blob: 5e26e70722b6e50c3fce97bd7bc54c725aee0dc0 [file] [log] [blame]
/*
FreeRTOS V7.2.0 - Copyright (C) 2012 Real Time Engineers Ltd.
***************************************************************************
* *
* FreeRTOS tutorial books are available in pdf and paperback. *
* Complete, revised, and edited pdf reference manuals are also *
* available. *
* *
* Purchasing FreeRTOS documentation will not only help you, by *
* ensuring you get running as quickly as possible and with an *
* in-depth knowledge of how to use FreeRTOS, it will also help *
* the FreeRTOS project to continue with its mission of providing *
* professional grade, cross platform, de facto standard solutions *
* for microcontrollers - completely free of charge! *
* *
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
* *
* Thank you for using FreeRTOS, and thank you for your support! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
>>>NOTE<<< The modification to the GPL is included to allow you to
distribute a combined work that includes FreeRTOS without being obliged to
provide the source code for proprietary components outside of the FreeRTOS
kernel. FreeRTOS is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details. You should have received a copy of the GNU General Public
License and the FreeRTOS license exception along with FreeRTOS; if not it
can be viewed here: http://www.freertos.org/a00114.html and also obtained
by writing to Richard Barry, contact details for whom are available on the
FreeRTOS WEB site.
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong? *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, training, latest information,
license and contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool.
Real Time Engineers ltd license FreeRTOS to High Integrity Systems, who sell
the code with commercial support, indemnification, and middleware, under
the OpenRTOS brand: http://www.OpenRTOS.com. High Integrity Systems also
provide a safety engineered and independently SIL3 certified version under
the SafeRTOS brand: http://www.SafeRTOS.com.
*/
/* Scheduler includes. */
#include "FreeRTOS.h"
#include "task.h"
/*-----------------------------------------------------------
* Implementation of functions defined in portable.h for the MSP430X port.
*----------------------------------------------------------*/
/* Constants required for hardware setup. The tick ISR runs off the ACLK,
not the MCLK. */
#define portACLK_FREQUENCY_HZ ( ( portTickType ) 32768 )
#define portINITIAL_CRITICAL_NESTING ( ( unsigned short ) 10 )
#define portFLAGS_INT_ENABLED ( ( portSTACK_TYPE ) 0x08 )
/* We require the address of the pxCurrentTCB variable, but don't want to know
any details of its type. */
typedef void tskTCB;
extern volatile tskTCB * volatile pxCurrentTCB;
/* Each task maintains a count of the critical section nesting depth. Each
time a critical section is entered the count is incremented. Each time a
critical section is exited the count is decremented - with interrupts only
being re-enabled if the count is zero.
usCriticalNesting will get set to zero when the scheduler starts, but must
not be initialised to zero as this will cause problems during the startup
sequence. */
volatile unsigned short usCriticalNesting = portINITIAL_CRITICAL_NESTING;
/*-----------------------------------------------------------*/
/*
* Sets up the periodic ISR used for the RTOS tick. This uses timer 0, but
* could have alternatively used the watchdog timer or timer 1.
*/
void vPortSetupTimerInterrupt( void );
/*-----------------------------------------------------------*/
/*
* Initialise the stack of a task to look exactly as if a call to
* portSAVE_CONTEXT had been called.
*
* See the header file portable.h.
*/
portSTACK_TYPE *pxPortInitialiseStack( portSTACK_TYPE *pxTopOfStack, pdTASK_CODE pxCode, void *pvParameters )
{
unsigned short *pusTopOfStack;
unsigned long *pulTopOfStack;
/*
Place a few bytes of known values on the bottom of the stack.
This is just useful for debugging and can be included if required.
*pxTopOfStack = ( portSTACK_TYPE ) 0x1111;
pxTopOfStack--;
*pxTopOfStack = ( portSTACK_TYPE ) 0x2222;
pxTopOfStack--;
*pxTopOfStack = ( portSTACK_TYPE ) 0x3333;
*/
/* portSTACK_TYPE is either 16 bits or 32 bits depending on the data model.
Some stacked items do not change size depending on the data model so have
to be explicitly cast to the correct size so this function will work
whichever data model is being used. */
if( sizeof( portSTACK_TYPE ) == sizeof( unsigned short ) )
{
/* Make room for a 20 bit value stored as a 32 bit value. */
pusTopOfStack = ( unsigned short * ) pxTopOfStack;
pusTopOfStack--;
pulTopOfStack = ( unsigned long * ) pusTopOfStack;
}
else
{
pulTopOfStack = ( unsigned long * ) pxTopOfStack;
}
*pulTopOfStack = ( unsigned long ) pxCode;
pusTopOfStack = ( unsigned short * ) pulTopOfStack;
pusTopOfStack--;
*pusTopOfStack = portFLAGS_INT_ENABLED;
pusTopOfStack -= ( sizeof( portSTACK_TYPE ) / 2 );
/* From here on the size of stacked items depends on the memory model. */
pxTopOfStack = ( portSTACK_TYPE * ) pusTopOfStack;
/* Next the general purpose registers. */
#ifdef PRELOAD_REGISTER_VALUES
*pxTopOfStack = ( portSTACK_TYPE ) 0xffff;
pxTopOfStack--;
*pxTopOfStack = ( portSTACK_TYPE ) 0xeeee;
pxTopOfStack--;
*pxTopOfStack = ( portSTACK_TYPE ) 0xdddd;
pxTopOfStack--;
*pxTopOfStack = ( portSTACK_TYPE ) pvParameters;
pxTopOfStack--;
*pxTopOfStack = ( portSTACK_TYPE ) 0xbbbb;
pxTopOfStack--;
*pxTopOfStack = ( portSTACK_TYPE ) 0xaaaa;
pxTopOfStack--;
*pxTopOfStack = ( portSTACK_TYPE ) 0x9999;
pxTopOfStack--;
*pxTopOfStack = ( portSTACK_TYPE ) 0x8888;
pxTopOfStack--;
*pxTopOfStack = ( portSTACK_TYPE ) 0x5555;
pxTopOfStack--;
*pxTopOfStack = ( portSTACK_TYPE ) 0x6666;
pxTopOfStack--;
*pxTopOfStack = ( portSTACK_TYPE ) 0x5555;
pxTopOfStack--;
*pxTopOfStack = ( portSTACK_TYPE ) 0x4444;
pxTopOfStack--;
#else
pxTopOfStack -= 3;
*pxTopOfStack = ( portSTACK_TYPE ) pvParameters;
pxTopOfStack -= 9;
#endif
/* A variable is used to keep track of the critical section nesting.
This variable has to be stored as part of the task context and is
initially set to zero. */
*pxTopOfStack = ( portSTACK_TYPE ) portNO_CRITICAL_SECTION_NESTING;
/* Return a pointer to the top of the stack we have generated so this can
be stored in the task control block for the task. */
return pxTopOfStack;
}
/*-----------------------------------------------------------*/
void vPortEndScheduler( void )
{
/* It is unlikely that the MSP430 port will get stopped. If required simply
disable the tick interrupt here. */
}
/*-----------------------------------------------------------*/
/*
* Hardware initialisation to generate the RTOS tick.
*/
void vPortSetupTimerInterrupt( void )
{
vApplicationSetupTimerInterrupt();
}
/*-----------------------------------------------------------*/
#pragma vector=configTICK_VECTOR
__interrupt __raw void vTickISREntry( void )
{
extern void vPortTickISR( void );
__bic_SR_register_on_exit( SCG1 + SCG0 + OSCOFF + CPUOFF );
vPortTickISR();
}