| /* hc128.c |
| * |
| * Copyright (C) 2006-2012 Sawtooth Consulting Ltd. |
| * |
| * This file is part of CyaSSL. |
| * |
| * CyaSSL is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * CyaSSL is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA |
| */ |
| |
| #ifdef HAVE_CONFIG_H |
| #include <config.h> |
| #endif |
| |
| #ifdef HAVE_HC128 |
| |
| #include <cyassl/ctaocrypt/hc128.h> |
| #ifdef NO_INLINE |
| #include <cyassl/ctaocrypt/hc128.h> |
| #else |
| #include <ctaocrypt/src/misc.c> |
| #endif |
| |
| |
| #ifdef BIG_ENDIAN_ORDER |
| #define LITTLE32(x) ByteReverseWord32(x) |
| #else |
| #define LITTLE32(x) (x) |
| #endif |
| |
| |
| /*h1 function*/ |
| #define h1(ctx, x, y) { \ |
| byte a,c; \ |
| a = (byte) (x); \ |
| c = (byte) ((x) >> 16); \ |
| y = (ctx->T[512+a])+(ctx->T[512+256+c]); \ |
| } |
| |
| /*h2 function*/ |
| #define h2(ctx, x, y) { \ |
| byte a,c; \ |
| a = (byte) (x); \ |
| c = (byte) ((x) >> 16); \ |
| y = (ctx->T[a])+(ctx->T[256+c]); \ |
| } |
| |
| /*one step of HC-128, update P and generate 32 bits keystream*/ |
| #define step_P(ctx,u,v,a,b,c,d,n){ \ |
| word32 tem0,tem1,tem2,tem3; \ |
| h1((ctx),(ctx->X[(d)]),tem3); \ |
| tem0 = rotrFixed((ctx->T[(v)]),23); \ |
| tem1 = rotrFixed((ctx->X[(c)]),10); \ |
| tem2 = rotrFixed((ctx->X[(b)]),8); \ |
| (ctx->T[(u)]) += tem2+(tem0 ^ tem1); \ |
| (ctx->X[(a)]) = (ctx->T[(u)]); \ |
| (n) = tem3 ^ (ctx->T[(u)]) ; \ |
| } |
| |
| /*one step of HC-128, update Q and generate 32 bits keystream*/ |
| #define step_Q(ctx,u,v,a,b,c,d,n){ \ |
| word32 tem0,tem1,tem2,tem3; \ |
| h2((ctx),(ctx->Y[(d)]),tem3); \ |
| tem0 = rotrFixed((ctx->T[(v)]),(32-23)); \ |
| tem1 = rotrFixed((ctx->Y[(c)]),(32-10)); \ |
| tem2 = rotrFixed((ctx->Y[(b)]),(32-8)); \ |
| (ctx->T[(u)]) += tem2 + (tem0 ^ tem1); \ |
| (ctx->Y[(a)]) = (ctx->T[(u)]); \ |
| (n) = tem3 ^ (ctx->T[(u)]) ; \ |
| } |
| |
| /*16 steps of HC-128, generate 512 bits keystream*/ |
| static void generate_keystream(HC128* ctx, word32* keystream) |
| { |
| word32 cc,dd; |
| cc = ctx->counter1024 & 0x1ff; |
| dd = (cc+16)&0x1ff; |
| |
| if (ctx->counter1024 < 512) |
| { |
| ctx->counter1024 = (ctx->counter1024 + 16) & 0x3ff; |
| step_P(ctx, cc+0, cc+1, 0, 6, 13,4, keystream[0]); |
| step_P(ctx, cc+1, cc+2, 1, 7, 14,5, keystream[1]); |
| step_P(ctx, cc+2, cc+3, 2, 8, 15,6, keystream[2]); |
| step_P(ctx, cc+3, cc+4, 3, 9, 0, 7, keystream[3]); |
| step_P(ctx, cc+4, cc+5, 4, 10,1, 8, keystream[4]); |
| step_P(ctx, cc+5, cc+6, 5, 11,2, 9, keystream[5]); |
| step_P(ctx, cc+6, cc+7, 6, 12,3, 10,keystream[6]); |
| step_P(ctx, cc+7, cc+8, 7, 13,4, 11,keystream[7]); |
| step_P(ctx, cc+8, cc+9, 8, 14,5, 12,keystream[8]); |
| step_P(ctx, cc+9, cc+10,9, 15,6, 13,keystream[9]); |
| step_P(ctx, cc+10,cc+11,10,0, 7, 14,keystream[10]); |
| step_P(ctx, cc+11,cc+12,11,1, 8, 15,keystream[11]); |
| step_P(ctx, cc+12,cc+13,12,2, 9, 0, keystream[12]); |
| step_P(ctx, cc+13,cc+14,13,3, 10,1, keystream[13]); |
| step_P(ctx, cc+14,cc+15,14,4, 11,2, keystream[14]); |
| step_P(ctx, cc+15,dd+0, 15,5, 12,3, keystream[15]); |
| } |
| else |
| { |
| ctx->counter1024 = (ctx->counter1024 + 16) & 0x3ff; |
| step_Q(ctx, 512+cc+0, 512+cc+1, 0, 6, 13,4, keystream[0]); |
| step_Q(ctx, 512+cc+1, 512+cc+2, 1, 7, 14,5, keystream[1]); |
| step_Q(ctx, 512+cc+2, 512+cc+3, 2, 8, 15,6, keystream[2]); |
| step_Q(ctx, 512+cc+3, 512+cc+4, 3, 9, 0, 7, keystream[3]); |
| step_Q(ctx, 512+cc+4, 512+cc+5, 4, 10,1, 8, keystream[4]); |
| step_Q(ctx, 512+cc+5, 512+cc+6, 5, 11,2, 9, keystream[5]); |
| step_Q(ctx, 512+cc+6, 512+cc+7, 6, 12,3, 10,keystream[6]); |
| step_Q(ctx, 512+cc+7, 512+cc+8, 7, 13,4, 11,keystream[7]); |
| step_Q(ctx, 512+cc+8, 512+cc+9, 8, 14,5, 12,keystream[8]); |
| step_Q(ctx, 512+cc+9, 512+cc+10,9, 15,6, 13,keystream[9]); |
| step_Q(ctx, 512+cc+10,512+cc+11,10,0, 7, 14,keystream[10]); |
| step_Q(ctx, 512+cc+11,512+cc+12,11,1, 8, 15,keystream[11]); |
| step_Q(ctx, 512+cc+12,512+cc+13,12,2, 9, 0, keystream[12]); |
| step_Q(ctx, 512+cc+13,512+cc+14,13,3, 10,1, keystream[13]); |
| step_Q(ctx, 512+cc+14,512+cc+15,14,4, 11,2, keystream[14]); |
| step_Q(ctx, 512+cc+15,512+dd+0, 15,5, 12,3, keystream[15]); |
| } |
| } |
| |
| |
| /* The following defines the initialization functions */ |
| #define f1(x) (rotrFixed((x),7) ^ rotrFixed((x),18) ^ ((x) >> 3)) |
| #define f2(x) (rotrFixed((x),17) ^ rotrFixed((x),19) ^ ((x) >> 10)) |
| |
| /*update table P*/ |
| #define update_P(ctx,u,v,a,b,c,d){ \ |
| word32 tem0,tem1,tem2,tem3; \ |
| tem0 = rotrFixed((ctx->T[(v)]),23); \ |
| tem1 = rotrFixed((ctx->X[(c)]),10); \ |
| tem2 = rotrFixed((ctx->X[(b)]),8); \ |
| h1((ctx),(ctx->X[(d)]),tem3); \ |
| (ctx->T[(u)]) = ((ctx->T[(u)]) + tem2+(tem0^tem1)) ^ tem3; \ |
| (ctx->X[(a)]) = (ctx->T[(u)]); \ |
| } |
| |
| /*update table Q*/ |
| #define update_Q(ctx,u,v,a,b,c,d){ \ |
| word32 tem0,tem1,tem2,tem3; \ |
| tem0 = rotrFixed((ctx->T[(v)]),(32-23)); \ |
| tem1 = rotrFixed((ctx->Y[(c)]),(32-10)); \ |
| tem2 = rotrFixed((ctx->Y[(b)]),(32-8)); \ |
| h2((ctx),(ctx->Y[(d)]),tem3); \ |
| (ctx->T[(u)]) = ((ctx->T[(u)]) + tem2+(tem0^tem1)) ^ tem3; \ |
| (ctx->Y[(a)]) = (ctx->T[(u)]); \ |
| } |
| |
| /*16 steps of HC-128, without generating keystream, */ |
| /*but use the outputs to update P and Q*/ |
| static void setup_update(HC128* ctx) /*each time 16 steps*/ |
| { |
| word32 cc,dd; |
| cc = ctx->counter1024 & 0x1ff; |
| dd = (cc+16)&0x1ff; |
| |
| if (ctx->counter1024 < 512) |
| { |
| ctx->counter1024 = (ctx->counter1024 + 16) & 0x3ff; |
| update_P(ctx, cc+0, cc+1, 0, 6, 13, 4); |
| update_P(ctx, cc+1, cc+2, 1, 7, 14, 5); |
| update_P(ctx, cc+2, cc+3, 2, 8, 15, 6); |
| update_P(ctx, cc+3, cc+4, 3, 9, 0, 7); |
| update_P(ctx, cc+4, cc+5, 4, 10,1, 8); |
| update_P(ctx, cc+5, cc+6, 5, 11,2, 9); |
| update_P(ctx, cc+6, cc+7, 6, 12,3, 10); |
| update_P(ctx, cc+7, cc+8, 7, 13,4, 11); |
| update_P(ctx, cc+8, cc+9, 8, 14,5, 12); |
| update_P(ctx, cc+9, cc+10,9, 15,6, 13); |
| update_P(ctx, cc+10,cc+11,10,0, 7, 14); |
| update_P(ctx, cc+11,cc+12,11,1, 8, 15); |
| update_P(ctx, cc+12,cc+13,12,2, 9, 0); |
| update_P(ctx, cc+13,cc+14,13,3, 10, 1); |
| update_P(ctx, cc+14,cc+15,14,4, 11, 2); |
| update_P(ctx, cc+15,dd+0, 15,5, 12, 3); |
| } |
| else |
| { |
| ctx->counter1024 = (ctx->counter1024 + 16) & 0x3ff; |
| update_Q(ctx, 512+cc+0, 512+cc+1, 0, 6, 13, 4); |
| update_Q(ctx, 512+cc+1, 512+cc+2, 1, 7, 14, 5); |
| update_Q(ctx, 512+cc+2, 512+cc+3, 2, 8, 15, 6); |
| update_Q(ctx, 512+cc+3, 512+cc+4, 3, 9, 0, 7); |
| update_Q(ctx, 512+cc+4, 512+cc+5, 4, 10,1, 8); |
| update_Q(ctx, 512+cc+5, 512+cc+6, 5, 11,2, 9); |
| update_Q(ctx, 512+cc+6, 512+cc+7, 6, 12,3, 10); |
| update_Q(ctx, 512+cc+7, 512+cc+8, 7, 13,4, 11); |
| update_Q(ctx, 512+cc+8, 512+cc+9, 8, 14,5, 12); |
| update_Q(ctx, 512+cc+9, 512+cc+10,9, 15,6, 13); |
| update_Q(ctx, 512+cc+10,512+cc+11,10,0, 7, 14); |
| update_Q(ctx, 512+cc+11,512+cc+12,11,1, 8, 15); |
| update_Q(ctx, 512+cc+12,512+cc+13,12,2, 9, 0); |
| update_Q(ctx, 512+cc+13,512+cc+14,13,3, 10, 1); |
| update_Q(ctx, 512+cc+14,512+cc+15,14,4, 11, 2); |
| update_Q(ctx, 512+cc+15,512+dd+0, 15,5, 12, 3); |
| } |
| } |
| |
| |
| /* for the 128-bit key: key[0]...key[15] |
| * key[0] is the least significant byte of ctx->key[0] (K_0); |
| * key[3] is the most significant byte of ctx->key[0] (K_0); |
| * ... |
| * key[12] is the least significant byte of ctx->key[3] (K_3) |
| * key[15] is the most significant byte of ctx->key[3] (K_3) |
| * |
| * for the 128-bit iv: iv[0]...iv[15] |
| * iv[0] is the least significant byte of ctx->iv[0] (IV_0); |
| * iv[3] is the most significant byte of ctx->iv[0] (IV_0); |
| * ... |
| * iv[12] is the least significant byte of ctx->iv[3] (IV_3) |
| * iv[15] is the most significant byte of ctx->iv[3] (IV_3) |
| */ |
| |
| |
| |
| static void Hc128_SetIV(HC128* ctx, const byte* iv) |
| { |
| word32 i; |
| |
| for (i = 0; i < (128 >> 5); i++) |
| ctx->iv[i] = LITTLE32(((word32*)iv)[i]); |
| |
| for (; i < 8; i++) ctx->iv[i] = ctx->iv[i-4]; |
| |
| /* expand the key and IV into the table T */ |
| /* (expand the key and IV into the table P and Q) */ |
| |
| for (i = 0; i < 8; i++) ctx->T[i] = ctx->key[i]; |
| for (i = 8; i < 16; i++) ctx->T[i] = ctx->iv[i-8]; |
| |
| for (i = 16; i < (256+16); i++) |
| ctx->T[i] = f2(ctx->T[i-2]) + ctx->T[i-7] + f1(ctx->T[i-15]) + |
| ctx->T[i-16]+i; |
| |
| for (i = 0; i < 16; i++) ctx->T[i] = ctx->T[256+i]; |
| |
| for (i = 16; i < 1024; i++) |
| ctx->T[i] = f2(ctx->T[i-2]) + ctx->T[i-7] + f1(ctx->T[i-15]) + |
| ctx->T[i-16]+256+i; |
| |
| /* initialize counter1024, X and Y */ |
| ctx->counter1024 = 0; |
| for (i = 0; i < 16; i++) ctx->X[i] = ctx->T[512-16+i]; |
| for (i = 0; i < 16; i++) ctx->Y[i] = ctx->T[512+512-16+i]; |
| |
| /* run the cipher 1024 steps before generating the output */ |
| for (i = 0; i < 64; i++) setup_update(ctx); |
| } |
| |
| |
| void Hc128_SetKey(HC128* ctx, const byte* key, const byte* iv) |
| { |
| word32 i; |
| |
| /* Key size in bits 128 */ |
| for (i = 0; i < (128 >> 5); i++) |
| ctx->key[i] = LITTLE32(((word32*)key)[i]); |
| |
| for ( ; i < 8 ; i++) ctx->key[i] = ctx->key[i-4]; |
| |
| Hc128_SetIV(ctx, iv); |
| } |
| |
| |
| /* The following defines the encryption of data stream */ |
| void Hc128_Process(HC128* ctx, byte* output, const byte* input, word32 msglen) |
| { |
| word32 i, keystream[16]; |
| |
| for ( ; msglen >= 64; msglen -= 64, input += 64, output += 64) |
| { |
| generate_keystream(ctx, keystream); |
| |
| /* unroll loop */ |
| ((word32*)output)[0] = ((word32*)input)[0] ^ LITTLE32(keystream[0]); |
| ((word32*)output)[1] = ((word32*)input)[1] ^ LITTLE32(keystream[1]); |
| ((word32*)output)[2] = ((word32*)input)[2] ^ LITTLE32(keystream[2]); |
| ((word32*)output)[3] = ((word32*)input)[3] ^ LITTLE32(keystream[3]); |
| ((word32*)output)[4] = ((word32*)input)[4] ^ LITTLE32(keystream[4]); |
| ((word32*)output)[5] = ((word32*)input)[5] ^ LITTLE32(keystream[5]); |
| ((word32*)output)[6] = ((word32*)input)[6] ^ LITTLE32(keystream[6]); |
| ((word32*)output)[7] = ((word32*)input)[7] ^ LITTLE32(keystream[7]); |
| ((word32*)output)[8] = ((word32*)input)[8] ^ LITTLE32(keystream[8]); |
| ((word32*)output)[9] = ((word32*)input)[9] ^ LITTLE32(keystream[9]); |
| ((word32*)output)[10] = ((word32*)input)[10] ^ LITTLE32(keystream[10]); |
| ((word32*)output)[11] = ((word32*)input)[11] ^ LITTLE32(keystream[11]); |
| ((word32*)output)[12] = ((word32*)input)[12] ^ LITTLE32(keystream[12]); |
| ((word32*)output)[13] = ((word32*)input)[13] ^ LITTLE32(keystream[13]); |
| ((word32*)output)[14] = ((word32*)input)[14] ^ LITTLE32(keystream[14]); |
| ((word32*)output)[15] = ((word32*)input)[15] ^ LITTLE32(keystream[15]); |
| } |
| |
| if (msglen > 0) |
| { |
| generate_keystream(ctx, keystream); |
| |
| #ifdef BIG_ENDIAN_ORDER |
| { |
| word32 wordsLeft = msglen / sizeof(word32); |
| if (msglen % sizeof(word32)) wordsLeft++; |
| |
| ByteReverseWords(keystream, keystream, wordsLeft * sizeof(word32)); |
| } |
| #endif |
| |
| for (i = 0; i < msglen; i++) |
| output[i] = input[i] ^ ((byte*)keystream)[i]; |
| } |
| |
| } |
| |
| |
| #else /* HAVE_HC128 */ |
| |
| |
| #ifdef _MSC_VER |
| /* 4206 warning for blank file */ |
| #pragma warning(disable: 4206) |
| #endif |
| |
| |
| #endif /* HAVE_HC128 */ |