, 0, 0, FLAGS, "width_type"},
{"width", "set band-width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0, 999, FLAGS},
{"w", "set band-width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0, 999, FLAGS},
{"csg", "use constant skirt gain", OFFSET(csg), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS},
{NULL}
};
DEFINE_BIQUAD_FILTER(bandpass, "Apply a two-pole Butterworth band-pass filter.");
#endif /* CONFIG_BANDPASS_FILTER */
#if CONFIG_BANDREJECT_FILTER
static const AVOption bandreject_options[] = {
{"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
{"f", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
{"width_type", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=QFACTOR}, HERTZ, SLOPE, FLAGS, "width_type"},
{"h", "Hz", 0, AV_OPT_TYPE_CONST, {.i64=HERTZ}, 0, 0, FLAGS, "width_type"},
{"q", "Q-Factor", 0, AV_OPT_TYPE_CONST, {.i64=QFACTOR}, 0, 0, FLAGS, "width_type"},
{"o", "octave", 0, AV_OPT_TYPE_CONST, {.i64=OCTAVE}, 0, 0, FLAGS, "width_type"},
{"s", "slope", 0, AV_OPT_TYPE_CONST, {.i64=SLOPE}, 0, 0, FLAGS, "width_type"},
{"width", "set band-width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0, 999, FLAGS},
{"w", "set band-width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0, 999, FLAGS},
{NULL}
};
DEFINE_BIQUAD_FILTER(bandreject, "Apply a two-pole Butterworth band-reject filter.");
#endif /* CONFIG_BANDREJECT_FILTER */
#if CONFIG_LOWPASS_FILTER
static const AVOption lowpass_options[] = {
{"frequency", "set frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=500}, 0, 999999, FLAGS},
{"f", "set frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=500}, 0, 999999, FLAGS},
{"width_type", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=QFACTOR}, HERTZ, SLOPE, FLAGS, "width_type"},
{"h", "Hz", 0, AV_OPT_TYPE_CONST, {.i64=HERTZ}, 0, 0, FLAGS, "width_type"},
{"q", "Q-Factor", 0, AV_OPT_TYPE_CONST, {.i64=QFACTOR}, 0, 0, FLAGS, "width_type"},
{"o", "octave", 0, AV_OPT_TYPE_CONST, {.i64=OCTAVE}, 0, 0, FLAGS, "width_type"},
{"s", "slope", 0, AV_OPT_TYPE_CONST, {.i64=SLOPE}, 0, 0, FLAGS, "width_type"},
{"width", "set width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.707}, 0, 99999, FLAGS},
{"w", "set width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.707}, 0, 99999, FLAGS},
{"poles", "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, FLAGS},
{"p", "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, FLAGS},
{NULL}
};
DEFINE_BIQUAD_FILTER(lowpass, "Apply a low-pass filter with 3dB point frequency.");
#endif /* CONFIG_LOWPASS_FILTER */
#if CONFIG_HIGHPASS_FILTER
static const AVOption highpass_options[] = {
{"frequency", "set frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
{"f", "set frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
{"width_type", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=QFACTOR}, HERTZ, SLOPE, FLAGS, "width_type"},
{"h", "Hz", 0, AV_OPT_TYPE_CONST, {.i64=HERTZ}, 0, 0, FLAGS, "width_type"},
{"q", "Q-Factor", 0, AV_OPT_TYPE_CONST, {.i64=QFACTOR}, 0, 0, FLAGS, "width_type"},
{"o", "octave", 0, AV_OPT_TYPE_CONST, {.i64=OCTAVE}, 0, 0, FLAGS, "width_type"},
{"s", "slope", 0, AV_OPT_TYPE_CONST, {.i64=SLOPE}, 0, 0, FLAGS, "width_type"},
{"width", "set width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.707}, 0, 99999, FLAGS},
{"w", "set width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.707}, 0, 99999, FLAGS},
{"poles", "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, FLAGS},
{"p", "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, FLAGS},
{NULL}
};
DEFINE_BIQUAD_FILTER(highpass, "Apply a high-pass filter with 3dB point frequency.");
#endif /* CONFIG_HIGHPASS_FILTER */
#if CONFIG_ALLPASS_FILTER
static const AVOption allpass_options[] = {
{"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
{"f", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
{"width_type", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=HERTZ}, HERTZ, SLOPE, FLAGS, "width_type"},
{"h", "Hz", 0, AV_OPT_TYPE_CONST, {.i64=HERTZ}, 0, 0, FLAGS, "width_type"},
{"q", "Q-Factor", 0, AV_OPT_TYPE_CONST, {.i64=QFACTOR}, 0, 0, FLAGS, "width_type"},
{"o", "octave", 0, AV_OPT_TYPE_CONST, {.i64=OCTAVE}, 0, 0, FLAGS, "width_type"},
{"s", "slope", 0, AV_OPT_TYPE_CONST, {.i64=SLOPE}, 0, 0, FLAGS, "width_type"},
{"width", "set filter-width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=707.1}, 0, 99999, FLAGS},
{"w", "set filter-width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=707.1}, 0, 99999, FLAGS},
{NULL}
};
DEFINE_BIQUAD_FILTER(allpass, "Apply a two-pole all-pass filter.");
#endif /* CONFIG_ALLPASS_FILTER */
#if CONFIG_BIQUAD_FILTER
static const AVOption biquad_options[] = {
{"a0", NULL, OFFSET(a0), AV_OPT_TYPE_DOUBLE, {.dbl=1}, INT16_MIN, INT16_MAX, FLAGS},
{"a1", NULL, OFFSET(a1), AV_OPT_TYPE_DOUBLE, {.dbl=1}, INT16_MIN, INT16_MAX, FLAGS},
{"a2", NULL, OFFSET(a2), AV_OPT_TYPE_DOUBLE, {.dbl=1}, INT16_MIN, INT16_MAX, FLAGS},
{"b0", NULL, OFFSET(b0), AV_OPT_TYPE_DOUBLE, {.dbl=1}, INT16_MIN, INT16_MAX, FLAGS},
{"b1", NULL, OFFSET(b1), AV_OPT_TYPE_DOUBLE, {.dbl=1}, INT16_MIN, INT16_MAX, FLAGS},
{"b2", NULL, OFFSET(b2), AV_OPT_TYPE_DOUBLE, {.dbl=1}, INT16_MIN, INT16_MAX, FLAGS},
{NULL}
};
DEFINE_BIQUAD_FILTER(biquad, "Apply a biquad IIR filter with the given coefficients.");
#endif /* CONFIG_BIQUAD_FILTER */