blob: b1d177d3b8975191eddc04b68cc2573ea09555e8 [file] [log] [blame]
/*
* Copyright (C) 2004 Michael Niedermayer <michaelni@gmx.at>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/intmath.h"
#include "libavutil/libm.h"
#include "libavutil/log.h"
#include "libavutil/opt.h"
#include "avcodec.h"
#include "internal.h"
#include "snow_dwt.h"
#include "snow.h"
#include "rangecoder.h"
#include "mathops.h"
#include "mpegvideo.h"
#include "h263.h"
#define FF_ME_ITER 50
static av_cold int encode_init(AVCodecContext *avctx)
{
SnowContext *s = avctx->priv_data;
int plane_index, ret;
int i;
#if FF_API_PRIVATE_OPT
FF_DISABLE_DEPRECATION_WARNINGS
if (avctx->prediction_method)
s->pred = avctx->prediction_method;
FF_ENABLE_DEPRECATION_WARNINGS
#endif
if(s->pred == DWT_97
&& (avctx->flags & AV_CODEC_FLAG_QSCALE)
&& avctx->global_quality == 0){
av_log(avctx, AV_LOG_ERROR, "The 9/7 wavelet is incompatible with lossless mode.\n");
return -1;
}
#if FF_API_MOTION_EST
FF_DISABLE_DEPRECATION_WARNINGS
if (avctx->me_method == ME_ITER)
s->motion_est = FF_ME_ITER;
FF_ENABLE_DEPRECATION_WARNINGS
#endif
s->spatial_decomposition_type= s->pred; //FIXME add decorrelator type r transform_type
s->mv_scale = (avctx->flags & AV_CODEC_FLAG_QPEL) ? 2 : 4;
s->block_max_depth= (avctx->flags & AV_CODEC_FLAG_4MV ) ? 1 : 0;
for(plane_index=0; plane_index<3; plane_index++){
s->plane[plane_index].diag_mc= 1;
s->plane[plane_index].htaps= 6;
s->plane[plane_index].hcoeff[0]= 40;
s->plane[plane_index].hcoeff[1]= -10;
s->plane[plane_index].hcoeff[2]= 2;
s->plane[plane_index].fast_mc= 1;
}
if ((ret = ff_snow_common_init(avctx)) < 0) {
return ret;
}
ff_mpegvideoencdsp_init(&s->mpvencdsp, avctx);
ff_snow_alloc_blocks(s);
s->version=0;
s->m.avctx = avctx;
s->m.bit_rate= avctx->bit_rate;
s->m.me.temp =
s->m.me.scratchpad= av_mallocz_array((avctx->width+64), 2*16*2*sizeof(uint8_t));
s->m.me.map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t));
s->m.me.score_map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t));
s->m.sc.obmc_scratchpad= av_mallocz(MB_SIZE*MB_SIZE*12*sizeof(uint32_t));
if (!s->m.me.scratchpad || !s->m.me.map || !s->m.me.score_map || !s->m.sc.obmc_scratchpad)
return AVERROR(ENOMEM);
ff_h263_encode_init(&s->m); //mv_penalty
s->max_ref_frames = av_clip(avctx->refs, 1, MAX_REF_FRAMES);
if(avctx->flags&AV_CODEC_FLAG_PASS1){
if(!avctx->stats_out)
avctx->stats_out = av_mallocz(256);
if (!avctx->stats_out)
return AVERROR(ENOMEM);
}
if((avctx->flags&AV_CODEC_FLAG_PASS2) || !(avctx->flags&CODEC_FLAG_QSCALE)){
if(ff_rate_control_init(&s->m) < 0)
return -1;
}
s->pass1_rc= !(avctx->flags & (AV_CODEC_FLAG_QSCALE|CODEC_FLAG_PASS2));
switch(avctx->pix_fmt){
case AV_PIX_FMT_YUV444P:
// case AV_PIX_FMT_YUV422P:
case AV_PIX_FMT_YUV420P:
// case AV_PIX_FMT_YUV411P:
case AV_PIX_FMT_YUV410P:
s->nb_planes = 3;
s->colorspace_type= 0;
break;
case AV_PIX_FMT_GRAY8:
s->nb_planes = 1;
s->colorspace_type = 1;
break;
/* case AV_PIX_FMT_RGB32:
s->colorspace= 1;
break;*/
default:
av_log(avctx, AV_LOG_ERROR, "pixel format not supported\n");
return -1;
}
avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_h_shift, &s->chroma_v_shift);
ff_set_cmp(&s->mecc, s->mecc.me_cmp, s->avctx->me_cmp);
ff_set_cmp(&s->mecc, s->mecc.me_sub_cmp, s->avctx->me_sub_cmp);
s->input_picture = av_frame_alloc();
if (!s->input_picture)
return AVERROR(ENOMEM);
if ((ret = ff_snow_get_buffer(s, s->input_picture)) < 0)
return ret;
if(s->motion_est == FF_ME_ITER){
int size= s->b_width * s->b_height << 2*s->block_max_depth;
for(i=0; i<s->max_ref_frames; i++){
s->ref_mvs[i]= av_mallocz_array(size, sizeof(int16_t[2]));
s->ref_scores[i]= av_mallocz_array(size, sizeof(uint32_t));
if (!s->ref_mvs[i] || !s->ref_scores[i])
return AVERROR(ENOMEM);
}
}
return 0;
}
//near copy & paste from dsputil, FIXME
static int pix_sum(uint8_t * pix, int line_size, int w, int h)
{
int s, i, j;
s = 0;
for (i = 0; i < h; i++) {
for (j = 0; j < w; j++) {
s += pix[0];
pix ++;
}
pix += line_size - w;
}
return s;
}
//near copy & paste from dsputil, FIXME
static int pix_norm1(uint8_t * pix, int line_size, int w)
{
int s, i, j;
uint32_t *sq = ff_square_tab + 256;
s = 0;
for (i = 0; i < w; i++) {
for (j = 0; j < w; j ++) {
s += sq[pix[0]];
pix ++;
}
pix += line_size - w;
}
return s;
}
static inline int get_penalty_factor(int lambda, int lambda2, int type){
switch(type&0xFF){
default:
case FF_CMP_SAD:
return lambda>>FF_LAMBDA_SHIFT;
case FF_CMP_DCT:
return (3*lambda)>>(FF_LAMBDA_SHIFT+1);
case FF_CMP_W53:
return (4*lambda)>>(FF_LAMBDA_SHIFT);
case FF_CMP_W97:
return (2*lambda)>>(FF_LAMBDA_SHIFT);
case FF_CMP_SATD:
case FF_CMP_DCT264:
return (2*lambda)>>FF_LAMBDA_SHIFT;
case FF_CMP_RD:
case FF_CMP_PSNR:
case FF_CMP_SSE:
case FF_CMP_NSSE:
return lambda2>>FF_LAMBDA_SHIFT;
case FF_CMP_BIT:
return 1;
}
}
//FIXME copy&paste
#define P_LEFT P[1]
#define P_TOP P[2]
#define P_TOPRIGHT P[3]
#define P_MEDIAN P[4]
#define P_MV1 P[9]
#define FLAG_QPEL 1 //must be 1
static int encode_q_branch(SnowContext *s, int level, int x, int y){
uint8_t p_buffer[1024];
uint8_t i_buffer[1024];
uint8_t p_state[sizeof(s->block_state)];
uint8_t i_state[sizeof(s->block_state)];
RangeCoder pc, ic;
uint8_t *pbbak= s->c.bytestream;
uint8_t *pbbak_start= s->c.bytestream_start;
int score, score2, iscore, i_len, p_len, block_s, sum, base_bits;
const int w= s->b_width << s->block_max_depth;
const int h= s->b_height << s->block_max_depth;
const int rem_depth= s->block_max_depth - level;
const int index= (x + y*w) << rem_depth;
const int block_w= 1<<(LOG2_MB_SIZE - level);
int trx= (x+1)<<rem_depth;
int try= (y+1)<<rem_depth;
const BlockNode *left = x ? &s->block[index-1] : &null_block;
const BlockNode *top = y ? &s->block[index-w] : &null_block;
const BlockNode *right = trx<w ? &s->block[index+1] : &null_block;
const BlockNode *bottom= try<h ? &s->block[index+w] : &null_block;
const BlockNode *tl = y && x ? &s->block[index-w-1] : left;
const BlockNode *tr = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt
int pl = left->color[0];
int pcb= left->color[1];
int pcr= left->color[2];
int pmx, pmy;
int mx=0, my=0;
int l,cr,cb;
const int stride= s->current_picture->linesize[0];
const int uvstride= s->current_picture->linesize[1];
uint8_t *current_data[3]= { s->input_picture->data[0] + (x + y* stride)*block_w,
s->input_picture->data[1] + ((x*block_w)>>s->chroma_h_shift) + ((y*uvstride*block_w)>>s->chroma_v_shift),
s->input_picture->data[2] + ((x*block_w)>>s->chroma_h_shift) + ((y*uvstride*block_w)>>s->chroma_v_shift)};
int P[10][2];
int16_t last_mv[3][2];
int qpel= !!(s->avctx->flags & AV_CODEC_FLAG_QPEL); //unused
const int shift= 1+qpel;
MotionEstContext *c= &s->m.me;
int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref);
int mx_context= av_log2(2*FFABS(left->mx - top->mx));
int my_context= av_log2(2*FFABS(left->my - top->my));
int s_context= 2*left->level + 2*top->level + tl->level + tr->level;
int ref, best_ref, ref_score, ref_mx, ref_my;
av_assert0(sizeof(s->block_state) >= 256);
if(s->keyframe){
set_blocks(s, level, x, y, pl, pcb, pcr, 0, 0, 0, BLOCK_INTRA);
return 0;
}
// clip predictors / edge ?
P_LEFT[0]= left->mx;
P_LEFT[1]= left->my;
P_TOP [0]= top->mx;
P_TOP [1]= top->my;
P_TOPRIGHT[0]= tr->mx;
P_TOPRIGHT[1]= tr->my;
last_mv[0][0]= s->block[index].mx;
last_mv[0][1]= s->block[index].my;
last_mv[1][0]= right->mx;
last_mv[1][1]= right->my;
last_mv[2][0]= bottom->mx;
last_mv[2][1]= bottom->my;
s->m.mb_stride=2;
s->m.mb_x=
s->m.mb_y= 0;
c->skip= 0;
av_assert1(c-> stride == stride);
av_assert1(c->uvstride == uvstride);
c->penalty_factor = get_penalty_factor(s->lambda, s->lambda2, c->avctx->me_cmp);
c->sub_penalty_factor= get_penalty_factor(s->lambda, s->lambda2, c->avctx->me_sub_cmp);
c->mb_penalty_factor = get_penalty_factor(s->lambda, s->lambda2, c->avctx->mb_cmp);
c->current_mv_penalty= c->mv_penalty[s->m.f_code=1] + MAX_DMV;
c->xmin = - x*block_w - 16+3;
c->ymin = - y*block_w - 16+3;
c->xmax = - (x+1)*block_w + (w<<(LOG2_MB_SIZE - s->block_max_depth)) + 16-3;
c->ymax = - (y+1)*block_w + (h<<(LOG2_MB_SIZE - s->block_max_depth)) + 16-3;
if(P_LEFT[0] > (c->xmax<<shift)) P_LEFT[0] = (c->xmax<<shift);
if(P_LEFT[1] > (c->ymax<<shift)) P_LEFT[1] = (c->ymax<<shift);
if(P_TOP[0] > (c->xmax<<shift)) P_TOP[0] = (c->xmax<<shift);
if(P_TOP[1] > (c->ymax<<shift)) P_TOP[1] = (c->ymax<<shift);
if(P_TOPRIGHT[0] < (c->xmin<<shift)) P_TOPRIGHT[0]= (c->xmin<<shift);
if(P_TOPRIGHT[0] > (c->xmax<<shift)) P_TOPRIGHT[0]= (c->xmax<<shift); //due to pmx no clip
if(P_TOPRIGHT[1] > (c->ymax<<shift)) P_TOPRIGHT[1]= (c->ymax<<shift);
P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
if (!y) {
c->pred_x= P_LEFT[0];
c->pred_y= P_LEFT[1];
} else {
c->pred_x = P_MEDIAN[0];
c->pred_y = P_MEDIAN[1];
}
score= INT_MAX;
best_ref= 0;
for(ref=0; ref<s->ref_frames; ref++){
init_ref(c, current_data, s->last_picture[ref]->data, NULL, block_w*x, block_w*y, 0);
ref_score= ff_epzs_motion_search(&s->m, &ref_mx, &ref_my, P, 0, /*ref_index*/ 0, last_mv,
(1<<16)>>shift, level-LOG2_MB_SIZE+4, block_w);
av_assert2(ref_mx >= c->xmin);
av_assert2(ref_mx <= c->xmax);
av_assert2(ref_my >= c->ymin);
av_assert2(ref_my <= c->ymax);
ref_score= c->sub_motion_search(&s->m, &ref_mx, &ref_my, ref_score, 0, 0, level-LOG2_MB_SIZE+4, block_w);
ref_score= ff_get_mb_score(&s->m, ref_mx, ref_my, 0, 0, level-LOG2_MB_SIZE+4, block_w, 0);
ref_score+= 2*av_log2(2*ref)*c->penalty_factor;
if(s->ref_mvs[ref]){
s->ref_mvs[ref][index][0]= ref_mx;
s->ref_mvs[ref][index][1]= ref_my;
s->ref_scores[ref][index]= ref_score;
}
if(score > ref_score){
score= ref_score;
best_ref= ref;
mx= ref_mx;
my= ref_my;
}
}
//FIXME if mb_cmp != SSE then intra cannot be compared currently and mb_penalty vs. lambda2
// subpel search
base_bits= get_rac_count(&s->c) - 8*(s->c.bytestream - s->c.bytestream_start);
pc= s->c;
pc.bytestream_start=
pc.bytestream= p_buffer; //FIXME end/start? and at the other stoo
memcpy(p_state, s->block_state, sizeof(s->block_state));
if(level!=s->block_max_depth)
put_rac(&pc, &p_state[4 + s_context], 1);
put_rac(&pc, &p_state[1 + left->type + top->type], 0);
if(s->ref_frames > 1)
put_symbol(&pc, &p_state[128 + 1024 + 32*ref_context], best_ref, 0);
pred_mv(s, &pmx, &pmy, best_ref, left, top, tr);
put_symbol(&pc, &p_state[128 + 32*(mx_context + 16*!!best_ref)], mx - pmx, 1);
put_symbol(&pc, &p_state[128 + 32*(my_context + 16*!!best_ref)], my - pmy, 1);
p_len= pc.bytestream - pc.bytestream_start;
score += (s->lambda2*(get_rac_count(&pc)-base_bits))>>FF_LAMBDA_SHIFT;
block_s= block_w*block_w;
sum = pix_sum(current_data[0], stride, block_w, block_w);
l= (sum + block_s/2)/block_s;
iscore = pix_norm1(current_data[0], stride, block_w) - 2*l*sum + l*l*block_s;
if (s->nb_planes > 2) {
block_s= block_w*block_w>>(s->chroma_h_shift + s->chroma_v_shift);
sum = pix_sum(current_data[1], uvstride, block_w>>s->chroma_h_shift, block_w>>s->chroma_v_shift);
cb= (sum + block_s/2)/block_s;
// iscore += pix_norm1(&current_mb[1][0], uvstride, block_w>>1) - 2*cb*sum + cb*cb*block_s;
sum = pix_sum(current_data[2], uvstride, block_w>>s->chroma_h_shift, block_w>>s->chroma_v_shift);
cr= (sum + block_s/2)/block_s;
// iscore += pix_norm1(&current_mb[2][0], uvstride, block_w>>1) - 2*cr*sum + cr*cr*block_s;
}else
cb = cr = 0;
ic= s->c;
ic.bytestream_start=
ic.bytestream= i_buffer; //FIXME end/start? and at the other stoo
memcpy(i_state, s->block_state, sizeof(s->block_state));
if(level!=s->block_max_depth)
put_rac(&ic, &i_state[4 + s_context], 1);
put_rac(&ic, &i_state[1 + left->type + top->type], 1);
put_symbol(&ic, &i_state[32], l-pl , 1);
if (s->nb_planes > 2) {
put_symbol(&ic, &i_state[64], cb-pcb, 1);
put_symbol(&ic, &i_state[96], cr-pcr, 1);
}
i_len= ic.bytestream - ic.bytestream_start;
iscore += (s->lambda2*(get_rac_count(&ic)-base_bits))>>FF_LAMBDA_SHIFT;
av_assert1(iscore < 255*255*256 + s->lambda2*10);
av_assert1(iscore >= 0);
av_assert1(l>=0 && l<=255);
av_assert1(pl>=0 && pl<=255);
if(level==0){
int varc= iscore >> 8;
int vard= score >> 8;
if (vard <= 64 || vard < varc)
c->scene_change_score+= ff_sqrt(vard) - ff_sqrt(varc);
else
c->scene_change_score+= s->m.qscale;
}
if(level!=s->block_max_depth){
put_rac(&s->c, &s->block_state[4 + s_context], 0);
score2 = encode_q_branch(s, level+1, 2*x+0, 2*y+0);
score2+= encode_q_branch(s, level+1, 2*x+1, 2*y+0);
score2+= encode_q_branch(s, level+1, 2*x+0, 2*y+1);
score2+= encode_q_branch(s, level+1, 2*x+1, 2*y+1);
score2+= s->lambda2>>FF_LAMBDA_SHIFT; //FIXME exact split overhead
if(score2 < score && score2 < iscore)
return score2;
}
if(iscore < score){
pred_mv(s, &pmx, &pmy, 0, left, top, tr);
memcpy(pbbak, i_buffer, i_len);
s->c= ic;
s->c.bytestream_start= pbbak_start;
s->c.bytestream= pbbak + i_len;
set_blocks(s, level, x, y, l, cb, cr, pmx, pmy, 0, BLOCK_INTRA);
memcpy(s->block_state, i_state, sizeof(s->block_state));
return iscore;
}else{
memcpy(pbbak, p_buffer, p_len);
s->c= pc;
s->c.bytestream_start= pbbak_start;
s->c.bytestream= pbbak + p_len;
set_blocks(s, level, x, y, pl, pcb, pcr, mx, my, best_ref, 0);
memcpy(s->block_state, p_state, sizeof(s->block_state));
return score;
}
}
static void encode_q_branch2(SnowContext *s, int level, int x, int y){
const int w= s->b_width << s->block_max_depth;
const int rem_depth= s->block_max_depth - level;
const int index= (x + y*w) << rem_depth;
int trx= (x+1)<<rem_depth;
BlockNode *b= &s->block[index];
const BlockNode *left = x ? &s->block[index-1] : &null_block;
const BlockNode *top = y ? &s->block[index-w] : &null_block;
const BlockNode *tl = y && x ? &s->block[index-w-1] : left;
const BlockNode *tr = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt
int pl = left->color[0];
int pcb= left->color[1];
int pcr= left->color[2];
int pmx, pmy;
int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref);
int mx_context= av_log2(2*FFABS(left->mx - top->mx)) + 16*!!b->ref;
int my_context= av_log2(2*FFABS(left->my - top->my)) + 16*!!b->ref;
int s_context= 2*left->level + 2*top->level + tl->level + tr->level;
if(s->keyframe){
set_blocks(s, level, x, y, pl, pcb, pcr, 0, 0, 0, BLOCK_INTRA);
return;
}
if(level!=s->block_max_depth){
if(same_block(b,b+1) && same_block(b,b+w) && same_block(b,b+w+1)){
put_rac(&s->c, &s->block_state[4 + s_context], 1);
}else{
put_rac(&s->c, &s->block_state[4 + s_context], 0);
encode_q_branch2(s, level+1, 2*x+0, 2*y+0);
encode_q_branch2(s, level+1, 2*x+1, 2*y+0);
encode_q_branch2(s, level+1, 2*x+0, 2*y+1);
encode_q_branch2(s, level+1, 2*x+1, 2*y+1);
return;
}
}
if(b->type & BLOCK_INTRA){
pred_mv(s, &pmx, &pmy, 0, left, top, tr);
put_rac(&s->c, &s->block_state[1 + (left->type&1) + (top->type&1)], 1);
put_symbol(&s->c, &s->block_state[32], b->color[0]-pl , 1);
if (s->nb_planes > 2) {
put_symbol(&s->c, &s->block_state[64], b->color[1]-pcb, 1);
put_symbol(&s->c, &s->block_state[96], b->color[2]-pcr, 1);
}
set_blocks(s, level, x, y, b->color[0], b->color[1], b->color[2], pmx, pmy, 0, BLOCK_INTRA);
}else{
pred_mv(s, &pmx, &pmy, b->ref, left, top, tr);
put_rac(&s->c, &s->block_state[1 + (left->type&1) + (top->type&1)], 0);
if(s->ref_frames > 1)
put_symbol(&s->c, &s->block_state[128 + 1024 + 32*ref_context], b->ref, 0);
put_symbol(&s->c, &s->block_state[128 + 32*mx_context], b->mx - pmx, 1);
put_symbol(&s->c, &s->block_state[128 + 32*my_context], b->my - pmy, 1);
set_blocks(s, level, x, y, pl, pcb, pcr, b->mx, b->my, b->ref, 0);
}
}
static int get_dc(SnowContext *s, int mb_x, int mb_y, int plane_index){
int i, x2, y2;
Plane *p= &s->plane[plane_index];
const int block_size = MB_SIZE >> s->block_max_depth;
const int block_w = plane_index ? block_size>>s->chroma_h_shift : block_size;
const int block_h = plane_index ? block_size>>s->chroma_v_shift : block_size;
const uint8_t *obmc = plane_index ? ff_obmc_tab[s->block_max_depth+s->chroma_h_shift] : ff_obmc_tab[s->block_max_depth];
const int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size;
const int ref_stride= s->current_picture->linesize[plane_index];
uint8_t *src= s-> input_picture->data[plane_index];
IDWTELEM *dst= (IDWTELEM*)s->m.sc.obmc_scratchpad + plane_index*block_size*block_size*4; //FIXME change to unsigned
const int b_stride = s->b_width << s->block_max_depth;
const int w= p->width;
const int h= p->height;
int index= mb_x + mb_y*b_stride;
BlockNode *b= &s->block[index];
BlockNode backup= *b;
int ab=0;
int aa=0;
av_assert2(s->chroma_h_shift == s->chroma_v_shift); //obmc stuff above
b->type|= BLOCK_INTRA;
b->color[plane_index]= 0;
memset(dst, 0, obmc_stride*obmc_stride*sizeof(IDWTELEM));
for(i=0; i<4; i++){
int mb_x2= mb_x + (i &1) - 1;
int mb_y2= mb_y + (i>>1) - 1;
int x= block_w*mb_x2 + block_w/2;
int y= block_h*mb_y2 + block_h/2;
add_yblock(s, 0, NULL, dst + (i&1)*block_w + (i>>1)*obmc_stride*block_h, NULL, obmc,
x, y, block_w, block_h, w, h, obmc_stride, ref_stride, obmc_stride, mb_x2, mb_y2, 0, 0, plane_index);
for(y2= FFMAX(y, 0); y2<FFMIN(h, y+block_h); y2++){
for(x2= FFMAX(x, 0); x2<FFMIN(w, x+block_w); x2++){
int index= x2-(block_w*mb_x - block_w/2) + (y2-(block_h*mb_y - block_h/2))*obmc_stride;
int obmc_v= obmc[index];
int d;
if(y<0) obmc_v += obmc[index + block_h*obmc_stride];
if(x<0) obmc_v += obmc[index + block_w];
if(y+block_h>h) obmc_v += obmc[index - block_h*obmc_stride];
if(x+block_w>w) obmc_v += obmc[index - block_w];
//FIXME precalculate this or simplify it somehow else
d = -dst[index] + (1<<(FRAC_BITS-1));
dst[index] = d;
ab += (src[x2 + y2*ref_stride] - (d>>FRAC_BITS)) * obmc_v;
aa += obmc_v * obmc_v; //FIXME precalculate this
}
}
}
*b= backup;
return av_clip_uint8( ROUNDED_DIV(ab<<LOG2_OBMC_MAX, aa) ); //FIXME we should not need clipping
}
static inline int get_block_bits(SnowContext *s, int x, int y, int w){
const int b_stride = s->b_width << s->block_max_depth;
const int b_height = s->b_height<< s->block_max_depth;
int index= x + y*b_stride;
const BlockNode *b = &s->block[index];
const BlockNode *left = x ? &s->block[index-1] : &null_block;
const BlockNode *top = y ? &s->block[index-b_stride] : &null_block;
const BlockNode *tl = y && x ? &s->block[index-b_stride-1] : left;
const BlockNode *tr = y && x+w<b_stride ? &s->block[index-b_stride+w] : tl;
int dmx, dmy;
// int mx_context= av_log2(2*FFABS(left->mx - top->mx));
// int my_context= av_log2(2*FFABS(left->my - top->my));
if(x<0 || x>=b_stride || y>=b_height)
return 0;
/*
1 0 0
01X 1-2 1
001XX 3-6 2-3
0001XXX 7-14 4-7
00001XXXX 15-30 8-15
*/
//FIXME try accurate rate
//FIXME intra and inter predictors if surrounding blocks are not the same type
if(b->type & BLOCK_INTRA){
return 3+2*( av_log2(2*FFABS(left->color[0] - b->color[0]))
+ av_log2(2*FFABS(left->color[1] - b->color[1]))
+ av_log2(2*FFABS(left->color[2] - b->color[2])));
}else{
pred_mv(s, &dmx, &dmy, b->ref, left, top, tr);
dmx-= b->mx;
dmy-= b->my;
return 2*(1 + av_log2(2*FFABS(dmx)) //FIXME kill the 2* can be merged in lambda
+ av_log2(2*FFABS(dmy))
+ av_log2(2*b->ref));
}
}
static int get_block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index, uint8_t (*obmc_edged)[MB_SIZE * 2]){
Plane *p= &s->plane[plane_index];
const int block_size = MB_SIZE >> s->block_max_depth;
const int block_w = plane_index ? block_size>>s->chroma_h_shift : block_size;
const int block_h = plane_index ? block_size>>s->chroma_v_shift : block_size;
const int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size;
const int ref_stride= s->current_picture->linesize[plane_index];
uint8_t *dst= s->current_picture->data[plane_index];
uint8_t *src= s-> input_picture->data[plane_index];
IDWTELEM *pred= (IDWTELEM*)s->m.sc.obmc_scratchpad + plane_index*block_size*block_size*4;
uint8_t *cur = s->scratchbuf;
uint8_t *tmp = s->emu_edge_buffer;
const int b_stride = s->b_width << s->block_max_depth;
const int b_height = s->b_height<< s->block_max_depth;
const int w= p->width;
const int h= p->height;
int distortion;
int rate= 0;
const int penalty_factor= get_penalty_factor(s->lambda, s->lambda2, s->avctx->me_cmp);
int sx= block_w*mb_x - block_w/2;
int sy= block_h*mb_y - block_h/2;
int x0= FFMAX(0,-sx);
int y0= FFMAX(0,-sy);
int x1= FFMIN(block_w*2, w-sx);
int y1= FFMIN(block_h*2, h-sy);
int i,x,y;
av_assert2(s->chroma_h_shift == s->chroma_v_shift); //obmc and square assumtions below chckinhg only block_w
ff_snow_pred_block(s, cur, tmp, ref_stride, sx, sy, block_w*2, block_h*2, &s->block[mb_x + mb_y*b_stride], plane_index, w, h);
for(y=y0; y<y1; y++){
const uint8_t *obmc1= obmc_edged[y];
const IDWTELEM *pred1 = pred + y*obmc_stride;
uint8_t *cur1 = cur + y*ref_stride;
uint8_t *dst1 = dst + sx + (sy+y)*ref_stride;
for(x=x0; x<x1; x++){
#if FRAC_BITS >= LOG2_OBMC_MAX
int v = (cur1[x] * obmc1[x]) << (FRAC_BITS - LOG2_OBMC_MAX);
#else
int v = (cur1[x] * obmc1[x] + (1<<(LOG2_OBMC_MAX - FRAC_BITS-1))) >> (LOG2_OBMC_MAX - FRAC_BITS);
#endif
v = (v + pred1[x]) >> FRAC_BITS;
if(v&(~255)) v= ~(v>>31);
dst1[x] = v;
}
}
/* copy the regions where obmc[] = (uint8_t)256 */
if(LOG2_OBMC_MAX == 8
&& (mb_x == 0 || mb_x == b_stride-1)
&& (mb_y == 0 || mb_y == b_height-1)){
if(mb_x == 0)
x1 = block_w;
else
x0 = block_w;
if(mb_y == 0)
y1 = block_h;
else
y0 = block_h;
for(y=y0; y<y1; y++)
memcpy(dst + sx+x0 + (sy+y)*ref_stride, cur + x0 + y*ref_stride, x1-x0);
}
if(block_w==16){
/* FIXME rearrange dsputil to fit 32x32 cmp functions */
/* FIXME check alignment of the cmp wavelet vs the encoding wavelet */
/* FIXME cmps overlap but do not cover the wavelet's whole support.
* So improving the score of one block is not strictly guaranteed
* to improve the score of the whole frame, thus iterative motion
* estimation does not always converge. */
if(s->avctx->me_cmp == FF_CMP_W97)
distortion = ff_w97_32_c(&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, 32);
else if(s->avctx->me_cmp == FF_CMP_W53)
distortion = ff_w53_32_c(&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, 32);
else{
distortion = 0;
for(i=0; i<4; i++){
int off = sx+16*(i&1) + (sy+16*(i>>1))*ref_stride;
distortion += s->mecc.me_cmp[0](&s->m, src + off, dst + off, ref_stride, 16);
}
}
}else{
av_assert2(block_w==8);
distortion = s->mecc.me_cmp[0](&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, block_w*2);
}
if(plane_index==0){
for(i=0; i<4; i++){
/* ..RRr
* .RXx.
* rxx..
*/
rate += get_block_bits(s, mb_x + (i&1) - (i>>1), mb_y + (i>>1), 1);
}
if(mb_x == b_stride-2)
rate += get_block_bits(s, mb_x + 1, mb_y + 1, 1);
}
return distortion + rate*penalty_factor;
}
static int get_4block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index){
int i, y2;
Plane *p= &s->plane[plane_index];
const int block_size = MB_SIZE >> s->block_max_depth;
const int block_w = plane_index ? block_size>>s->chroma_h_shift : block_size;
const int block_h = plane_index ? block_size>>s->chroma_v_shift : block_size;
const uint8_t *obmc = plane_index ? ff_obmc_tab[s->block_max_depth+s->chroma_h_shift] : ff_obmc_tab[s->block_max_depth];
const int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size;
const int ref_stride= s->current_picture->linesize[plane_index];
uint8_t *dst= s->current_picture->data[plane_index];
uint8_t *src= s-> input_picture->data[plane_index];
//FIXME zero_dst is const but add_yblock changes dst if add is 0 (this is never the case for dst=zero_dst
// const has only been removed from zero_dst to suppress a warning
static IDWTELEM zero_dst[4096]; //FIXME
const int b_stride = s->b_width << s->block_max_depth;
const int w= p->width;
const int h= p->height;
int distortion= 0;
int rate= 0;
const int penalty_factor= get_penalty_factor(s->lambda, s->lambda2, s->avctx->me_cmp);
av_assert2(s->chroma_h_shift == s->chroma_v_shift); //obmc and square assumtions below
for(i=0; i<9; i++){
int mb_x2= mb_x + (i%3) - 1;
int mb_y2= mb_y + (i/3) - 1;
int x= block_w*mb_x2 + block_w/2;
int y= block_h*mb_y2 + block_h/2;
add_yblock(s, 0, NULL, zero_dst, dst, obmc,
x, y, block_w, block_h, w, h, /*dst_stride*/0, ref_stride, obmc_stride, mb_x2, mb_y2, 1, 1, plane_index);
//FIXME find a cleaner/simpler way to skip the outside stuff
for(y2= y; y2<0; y2++)
memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, block_w);
for(y2= h; y2<y+block_h; y2++)
memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, block_w);
if(x<0){
for(y2= y; y2<y+block_h; y2++)
memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, -x);
}
if(x+block_w > w){
for(y2= y; y2<y+block_h; y2++)
memcpy(dst + w + y2*ref_stride, src + w + y2*ref_stride, x+block_w - w);
}
av_assert1(block_w== 8 || block_w==16);
distortion += s->mecc.me_cmp[block_w==8](&s->m, src + x + y*ref_stride, dst + x + y*ref_stride, ref_stride, block_h);
}
if(plane_index==0){
BlockNode *b= &s->block[mb_x+mb_y*b_stride];
int merged= same_block(b,b+1) && same_block(b,b+b_stride) && same_block(b,b+b_stride+1);
/* ..RRRr
* .RXXx.
* .RXXx.
* rxxx.
*/
if(merged)
rate = get_block_bits(s, mb_x, mb_y, 2);
for(i=merged?4:0; i<9; i++){
static const int dxy[9][2] = {{0,0},{1,0},{0,1},{1,1},{2,0},{2,1},{-1,2},{0,2},{1,2}};
rate += get_block_bits(s, mb_x + dxy[i][0], mb_y + dxy[i][1], 1);
}
}
return distortion + rate*penalty_factor;
}
static int encode_subband_c0run(SnowContext *s, SubBand *b, const IDWTELEM *src, const IDWTELEM *parent, int stride, int orientation){
const int w= b->width;
const int h= b->height;
int x, y;
if(1){
int run=0;
int *runs = s->run_buffer;
int run_index=0;
int max_index;
for(y=0; y<h; y++){
for(x=0; x<w; x++){
int v, p=0;
int /*ll=0, */l=0, lt=0, t=0, rt=0;
v= src[x + y*stride];
if(y){
t= src[x + (y-1)*stride];
if(x){
lt= src[x - 1 + (y-1)*stride];
}
if(x + 1 < w){
rt= src[x + 1 + (y-1)*stride];
}
}
if(x){
l= src[x - 1 + y*stride];
/*if(x > 1){
if(orientation==1) ll= src[y + (x-2)*stride];
else ll= src[x - 2 + y*stride];
}*/
}
if(parent){
int px= x>>1;
int py= y>>1;
if(px<b->parent->width && py<b->parent->height)
p= parent[px + py*2*stride];
}
if(!(/*ll|*/l|lt|t|rt|p)){
if(v){
runs[run_index++]= run;
run=0;
}else{
run++;
}
}
}
}
max_index= run_index;
runs[run_index++]= run;
run_index=0;
run= runs[run_index++];
put_symbol2(&s->c, b->state[30], max_index, 0);
if(run_index <= max_index)
put_symbol2(&s->c, b->state[1], run, 3);
for(y=0; y<h; y++){
if(s->c.bytestream_end - s->c.bytestream < w*40){
av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
return -1;
}
for(x=0; x<w; x++){
int v, p=0;
int /*ll=0, */l=0, lt=0, t=0, rt=0;
v= src[x + y*stride];
if(y){
t= src[x + (y-1)*stride];
if(x){
lt= src[x - 1 + (y-1)*stride];
}
if(x + 1 < w){
rt= src[x + 1 + (y-1)*stride];
}
}
if(x){
l= src[x - 1 + y*stride];
/*if(x > 1){
if(orientation==1) ll= src[y + (x-2)*stride];
else ll= src[x - 2 + y*stride];
}*/
}
if(parent){
int px= x>>1;
int py= y>>1;
if(px<b->parent->width && py<b->parent->height)
p= parent[px + py*2*stride];
}
if(/*ll|*/l|lt|t|rt|p){
int context= av_log2(/*FFABS(ll) + */3*FFABS(l) + FFABS(lt) + 2*FFABS(t) + FFABS(rt) + FFABS(p));
put_rac(&s->c, &b->state[0][context], !!v);
}else{
if(!run){
run= runs[run_index++];
if(run_index <= max_index)
put_symbol2(&s->c, b->state[1], run, 3);
av_assert2(v);
}else{
run--;
av_assert2(!v);
}
}
if(v){
int context= av_log2(/*FFABS(ll) + */3*FFABS(l) + FFABS(lt) + 2*FFABS(t) + FFABS(rt) + FFABS(p));
int l2= 2*FFABS(l) + (l<0);
int t2= 2*FFABS(t) + (t<0);
put_symbol2(&s->c, b->state[context + 2], FFABS(v)-1, context-4);
put_rac(&s->c, &b->state[0][16 + 1 + 3 + ff_quant3bA[l2&0xFF] + 3*ff_quant3bA[t2&0xFF]], v<0);
}
}
}
}
return 0;
}
static int encode_subband(SnowContext *s, SubBand *b, const IDWTELEM *src, const IDWTELEM *parent, int stride, int orientation){
// encode_subband_qtree(s, b, src, parent, stride, orientation);
// encode_subband_z0run(s, b, src, parent, stride, orientation);
return encode_subband_c0run(s, b, src, parent, stride, orientation);
// encode_subband_dzr(s, b, src, parent, stride, orientation);
}
static av_always_inline int check_block(SnowContext *s, int mb_x, int mb_y, int p[3], int intra, uint8_t (*obmc_edged)[MB_SIZE * 2], int *best_rd){
const int b_stride= s->b_width << s->block_max_depth;
BlockNode *block= &s->block[mb_x + mb_y * b_stride];
BlockNode backup= *block;
unsigned value;
int rd, index;
av_assert2(mb_x>=0 && mb_y>=0);
av_assert2(mb_x<b_stride);
if(intra){
block->color[0] = p[0];
block->color[1] = p[1];
block->color[2] = p[2];
block->type |= BLOCK_INTRA;
}else{
index= (p[0] + 31*p[1]) & (ME_CACHE_SIZE-1);
value= s->me_cache_generation + (p[0]>>10) + (p[1]<<6) + (block->ref<<12);
if(s->me_cache[index] == value)
return 0;
s->me_cache[index]= value;
block->mx= p[0];
block->my= p[1];
block->type &= ~BLOCK_INTRA;
}
rd= get_block_rd(s, mb_x, mb_y, 0, obmc_edged) + s->intra_penalty * !!intra;
//FIXME chroma
if(rd < *best_rd){
*best_rd= rd;
return 1;
}else{
*block= backup;
return 0;
}
}
/* special case for int[2] args we discard afterwards,
* fixes compilation problem with gcc 2.95 */
static av_always_inline int check_block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, uint8_t (*obmc_edged)[MB_SIZE * 2], int *best_rd){
int p[2] = {p0, p1};
return check_block(s, mb_x, mb_y, p, 0, obmc_edged, best_rd);
}
static av_always_inline int check_4block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, int ref, int *best_rd){
const int b_stride= s->b_width << s->block_max_depth;
BlockNode *block= &s->block[mb_x + mb_y * b_stride];
BlockNode backup[4];
unsigned value;
int rd, index;
/* We don't initialize backup[] during variable declaration, because
* that fails to compile on MSVC: "cannot convert from 'BlockNode' to
* 'int16_t'". */
backup[0] = block[0];
backup[1] = block[1];
backup[2] = block[b_stride];
backup[3] = block[b_stride + 1];
av_assert2(mb_x>=0 && mb_y>=0);
av_assert2(mb_x<b_stride);
av_assert2(((mb_x|mb_y)&1) == 0);
index= (p0 + 31*p1) & (ME_CACHE_SIZE-1);
value= s->me_cache_generation + (p0>>10) + (p1<<6) + (block->ref<<12);
if(s->me_cache[index] == value)
return 0;
s->me_cache[index]= value;
block->mx= p0;
block->my= p1;
block->ref= ref;
block->type &= ~BLOCK_INTRA;
block[1]= block[b_stride]= block[b_stride+1]= *block;
rd= get_4block_rd(s, mb_x, mb_y, 0);
//FIXME chroma
if(rd < *best_rd){
*best_rd= rd;
return 1;
}else{
block[0]= backup[0];
block[1]= backup[1];
block[b_stride]= backup[2];
block[b_stride+1]= backup[3];
return 0;
}
}
static void iterative_me(SnowContext *s){
int pass, mb_x, mb_y;
const int b_width = s->b_width << s->block_max_depth;
const int b_height= s->b_height << s->block_max_depth;
const int b_stride= b_width;
int color[3];
{
RangeCoder r = s->c;
uint8_t state[sizeof(s->block_state)];
memcpy(state, s->block_state, sizeof(s->block_state));
for(mb_y= 0; mb_y<s->b_height; mb_y++)
for(mb_x= 0; mb_x<s->b_width; mb_x++)
encode_q_branch(s, 0, mb_x, mb_y);
s->c = r;
memcpy(s->block_state, state, sizeof(s->block_state));
}
for(pass=0; pass<25; pass++){
int change= 0;
for(mb_y= 0; mb_y<b_height; mb_y++){
for(mb_x= 0; mb_x<b_width; mb_x++){
int dia_change, i, j, ref;
int best_rd= INT_MAX, ref_rd;
BlockNode backup, ref_b;
const int index= mb_x + mb_y * b_stride;
BlockNode *block= &s->block[index];
BlockNode *tb = mb_y ? &s->block[index-b_stride ] : NULL;
BlockNode *lb = mb_x ? &s->block[index -1] : NULL;
BlockNode *rb = mb_x+1<b_width ? &s->block[index +1] : NULL;
BlockNode *bb = mb_y+1<b_height ? &s->block[index+b_stride ] : NULL;
BlockNode *tlb= mb_x && mb_y ? &s->block[index-b_stride-1] : NULL;
BlockNode *trb= mb_x+1<b_width && mb_y ? &s->block[index-b_stride+1] : NULL;
BlockNode *blb= mb_x && mb_y+1<b_height ? &s->block[index+b_stride-1] : NULL;
BlockNode *brb= mb_x+1<b_width && mb_y+1<b_height ? &s->block[index+b_stride+1] : NULL;
const int b_w= (MB_SIZE >> s->block_max_depth);
uint8_t obmc_edged[MB_SIZE * 2][MB_SIZE * 2];
if(pass && (block->type & BLOCK_OPT))
continue;
block->type |= BLOCK_OPT;
backup= *block;
if(!s->me_cache_generation)
memset(s->me_cache, 0, sizeof(s->me_cache));
s->me_cache_generation += 1<<22;
//FIXME precalculate
{
int x, y;
for (y = 0; y < b_w * 2; y++)
memcpy(obmc_edged[y], ff_obmc_tab[s->block_max_depth] + y * b_w * 2, b_w * 2);
if(mb_x==0)
for(y=0; y<b_w*2; y++)
memset(obmc_edged[y], obmc_edged[y][0] + obmc_edged[y][b_w-1], b_w);
if(mb_x==b_stride-1)
for(y=0; y<b_w*2; y++)
memset(obmc_edged[y]+b_w, obmc_edged[y][b_w] + obmc_edged[y][b_w*2-1], b_w);
if(mb_y==0){
for(x=0; x<b_w*2; x++)
obmc_edged[0][x] += obmc_edged[b_w-1][x];
for(y=1; y<b_w; y++)
memcpy(obmc_edged[y], obmc_edged[0], b_w*2);
}
if(mb_y==b_height-1){
for(x=0; x<b_w*2; x++)
obmc_edged[b_w*2-1][x] += obmc_edged[b_w][x];
for(y=b_w; y<b_w*2-1; y++)
memcpy(obmc_edged[y], obmc_edged[b_w*2-1], b_w*2);
}
}
//skip stuff outside the picture
if(mb_x==0 || mb_y==0 || mb_x==b_width-1 || mb_y==b_height-1){
uint8_t *src= s-> input_picture->data[0];
uint8_t *dst= s->current_picture->data[0];
const int stride= s->current_picture->linesize[0];
const int block_w= MB_SIZE >> s->block_max_depth;
const int block_h= MB_SIZE >> s->block_max_depth;
const int sx= block_w*mb_x - block_w/2;
const int sy= block_h*mb_y - block_h/2;
const int w= s->plane[0].width;
const int h= s->plane[0].height;
int y;
for(y=sy; y<0; y++)
memcpy(dst + sx + y*stride, src + sx + y*stride, block_w*2);
for(y=h; y<sy+block_h*2; y++)
memcpy(dst + sx + y*stride, src + sx + y*stride, block_w*2);
if(sx<0){
for(y=sy; y<sy+block_h*2; y++)
memcpy(dst + sx + y*stride, src + sx + y*stride, -sx);
}
if(sx+block_w*2 > w){
for(y=sy; y<sy+block_h*2; y++)
memcpy(dst + w + y*stride, src + w + y*stride, sx+block_w*2 - w);
}
}
// intra(black) = neighbors' contribution to the current block
for(i=0; i < s->nb_planes; i++)
color[i]= get_dc(s, mb_x, mb_y, i);
// get previous score (cannot be cached due to OBMC)
if(pass > 0 && (block->type&BLOCK_INTRA)){
int color0[3]= {block->color[0], block->color[1], block->color[2]};
check_block(s, mb_x, mb_y, color0, 1, obmc_edged, &best_rd);
}else
check_block_inter(s, mb_x, mb_y, block->mx, block->my, obmc_edged, &best_rd);
ref_b= *block;
ref_rd= best_rd;
for(ref=0; ref < s->ref_frames; ref++){
int16_t (*mvr)[2]= &s->ref_mvs[ref][index];
if(s->ref_scores[ref][index] > s->ref_scores[ref_b.ref][index]*3/2) //FIXME tune threshold
continue;
block->ref= ref;
best_rd= INT_MAX;
check_block_inter(s, mb_x, mb_y, mvr[0][0], mvr[0][1], obmc_edged, &best_rd);
check_block_inter(s, mb_x, mb_y, 0, 0, obmc_edged, &best_rd);
if(tb)
check_block_inter(s, mb_x, mb_y, mvr[-b_stride][0], mvr[-b_stride][1], obmc_edged, &best_rd);
if(lb)
check_block_inter(s, mb_x, mb_y, mvr[-1][0], mvr[-1][1], obmc_edged, &best_rd);
if(rb)
check_block_inter(s, mb_x, mb_y, mvr[1][0], mvr[1][1], obmc_edged, &best_rd);
if(bb)
check_block_inter(s, mb_x, mb_y, mvr[b_stride][0], mvr[b_stride][1], obmc_edged, &best_rd);
/* fullpel ME */
//FIXME avoid subpel interpolation / round to nearest integer
do{
int newx = block->mx;
int newy = block->my;
int dia_size = s->iterative_dia_size ? s->iterative_dia_size : FFMAX(s->avctx->dia_size, 1);
dia_change=0;
for(i=0; i < dia_size; i++){
for(j=0; j<i; j++){
dia_change |= check_block_inter(s, mb_x, mb_y, newx+4*(i-j), newy+(4*j), obmc_edged, &best_rd);
dia_change |= check_block_inter(s, mb_x, mb_y, newx-4*(i-j), newy-(4*j), obmc_edged, &best_rd);
dia_change |= check_block_inter(s, mb_x, mb_y, newx-(4*j), newy+4*(i-j), obmc_edged, &best_rd);
dia_change |= check_block_inter(s, mb_x, mb_y, newx+(4*j), newy-4*(i-j), obmc_edged, &best_rd);
}
}
}while(dia_change);
/* subpel ME */
do{
static const int square[8][2]= {{+1, 0},{-1, 0},{ 0,+1},{ 0,-1},{+1,+1},{-1,-1},{+1,-1},{-1,+1},};
dia_change=0;
for(i=0; i<8; i++)
dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+square[i][0], block->my+square[i][1], obmc_edged, &best_rd);
}while(dia_change);
//FIXME or try the standard 2 pass qpel or similar
mvr[0][0]= block->mx;
mvr[0][1]= block->my;
if(ref_rd > best_rd){
ref_rd= best_rd;
ref_b= *block;
}
}
best_rd= ref_rd;
*block= ref_b;
check_block(s, mb_x, mb_y, color, 1, obmc_edged, &best_rd);
//FIXME RD style color selection
if(!same_block(block, &backup)){
if(tb ) tb ->type &= ~BLOCK_OPT;
if(lb ) lb ->type &= ~BLOCK_OPT;
if(rb ) rb ->type &= ~BLOCK_OPT;
if(bb ) bb ->type &= ~BLOCK_OPT;
if(tlb) tlb->type &= ~BLOCK_OPT;
if(trb) trb->type &= ~BLOCK_OPT;
if(blb) blb->type &= ~BLOCK_OPT;
if(brb) brb->type &= ~BLOCK_OPT;
change ++;
}
}
}
av_log(s->avctx, AV_LOG_DEBUG, "pass:%d changed:%d\n", pass, change);
if(!change)
break;
}
if(s->block_max_depth == 1){
int change= 0;
for(mb_y= 0; mb_y<b_height; mb_y+=2){
for(mb_x= 0; mb_x<b_width; mb_x+=2){
int i;
int best_rd, init_rd;
const int index= mb_x + mb_y * b_stride;
BlockNode *b[4];
b[0]= &s->block[index];
b[1]= b[0]+1;
b[2]= b[0]+b_stride;
b[3]= b[2]+1;
if(same_block(b[0], b[1]) &&
same_block(b[0], b[2]) &&
same_block(b[0], b[3]))
continue;
if(!s->me_cache_generation)
memset(s->me_cache, 0, sizeof(s->me_cache));
s->me_cache_generation += 1<<22;
init_rd= best_rd= get_4block_rd(s, mb_x, mb_y, 0);
//FIXME more multiref search?
check_4block_inter(s, mb_x, mb_y,
(b[0]->mx + b[1]->mx + b[2]->mx + b[3]->mx + 2) >> 2,
(b[0]->my + b[1]->my + b[2]->my + b[3]->my + 2) >> 2, 0, &best_rd);
for(i=0; i<4; i++)
if(!(b[i]->type&BLOCK_INTRA))
check_4block_inter(s, mb_x, mb_y, b[i]->mx, b[i]->my, b[i]->ref, &best_rd);
if(init_rd != best_rd)
change++;
}
}
av_log(s->avctx, AV_LOG_ERROR, "pass:4mv changed:%d\n", change*4);
}
}
static void encode_blocks(SnowContext *s, int search){
int x, y;
int w= s->b_width;
int h= s->b_height;
if(s->motion_est == FF_ME_ITER && !s->keyframe && search)
iterative_me(s);
for(y=0; y<h; y++){
if(s->c.bytestream_end - s->c.bytestream < w*MB_SIZE*MB_SIZE*3){ //FIXME nicer limit
av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
return;
}
for(x=0; x<w; x++){
if(s->motion_est == FF_ME_ITER || !search)
encode_q_branch2(s, 0, x, y);
else
encode_q_branch (s, 0, x, y);
}
}
}
static void quantize(SnowContext *s, SubBand *b, IDWTELEM *dst, DWTELEM *src, int stride, int bias){
const int w= b->width;
const int h= b->height;
const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
const int qmul= ff_qexp[qlog&(QROOT-1)]<<((qlog>>QSHIFT) + ENCODER_EXTRA_BITS);
int x,y, thres1, thres2;
if(s->qlog == LOSSLESS_QLOG){
for(y=0; y<h; y++)
for(x=0; x<w; x++)
dst[x + y*stride]= src[x + y*stride];
return;
}
bias= bias ? 0 : (3*qmul)>>3;
thres1= ((qmul - bias)>>QEXPSHIFT) - 1;
thres2= 2*thres1;
if(!bias){
for(y=0; y<h; y++){
for(x=0; x<w; x++){
int i= src[x + y*stride];
if((unsigned)(i+thres1) > thres2){
if(i>=0){
i<<= QEXPSHIFT;
i/= qmul; //FIXME optimize
dst[x + y*stride]= i;
}else{
i= -i;
i<<= QEXPSHIFT;
i/= qmul; //FIXME optimize
dst[x + y*stride]= -i;
}
}else
dst[x + y*stride]= 0;
}
}
}else{
for(y=0; y<h; y++){
for(x=0; x<w; x++){
int i= src[x + y*stride];
if((unsigned)(i+thres1) > thres2){
if(i>=0){
i<<= QEXPSHIFT;
i= (i + bias) / qmul; //FIXME optimize
dst[x + y*stride]= i;
}else{
i= -i;
i<<= QEXPSHIFT;
i= (i + bias) / qmul; //FIXME optimize
dst[x + y*stride]= -i;
}
}else
dst[x + y*stride]= 0;
}
}
}
}
static void dequantize(SnowContext *s, SubBand *b, IDWTELEM *src, int stride){
const int w= b->width;
const int h= b->height;
const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
const int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
const int qadd= (s->qbias*qmul)>>QBIAS_SHIFT;
int x,y;
if(s->qlog == LOSSLESS_QLOG) return;
for(y=0; y<h; y++){
for(x=0; x<w; x++){
int i= src[x + y*stride];
if(i<0){
src[x + y*stride]= -((-i*qmul + qadd)>>(QEXPSHIFT)); //FIXME try different bias
}else if(i>0){
src[x + y*stride]= (( i*qmul + qadd)>>(QEXPSHIFT));
}
}
}
}
static void decorrelate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median){
const int w= b->width;
const int h= b->height;
int x,y;
for(y=h-1; y>=0; y--){
for(x=w-1; x>=0; x--){
int i= x + y*stride;
if(x){
if(use_median){
if(y && x+1<w) src[i] -= mid_pred(src[i - 1], src[i - stride], src[i - stride + 1]);
else src[i] -= src[i - 1];
}else{
if(y) src[i] -= mid_pred(src[i - 1], src[i - stride], src[i - 1] + src[i - stride] - src[i - 1 - stride]);
else src[i] -= src[i - 1];
}
}else{
if(y) src[i] -= src[i - stride];
}
}
}
}
static void correlate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median){
const int w= b->width;
const int h= b->height;
int x,y;
for(y=0; y<h; y++){
for(x=0; x<w; x++){
int i= x + y*stride;
if(x){
if(use_median){
if(y && x+1<w) src[i] += mid_pred(src[i - 1], src[i - stride], src[i - stride + 1]);
else src[i] += src[i - 1];
}else{
if(y) src[i] += mid_pred(src[i - 1], src[i - stride], src[i - 1] + src[i - stride] - src[i - 1 - stride]);
else src[i] += src[i - 1];
}
}else{
if(y) src[i] += src[i - stride];
}
}
}
}
static void encode_qlogs(SnowContext *s){
int plane_index, level, orientation;
for(plane_index=0; plane_index<FFMIN(s->nb_planes, 2); plane_index++){
for(level=0; level<s->spatial_decomposition_count; level++){
for(orientation=level ? 1:0; orientation<4; orientation++){
if(orientation==2) continue;
put_symbol(&s->c, s->header_state, s->plane[plane_index].band[level][orientation].qlog, 1);
}
}
}
}
static void encode_header(SnowContext *s){
int plane_index, i;
uint8_t kstate[32];
memset(kstate, MID_STATE, sizeof(kstate));
put_rac(&s->c, kstate, s->keyframe);
if(s->keyframe || s->always_reset){
ff_snow_reset_contexts(s);
s->last_spatial_decomposition_type=
s->last_qlog=
s->last_qbias=
s->last_mv_scale=
s->last_block_max_depth= 0;
for(plane_index=0; plane_index<2; plane_index++){
Plane *p= &s->plane[plane_index];
p->last_htaps=0;
p->last_diag_mc=0;
memset(p->last_hcoeff, 0, sizeof(p->last_hcoeff));
}
}
if(s->keyframe){
put_symbol(&s->c, s->header_state, s->version, 0);
put_rac(&s->c, s->header_state, s->always_reset);
put_symbol(&s->c, s->header_state, s->temporal_decomposition_type, 0);
put_symbol(&s->c, s->header_state, s->temporal_decomposition_count, 0);
put_symbol(&s->c, s->header_state, s->spatial_decomposition_count, 0);
put_symbol(&s->c, s->header_state, s->colorspace_type, 0);
if (s->nb_planes > 2) {
put_symbol(&s->c, s->header_state, s->chroma_h_shift, 0);
put_symbol(&s->c, s->header_state, s->chroma_v_shift, 0);
}
put_rac(&s->c, s->header_state, s->spatial_scalability);
// put_rac(&s->c, s->header_state, s->rate_scalability);
put_symbol(&s->c, s->header_state, s->max_ref_frames-1, 0);
encode_qlogs(s);
}
if(!s->keyframe){
int update_mc=0;
for(plane_index=0; plane_index<FFMIN(s->nb_planes, 2); plane_index++){
Plane *p= &s->plane[plane_index];
update_mc |= p->last_htaps != p->htaps;
update_mc |= p->last_diag_mc != p->diag_mc;
update_mc |= !!memcmp(p->last_hcoeff, p->hcoeff, sizeof(p->hcoeff));
}
put_rac(&s->c, s->header_state, update_mc);
if(update_mc){
for(plane_index=0; plane_index<FFMIN(s->nb_planes, 2); plane_index++){
Plane *p= &s->plane[plane_index];
put_rac(&s->c, s->header_state, p->diag_mc);
put_symbol(&s->c, s->header_state, p->htaps/2-1, 0);
for(i= p->htaps/2; i; i--)
put_symbol(&s->c, s->header_state, FFABS(p->hcoeff[i]), 0);
}
}
if(s->last_spatial_decomposition_count != s->spatial_decomposition_count){
put_rac(&s->c, s->header_state, 1);
put_symbol(&s->c, s->header_state, s->spatial_decomposition_count, 0);
encode_qlogs(s);
}else
put_rac(&s->c, s->header_state, 0);
}
put_symbol(&s->c, s->header_state, s->spatial_decomposition_type - s->last_spatial_decomposition_type, 1);
put_symbol(&s->c, s->header_state, s->qlog - s->last_qlog , 1);
put_symbol(&s->c, s->header_state, s->mv_scale - s->last_mv_scale, 1);
put_symbol(&s->c, s->header_state, s->qbias - s->last_qbias , 1);
put_symbol(&s->c, s->header_state, s->block_max_depth - s->last_block_max_depth, 1);
}
static void update_last_header_values(SnowContext *s){
int plane_index;
if(!s->keyframe){
for(plane_index=0; plane_index<2; plane_index++){
Plane *p= &s->plane[plane_index];
p->last_diag_mc= p->diag_mc;
p->last_htaps = p->htaps;
memcpy(p->last_hcoeff, p->hcoeff, sizeof(p->hcoeff));
}
}
s->last_spatial_decomposition_type = s->spatial_decomposition_type;
s->last_qlog = s->qlog;
s->last_qbias = s->qbias;
s->last_mv_scale = s->mv_scale;
s->last_block_max_depth = s->block_max_depth;
s->last_spatial_decomposition_count = s->spatial_decomposition_count;
}
static int qscale2qlog(int qscale){
return lrint(QROOT*log2(qscale / (float)FF_QP2LAMBDA))
+ 61*QROOT/8; ///< 64 > 60
}
static int ratecontrol_1pass(SnowContext *s, AVFrame *pict)
{
/* Estimate the frame's complexity as a sum of weighted dwt coefficients.
* FIXME we know exact mv bits at this point,
* but ratecontrol isn't set up to include them. */
uint32_t coef_sum= 0;
int level, orientation, delta_qlog;
for(level=0; level<s->spatial_decomposition_count; level++){
for(orientation=level ? 1 : 0; orientation<4; orientation++){
SubBand *b= &s->plane[0].band[level][orientation];
IDWTELEM *buf= b->ibuf;
const int w= b->width;
const int h= b->height;
const int stride= b->stride;
const int qlog= av_clip(2*QROOT + b->qlog, 0, QROOT*16);
const int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
const int qdiv= (1<<16)/qmul;
int x, y;
//FIXME this is ugly
for(y=0; y<h; y++)
for(x=0; x<w; x++)
buf[x+y*stride]= b->buf[x+y*stride];
if(orientation==0)
decorrelate(s, b, buf, stride, 1, 0);
for(y=0; y<h; y++)
for(x=0; x<w; x++)
coef_sum+= abs(buf[x+y*stride]) * qdiv >> 16;
}
}
/* ugly, ratecontrol just takes a sqrt again */
av_assert0(coef_sum < INT_MAX);
coef_sum = (uint64_t)coef_sum * coef_sum >> 16;
if(pict->pict_type == AV_PICTURE_TYPE_I){
s->m.current_picture.mb_var_sum= coef_sum;
s->m.current_picture.mc_mb_var_sum= 0;
}else{
s->m.current_picture.mc_mb_var_sum= coef_sum;
s->m.current_picture.mb_var_sum= 0;
}
pict->quality= ff_rate_estimate_qscale(&s->m, 1);
if (pict->quality < 0)
return INT_MIN;
s->lambda= pict->quality * 3/2;
delta_qlog= qscale2qlog(pict->quality) - s->qlog;
s->qlog+= delta_qlog;
return delta_qlog;
}
static void calculate_visual_weight(SnowContext *s, Plane *p){
int width = p->width;
int height= p->height;
int level, orientation, x, y;
for(level=0; level<s->spatial_decomposition_count; level++){
for(orientation=level ? 1 : 0; orientation<4; orientation++){
SubBand *b= &p->band[level][orientation];
IDWTELEM *ibuf= b->ibuf;
int64_t error=0;
memset(s->spatial_idwt_buffer, 0, sizeof(*s->spatial_idwt_buffer)*width*height);
ibuf[b->width/2 + b->height/2*b->stride]= 256*16;
ff_spatial_idwt(s->spatial_idwt_buffer, s->temp_idwt_buffer, width, height, width, s->spatial_decomposition_type, s->spatial_decomposition_count);
for(y=0; y<height; y++){
for(x=0; x<width; x++){
int64_t d= s->spatial_idwt_buffer[x + y*width]*16;
error += d*d;
}
}
b->qlog= (int)(QROOT * log2(352256.0/sqrt(error)) + 0.5);
}
}
}
static int encode_frame(AVCodecContext *avctx, AVPacket *pkt,
const AVFrame *pict, int *got_packet)
{
SnowContext *s = avctx->priv_data;
RangeCoder * const c= &s->c;
AVFrame *pic;
const int width= s->avctx->width;
const int height= s->avctx->height;
int level, orientation, plane_index, i, y, ret;
uint8_t rc_header_bak[sizeof(s->header_state)];
uint8_t rc_block_bak[sizeof(s->block_state)];
if ((ret = ff_alloc_packet2(avctx, pkt, s->b_width*s->b_height*MB_SIZE*MB_SIZE*3 + AV_INPUT_BUFFER_MIN_SIZE, 0)) < 0)
return ret;
ff_init_range_encoder(c, pkt->data, pkt->size);
ff_build_rac_states(c, (1LL<<32)/20, 256-8);
for(i=0; i < s->nb_planes; i++){
int hshift= i ? s->chroma_h_shift : 0;
int vshift= i ? s->chroma_v_shift : 0;
for(y=0; y<AV_CEIL_RSHIFT(height, vshift); y++)
memcpy(&s->input_picture->data[i][y * s->input_picture->linesize[i]],
&pict->data[i][y * pict->linesize[i]],
AV_CEIL_RSHIFT(width, hshift));
s->mpvencdsp.draw_edges(s->input_picture->data[i], s->input_picture->linesize[i],
AV_CEIL_RSHIFT(width, hshift), AV_CEIL_RSHIFT(height, vshift),
EDGE_WIDTH >> hshift, EDGE_WIDTH >> vshift,
EDGE_TOP | EDGE_BOTTOM);
}
emms_c();
pic = s->input_picture;
pic->pict_type = pict->pict_type;
pic->quality = pict->quality;
s->m.picture_number= avctx->frame_number;
if(avctx->flags&AV_CODEC_FLAG_PASS2){
s->m.pict_type = pic->pict_type = s->m.rc_context.entry[avctx->frame_number].new_pict_type;
s->keyframe = pic->pict_type == AV_PICTURE_TYPE_I;
if(!(avctx->flags&AV_CODEC_FLAG_QSCALE)) {
pic->quality = ff_rate_estimate_qscale(&s->m, 0);
if (pic->quality < 0)
return -1;
}
}else{
s->keyframe= avctx->gop_size==0 || avctx->frame_number % avctx->gop_size == 0;
s->m.pict_type = pic->pict_type = s->keyframe ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P;
}
if(s->pass1_rc && avctx->frame_number == 0)
pic->quality = 2*FF_QP2LAMBDA;
if (pic->quality) {
s->qlog = qscale2qlog(pic->quality);
s->lambda = pic->quality * 3/2;
}
if (s->qlog < 0 || (!pic->quality && (avctx->flags & AV_CODEC_FLAG_QSCALE))) {
s->qlog= LOSSLESS_QLOG;
s->lambda = 0;
}//else keep previous frame's qlog until after motion estimation
if (s->current_picture->data[0]
#if FF_API_EMU_EDGE
&& !(s->avctx->flags&CODEC_FLAG_EMU_EDGE)
#endif
) {
int w = s->avctx->width;
int h = s->avctx->height;
s->mpvencdsp.draw_edges(s->current_picture->data[0],
s->current_picture->linesize[0], w , h ,
EDGE_WIDTH , EDGE_WIDTH , EDGE_TOP | EDGE_BOTTOM);
if (s->current_picture->data[2]) {
s->mpvencdsp.draw_edges(s->current_picture->data[1],
s->current_picture->linesize[1], w>>s->chroma_h_shift, h>>s->chroma_v_shift,
EDGE_WIDTH>>s->chroma_h_shift, EDGE_WIDTH>>s->chroma_v_shift, EDGE_TOP | EDGE_BOTTOM);
s->mpvencdsp.draw_edges(s->current_picture->data[2],
s->current_picture->linesize[2], w>>s->chroma_h_shift, h>>s->chroma_v_shift,
EDGE_WIDTH>>s->chroma_h_shift, EDGE_WIDTH>>s->chroma_v_shift, EDGE_TOP | EDGE_BOTTOM);
}
}
ff_snow_frame_start(s);
av_frame_unref(avctx->coded_frame);
ret = av_frame_ref(avctx->coded_frame, s->current_picture);
if (ret < 0)
return ret;
s->m.current_picture_ptr= &s->m.current_picture;
s->m.current_picture.f = s->current_picture;
s->m.current_picture.f->pts = pict->pts;
if(pic->pict_type == AV_PICTURE_TYPE_P){
int block_width = (width +15)>>4;
int block_height= (height+15)>>4;
int stride= s->current_picture->linesize[0];
av_assert0(s->current_picture->data[0]);
av_assert0(s->last_picture[0]->data[0]);
s->m.avctx= s->avctx;
s->m. last_picture.f = s->last_picture[0];
s->m. new_picture.f = s->input_picture;
s->m. last_picture_ptr= &s->m. last_picture;
s->m.linesize = stride;
s->m.uvlinesize= s->current_picture->linesize[1];
s->m.width = width;
s->m.height= height;
s->m.mb_width = block_width;
s->m.mb_height= block_height;
s->m.mb_stride= s->m.mb_width+1;
s->m.b8_stride= 2*s->m.mb_width+1;
s->m.f_code=1;
s->m.pict_type = pic->pict_type;
#if FF_API_MOTION_EST
s->m.me_method= s->avctx->me_method;
#endif
s->m.motion_est= s->motion_est;
s->m.me.scene_change_score=0;
s->m.me.dia_size = avctx->dia_size;
s->m.quarter_sample= (s->avctx->flags & AV_CODEC_FLAG_QPEL)!=0;
s->m.out_format= FMT_H263;
s->m.unrestricted_mv= 1;
s->m.lambda = s->lambda;
s->m.qscale= (s->m.lambda*139 + FF_LAMBDA_SCALE*64) >> (FF_LAMBDA_SHIFT + 7);
s->lambda2= s->m.lambda2= (s->m.lambda*s->m.lambda + FF_LAMBDA_SCALE/2) >> FF_LAMBDA_SHIFT;
s->m.mecc= s->mecc; //move
s->m.qdsp= s->qdsp; //move
s->m.hdsp = s->hdsp;
ff_init_me(&s->m);
s->hdsp = s->m.hdsp;
s->mecc= s->m.mecc;
}
if(s->pass1_rc){
memcpy(rc_header_bak, s->header_state, sizeof(s->header_state));
memcpy(rc_block_bak, s->block_state, sizeof(s->block_state));
}
redo_frame:
s->spatial_decomposition_count= 5;
while( !(width >>(s->chroma_h_shift + s->spatial_decomposition_count))
|| !(height>>(s->chroma_v_shift + s->spatial_decomposition_count)))
s->spatial_decomposition_count--;
if (s->spatial_decomposition_count <= 0) {
av_log(avctx, AV_LOG_ERROR, "Resolution too low\n");
return AVERROR(EINVAL);
}
s->m.pict_type = pic->pict_type;
s->qbias = pic->pict_type == AV_PICTURE_TYPE_P ? 2 : 0;
ff_snow_common_init_after_header(avctx);
if(s->last_spatial_decomposition_count != s->spatial_decomposition_count){
for(plane_index=0; plane_index < s->nb_planes; plane_index++){
calculate_visual_weight(s, &s->plane[plane_index]);
}
}
encode_header(s);
s->m.misc_bits = 8*(s->c.bytestream - s->c.bytestream_start);
encode_blocks(s, 1);
s->m.mv_bits = 8*(s->c.bytestream - s->c.bytestream_start) - s->m.misc_bits;
for(plane_index=0; plane_index < s->nb_planes; plane_index++){
Plane *p= &s->plane[plane_index];
int w= p->width;
int h= p->height;
int x, y;
// int bits= put_bits_count(&s->c.pb);
if (!s->memc_only) {
//FIXME optimize
if(pict->data[plane_index]) //FIXME gray hack
for(y=0; y<h; y++){
for(x=0; x<w; x++){
s->spatial_idwt_buffer[y*w + x]= pict->data[plane_index][y*pict->linesize[plane_index] + x]<<FRAC_BITS;
}
}
predict_plane(s, s->spatial_idwt_buffer, plane_index, 0);
#if FF_API_PRIVATE_OPT
FF_DISABLE_DEPRECATION_WARNINGS
if(s->avctx->scenechange_threshold)
s->scenechange_threshold = s->avctx->scenechange_threshold;
FF_ENABLE_DEPRECATION_WARNINGS
#endif
if( plane_index==0
&& pic->pict_type == AV_PICTURE_TYPE_P
&& !(avctx->flags&AV_CODEC_FLAG_PASS2)
&& s->m.me.scene_change_score > s->scenechange_threshold){
ff_init_range_encoder(c, pkt->data, pkt->size);
ff_build_rac_states(c, (1LL<<32)/20, 256-8);
pic->pict_type= AV_PICTURE_TYPE_I;
s->keyframe=1;
s->current_picture->key_frame=1;
goto redo_frame;
}
if(s->qlog == LOSSLESS_QLOG){
for(y=0; y<h; y++){
for(x=0; x<w; x++){
s->spatial_dwt_buffer[y*w + x]= (s->spatial_idwt_buffer[y*w + x] + (1<<(FRAC_BITS-1))-1)>>FRAC_BITS;
}
}
}else{
for(y=0; y<h; y++){
for(x=0; x<w; x++){
s->spatial_dwt_buffer[y*w + x]=s->spatial_idwt_buffer[y*w + x]<<ENCODER_EXTRA_BITS;
}
}
}
ff_spatial_dwt(s->spatial_dwt_buffer, s->temp_dwt_buffer, w, h, w, s->spatial_decomposition_type, s->spatial_decomposition_count);
if(s->pass1_rc && plane_index==0){
int delta_qlog = ratecontrol_1pass(s, pic);
if (delta_qlog <= INT_MIN)
return -1;
if(delta_qlog){
//reordering qlog in the bitstream would eliminate this reset
ff_init_range_encoder(c, pkt->data, pkt->size);
memcpy(s->header_state, rc_header_bak, sizeof(s->header_state));
memcpy(s->block_state, rc_block_bak, sizeof(s->block_state));
encode_header(s);
encode_blocks(s, 0);
}
}
for(level=0; level<s->spatial_decomposition_count; level++){
for(orientation=level ? 1 : 0; orientation<4; orientation++){
SubBand *b= &p->band[level][orientation];
quantize(s, b, b->ibuf, b->buf, b->stride, s->qbias);
if(orientation==0)
decorrelate(s, b, b->ibuf, b->stride, pic->pict_type == AV_PICTURE_TYPE_P, 0);
if (!s->no_bitstream)
encode_subband(s, b, b->ibuf, b->parent ? b->parent->ibuf : NULL, b->stride, orientation);
av_assert0(b->parent==NULL || b->parent->stride == b->stride*2);
if(orientation==0)
correlate(s, b, b->ibuf, b->stride, 1, 0);
}
}
for(level=0; level<s->spatial_decomposition_count; level++){
for(orientation=level ? 1 : 0; orientation<4; orientation++){
SubBand *b= &p->band[level][orientation];
dequantize(s, b, b->ibuf, b->stride);
}
}
ff_spatial_idwt(s->spatial_idwt_buffer, s->temp_idwt_buffer, w, h, w, s->spatial_decomposition_type, s->spatial_decomposition_count);
if(s->qlog == LOSSLESS_QLOG){
for(y=0; y<h; y++){
for(x=0; x<w; x++){
s->spatial_idwt_buffer[y*w + x]<<=FRAC_BITS;
}
}
}
predict_plane(s, s->spatial_idwt_buffer, plane_index, 1);
}else{
//ME/MC only
if(pic->pict_type == AV_PICTURE_TYPE_I){
for(y=0; y<h; y++){
for(x=0; x<w; x++){
s->current_picture->data[plane_index][y*s->current_picture->linesize[plane_index] + x]=
pict->data[plane_index][y*pict->linesize[plane_index] + x];
}
}
}else{
memset(s->spatial_idwt_buffer, 0, sizeof(IDWTELEM)*w*h);
predict_plane(s, s->spatial_idwt_buffer, plane_index, 1);
}
}
if(s->avctx->flags&AV_CODEC_FLAG_PSNR){
int64_t error= 0;
if(pict->data[plane_index]) //FIXME gray hack
for(y=0; y<h; y++){
for(x=0; x<w; x++){
int d= s->current_picture->data[plane_index][y*s->current_picture->linesize[plane_index] + x] - pict->data[plane_index][y*pict->linesize[plane_index] + x];
error += d*d;
}
}
s->avctx->error[plane_index] += error;
s->encoding_error[plane_index] = error;
}
}
update_last_header_values(s);
ff_snow_release_buffer(avctx);
s->current_picture->coded_picture_number = avctx->frame_number;
s->current_picture->pict_type = pic->pict_type;
s->current_picture->quality = pic->quality;
s->m.frame_bits = 8*(s->c.bytestream - s->c.bytestream_start);
s->m.p_tex_bits = s->m.frame_bits - s->m.misc_bits - s->m.mv_bits;
s->m.current_picture.f->display_picture_number =
s->m.current_picture.f->coded_picture_number = avctx->frame_number;
s->m.current_picture.f->quality = pic->quality;
s->m.total_bits += 8*(s->c.bytestream - s->c.bytestream_start);
if(s->pass1_rc)
if (ff_rate_estimate_qscale(&s->m, 0) < 0)
return -1;
if(avctx->flags&AV_CODEC_FLAG_PASS1)
ff_write_pass1_stats(&s->m);
s->m.last_pict_type = s->m.pict_type;
avctx->frame_bits = s->m.frame_bits;
avctx->mv_bits = s->m.mv_bits;
avctx->misc_bits = s->m.misc_bits;
avctx->p_tex_bits = s->m.p_tex_bits;
emms_c();
ff_side_data_set_encoder_stats(pkt, s->current_picture->quality,
s->encoding_error,
(s->avctx->flags&AV_CODEC_FLAG_PSNR) ? 4 : 0,
s->current_picture->pict_type);
#if FF_API_ERROR_FRAME
FF_DISABLE_DEPRECATION_WARNINGS
memcpy(s->current_picture->error, s->encoding_error, sizeof(s->encoding_error));
FF_ENABLE_DEPRECATION_WARNINGS
#endif
pkt->size = ff_rac_terminate(c);
if (s->current_picture->key_frame)
pkt->flags |= AV_PKT_FLAG_KEY;
*got_packet = 1;
return 0;
}
static av_cold int encode_end(AVCodecContext *avctx)
{
SnowContext *s = avctx->priv_data;
ff_snow_common_end(s);
ff_rate_control_uninit(&s->m);
av_frame_free(&s->input_picture);
av_freep(&avctx->stats_out);
return 0;
}
#define OFFSET(x) offsetof(SnowContext, x)
#define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
static const AVOption options[] = {
FF_MPV_COMMON_OPTS
{ "iter", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_ME_ITER }, 0, 0, FF_MPV_OPT_FLAGS, "motion_est" },
{ "memc_only", "Only do ME/MC (I frames -> ref, P frame -> ME+MC).", OFFSET(memc_only), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, VE },
{ "no_bitstream", "Skip final bitstream writeout.", OFFSET(no_bitstream), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, VE },
{ "intra_penalty", "Penalty for intra blocks in block decission", OFFSET(intra_penalty), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, INT_MAX, VE },
{ "iterative_dia_size", "Dia size for the iterative ME", OFFSET(iterative_dia_size), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, INT_MAX, VE },
{ "sc_threshold", "Scene change threshold", OFFSET(scenechange_threshold), AV_OPT_TYPE_INT, { .i64 = 0 }, INT_MIN, INT_MAX, VE },
{ "pred", "Spatial decomposition type", OFFSET(pred), AV_OPT_TYPE_INT, { .i64 = 0 }, DWT_97, DWT_53, VE, "pred" },
{ "dwt97", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = 0 }, INT_MIN, INT_MAX, VE, "pred" },
{ "dwt53", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = 1 }, INT_MIN, INT_MAX, VE, "pred" },
{ NULL },
};
static const AVClass snowenc_class = {
.class_name = "snow encoder",
.item_name = av_default_item_name,
.option = options,
.version = LIBAVUTIL_VERSION_INT,
};
AVCodec ff_snow_encoder = {
.name = "snow",
.long_name = NULL_IF_CONFIG_SMALL("Snow"),
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_SNOW,
.priv_data_size = sizeof(SnowContext),
.init = encode_init,
.encode2 = encode_frame,
.close = encode_end,
.pix_fmts = (const enum AVPixelFormat[]){
AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV444P,
AV_PIX_FMT_GRAY8,
AV_PIX_FMT_NONE
},
.priv_class = &snowenc_class,
.caps_internal = FF_CODEC_CAP_INIT_THREADSAFE |
FF_CODEC_CAP_INIT_CLEANUP,
};
#ifdef TEST
#undef malloc
#undef free
#undef printf
#include "libavutil/lfg.h"
#include "libavutil/mathematics.h"
int main(void){
#define width 256
#define height 256
int buffer[2][width*height];
SnowContext s;
int i;
AVLFG prng;
s.spatial_decomposition_count=6;
s.spatial_decomposition_type=1;
s.temp_dwt_buffer = av_mallocz_array(width, sizeof(DWTELEM));
s.temp_idwt_buffer = av_mallocz_array(width, sizeof(IDWTELEM));
if (!s.temp_dwt_buffer || !s.temp_idwt_buffer) {
fprintf(stderr, "Failed to allocate memory\n");
return 1;
}
av_lfg_init(&prng, 1);
printf("testing 5/3 DWT\n");
for(i=0; i<width*height; i++)
buffer[0][i] = buffer[1][i] = av_lfg_get(&prng) % 54321 - 12345;
ff_spatial_dwt(buffer[0], s.temp_dwt_buffer, width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count);
ff_spatial_idwt((IDWTELEM*)buffer[0], s.temp_idwt_buffer, width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count);
for(i=0; i<width*height; i++)
if(buffer[0][i]!= buffer[1][i]) printf("fsck: %6d %12d %7d\n",i, buffer[0][i], buffer[1][i]);
printf("testing 9/7 DWT\n");
s.spatial_decomposition_type=0;
for(i=0; i<width*height; i++)
buffer[0][i] = buffer[1][i] = av_lfg_get(&prng) % 54321 - 12345;
ff_spatial_dwt(buffer[0], s.temp_dwt_buffer, width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count);
ff_spatial_idwt((IDWTELEM*)buffer[0], s.temp_idwt_buffer, width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count);
for(i=0; i<width*height; i++)
if(FFABS(buffer[0][i] - buffer[1][i])>20) printf("fsck: %6d %12d %7d\n",i, buffer[0][i], buffer[1][i]);
{
int level, orientation, x, y;
int64_t errors[8][4];
int64_t g=0;
memset(errors, 0, sizeof(errors));
s.spatial_decomposition_count=3;
s.spatial_decomposition_type=0;
for(level=0; level<s.spatial_decomposition_count; level++){
for(orientation=level ? 1 : 0; orientation<4; orientation++){
int w= width >> (s.spatial_decomposition_count-level);
int h= height >> (s.spatial_decomposition_count-level);
int stride= width << (s.spatial_decomposition_count-level);
DWTELEM *buf= buffer[0];
int64_t error=0;
if(orientation&1) buf+=w;
if(orientation>1) buf+=stride>>1;
memset(buffer[0], 0, sizeof(int)*width*height);
buf[w/2 + h/2*stride]= 256*256;
ff_spatial_idwt((IDWTELEM*)buffer[0], s.temp_idwt_buffer, width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count);
for(y=0; y<height; y++){
for(x=0; x<width; x++){
int64_t d= buffer[0][x + y*width];
error += d*d;
if(FFABS(width/2-x)<9 && FFABS(height/2-y)<9 && level==2) printf("%8"PRId64" ", d);
}
if(FFABS(height/2-y)<9 && level==2) printf("\n");
}
error= (int)(sqrt(error)+0.5);
errors[level][orientation]= error;
if(g) g=av_gcd(g, error);
else g= error;
}
}
printf("static int const visual_weight[][4]={\n");
for(level=0; level<s.spatial_decomposition_count; level++){
printf(" {");
for(orientation=0; orientation<4; orientation++){
printf("%8"PRId64",", errors[level][orientation]/g);
}
printf("},\n");
}
printf("};\n");
{
int level=2;
int w= width >> (s.spatial_decomposition_count-level);
//int h= height >> (s.spatial_decomposition_count-level);
int stride= width << (s.spatial_decomposition_count-level);
DWTELEM *buf= buffer[0];
int64_t error=0;