/*This file is prepared for Doxygen automatic documentation generation.*/ | |
/*! \file ********************************************************************* | |
* | |
* \brief Compiler file for AVR32. | |
* | |
* This file defines commonly used types and macros. | |
* | |
* - Compiler: IAR EWAVR32 and GNU GCC for AVR32 | |
* - Supported devices: All AVR32 devices can be used. | |
* - AppNote: | |
* | |
* \author Atmel Corporation: http://www.atmel.com \n | |
* Support and FAQ: http://support.atmel.no/ | |
* | |
******************************************************************************/ | |
/* Copyright (c) 2007, Atmel Corporation All rights reserved. | |
* | |
* Redistribution and use in source and binary forms, with or without | |
* modification, are permitted provided that the following conditions are met: | |
* | |
* 1. Redistributions of source code must retain the above copyright notice, | |
* this list of conditions and the following disclaimer. | |
* | |
* 2. Redistributions in binary form must reproduce the above copyright notice, | |
* this list of conditions and the following disclaimer in the documentation | |
* and/or other materials provided with the distribution. | |
* | |
* 3. The name of ATMEL may not be used to endorse or promote products derived | |
* from this software without specific prior written permission. | |
* | |
* THIS SOFTWARE IS PROVIDED BY ATMEL ``AS IS'' AND ANY EXPRESS OR IMPLIED | |
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF | |
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY AND | |
* SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, | |
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | |
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | |
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND | |
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF | |
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
*/ | |
#ifndef _COMPILER_H_ | |
#define _COMPILER_H_ | |
#if (__GNUC__ && __AVR32__) || (__ICCAVR32__ || __AAVR32__) | |
# include <avr32/io.h> | |
#endif | |
#if __ICCAVR32__ | |
# include <intrinsics.h> | |
#endif | |
#include "preprocessor.h" | |
//_____ D E C L A R A T I O N S ____________________________________________ | |
#ifdef __AVR32_ABI_COMPILER__ // Automatically defined when compiling for AVR32, not when assembling. | |
#include <stddef.h> | |
#include <stdlib.h> | |
#if __ICCAVR32__ | |
/*! \name Compiler Keywords | |
* | |
* Port of some keywords from GNU GCC for AVR32 to IAR Embedded Workbench for Atmel AVR32. | |
*/ | |
//! @{ | |
#define __asm__ asm | |
#define __inline__ inline | |
#define __volatile__ | |
//! @} | |
#endif | |
/*! \name Usual Types | |
*/ | |
//! @{ | |
typedef unsigned char Bool; //!< Boolean. | |
typedef unsigned char U8 ; //!< 8-bit unsigned integer. | |
typedef unsigned short int U16; //!< 16-bit unsigned integer. | |
typedef unsigned long int U32; //!< 32-bit unsigned integer. | |
typedef unsigned long long int U64; //!< 64-bit unsigned integer. | |
typedef signed char S8 ; //!< 8-bit signed integer. | |
typedef signed short int S16; //!< 16-bit signed integer. | |
typedef signed long int S32; //!< 32-bit signed integer. | |
typedef signed long long int S64; //!< 64-bit signed integer. | |
typedef float F32; //!< 32-bit floating-point number. | |
typedef double F64; //!< 64-bit floating-point number. | |
//! @} | |
/*! \name Status Types | |
*/ | |
//! @{ | |
typedef Bool Status_bool_t; //!< Boolean status. | |
typedef U8 Status_t; //!< 8-bit-coded status. | |
//! @} | |
/*! \name Aliasing Aggregate Types | |
*/ | |
//! @{ | |
//! 16-bit union. | |
typedef union | |
{ | |
U16 u16 ; | |
U8 u8 [2]; | |
} Union16; | |
//! 32-bit union. | |
typedef union | |
{ | |
U32 u32 ; | |
U16 u16[2]; | |
U8 u8 [4]; | |
} Union32; | |
//! 64-bit union. | |
typedef union | |
{ | |
U64 u64 ; | |
U32 u32[2]; | |
U16 u16[4]; | |
U8 u8 [8]; | |
} Union64; | |
//! Union of pointers to 64-, 32-, 16- and 8-bit unsigned integers. | |
typedef union | |
{ | |
U64 *u64ptr; | |
U32 *u32ptr; | |
U16 *u16ptr; | |
U8 *u8ptr ; | |
} UnionPtr; | |
//! Union of pointers to volatile 64-, 32-, 16- and 8-bit unsigned integers. | |
typedef union | |
{ | |
volatile U64 *u64ptr; | |
volatile U32 *u32ptr; | |
volatile U16 *u16ptr; | |
volatile U8 *u8ptr ; | |
} UnionVPtr; | |
//! Union of pointers to constant 64-, 32-, 16- and 8-bit unsigned integers. | |
typedef union | |
{ | |
const U64 *u64ptr; | |
const U32 *u32ptr; | |
const U16 *u16ptr; | |
const U8 *u8ptr ; | |
} UnionCPtr; | |
//! Union of pointers to constant volatile 64-, 32-, 16- and 8-bit unsigned integers. | |
typedef union | |
{ | |
const volatile U64 *u64ptr; | |
const volatile U32 *u32ptr; | |
const volatile U16 *u16ptr; | |
const volatile U8 *u8ptr ; | |
} UnionCVPtr; | |
//! Structure of pointers to 64-, 32-, 16- and 8-bit unsigned integers. | |
typedef struct | |
{ | |
U64 *u64ptr; | |
U32 *u32ptr; | |
U16 *u16ptr; | |
U8 *u8ptr ; | |
} StructPtr; | |
//! Structure of pointers to volatile 64-, 32-, 16- and 8-bit unsigned integers. | |
typedef struct | |
{ | |
volatile U64 *u64ptr; | |
volatile U32 *u32ptr; | |
volatile U16 *u16ptr; | |
volatile U8 *u8ptr ; | |
} StructVPtr; | |
//! Structure of pointers to constant 64-, 32-, 16- and 8-bit unsigned integers. | |
typedef struct | |
{ | |
const U64 *u64ptr; | |
const U32 *u32ptr; | |
const U16 *u16ptr; | |
const U8 *u8ptr ; | |
} StructCPtr; | |
//! Structure of pointers to constant volatile 64-, 32-, 16- and 8-bit unsigned integers. | |
typedef struct | |
{ | |
const volatile U64 *u64ptr; | |
const volatile U32 *u32ptr; | |
const volatile U16 *u16ptr; | |
const volatile U8 *u8ptr ; | |
} StructCVPtr; | |
//! @} | |
#endif // __AVR32_ABI_COMPILER__ | |
//_____ M A C R O S ________________________________________________________ | |
/*! \name Usual Constants | |
*/ | |
//! @{ | |
#define DISABLE 0 | |
#define ENABLE 1 | |
#define DISABLED 0 | |
#define ENABLED 1 | |
#define OFF 0 | |
#define ON 1 | |
#define FALSE 0 | |
#define TRUE 1 | |
#define KO 0 | |
#define OK 1 | |
#define PASS 0 | |
#define FAIL 1 | |
#define LOW 0 | |
#define HIGH 1 | |
#define CLR 0 | |
#define SET 1 | |
//! @} | |
#ifdef __AVR32_ABI_COMPILER__ // Automatically defined when compiling for AVR32, not when assembling. | |
/*! \name Bit-Field Handling | |
*/ | |
//! @{ | |
/*! \brief Reads the bits of a value specified by a given bit-mask. | |
* | |
* \param value Value to read bits from. | |
* \param mask Bit-mask indicating bits to read. | |
* | |
* \return Read bits. | |
*/ | |
#define Rd_bits( value, mask) ((value) & (mask)) | |
/*! \brief Writes the bits of a C lvalue specified by a given bit-mask. | |
* | |
* \param lvalue C lvalue to write bits to. | |
* \param mask Bit-mask indicating bits to write. | |
* \param bits Bits to write. | |
* | |
* \return Resulting value with written bits. | |
*/ | |
#define Wr_bits(lvalue, mask, bits) ((lvalue) = ((lvalue) & ~(mask)) |\ | |
((bits ) & (mask))) | |
/*! \brief Tests the bits of a value specified by a given bit-mask. | |
* | |
* \param value Value of which to test bits. | |
* \param mask Bit-mask indicating bits to test. | |
* | |
* \return \c 1 if at least one of the tested bits is set, else \c 0. | |
*/ | |
#define Tst_bits( value, mask) (Rd_bits(value, mask) != 0) | |
/*! \brief Clears the bits of a C lvalue specified by a given bit-mask. | |
* | |
* \param lvalue C lvalue of which to clear bits. | |
* \param mask Bit-mask indicating bits to clear. | |
* | |
* \return Resulting value with cleared bits. | |
*/ | |
#define Clr_bits(lvalue, mask) ((lvalue) &= ~(mask)) | |
/*! \brief Sets the bits of a C lvalue specified by a given bit-mask. | |
* | |
* \param lvalue C lvalue of which to set bits. | |
* \param mask Bit-mask indicating bits to set. | |
* | |
* \return Resulting value with set bits. | |
*/ | |
#define Set_bits(lvalue, mask) ((lvalue) |= (mask)) | |
/*! \brief Toggles the bits of a C lvalue specified by a given bit-mask. | |
* | |
* \param lvalue C lvalue of which to toggle bits. | |
* \param mask Bit-mask indicating bits to toggle. | |
* | |
* \return Resulting value with toggled bits. | |
*/ | |
#define Tgl_bits(lvalue, mask) ((lvalue) ^= (mask)) | |
/*! \brief Reads the bit-field of a value specified by a given bit-mask. | |
* | |
* \param value Value to read a bit-field from. | |
* \param mask Bit-mask indicating the bit-field to read. | |
* | |
* \return Read bit-field. | |
*/ | |
#define Rd_bitfield( value, mask) (Rd_bits( value, mask) >> ctz(mask)) | |
/*! \brief Writes the bit-field of a C lvalue specified by a given bit-mask. | |
* | |
* \param lvalue C lvalue to write a bit-field to. | |
* \param mask Bit-mask indicating the bit-field to write. | |
* \param bitfield Bit-field to write. | |
* | |
* \return Resulting value with written bit-field. | |
*/ | |
#define Wr_bitfield(lvalue, mask, bitfield) (Wr_bits(lvalue, mask, (U32)(bitfield) << ctz(mask))) | |
//! @} | |
/*! \brief This macro is used to test fatal errors. | |
* | |
* The macro tests if the expression is FALSE. If it is, a fatal error is | |
* detected and the application hangs up. | |
* | |
* \param expr Expression to evaluate and supposed to be nonzero. | |
*/ | |
#ifdef _ASSERT_ENABLE_ | |
#define Assert(expr) \ | |
{\ | |
if (!(expr)) while (TRUE);\ | |
} | |
#else | |
#define Assert(expr) | |
#endif | |
/*! \name Zero-Bit Counting | |
* | |
* Under AVR32-GCC, __builtin_clz and __builtin_ctz behave like macros when | |
* applied to constant expressions (values known at compile time), so they are | |
* more optimized than the use of the corresponding assembly instructions and | |
* they can be used as constant expressions e.g. to initialize objects having | |
* static storage duration, and like the corresponding assembly instructions | |
* when applied to non-constant expressions (values unknown at compile time), so | |
* they are more optimized than an assembly periphrasis. Hence, clz and ctz | |
* ensure a possible and optimized behavior for both constant and non-constant | |
* expressions. | |
*/ | |
//! @{ | |
/*! \brief Counts the leading zero bits of the given value considered as a 32-bit integer. | |
* | |
* \param u Value of which to count the leading zero bits. | |
* | |
* \return The count of leading zero bits in \a u. | |
*/ | |
#if __GNUC__ | |
#define clz(u) __builtin_clz(u) | |
#elif __ICCAVR32__ | |
#define clz(u) __count_leading_zeros(u) | |
#endif | |
/*! \brief Counts the trailing zero bits of the given value considered as a 32-bit integer. | |
* | |
* \param u Value of which to count the trailing zero bits. | |
* | |
* \return The count of trailing zero bits in \a u. | |
*/ | |
#if __GNUC__ | |
#define ctz(u) __builtin_ctz(u) | |
#elif __ICCAVR32__ | |
#define ctz(u) __count_trailing_zeros(u) | |
#endif | |
//! @} | |
/*! \name Alignment | |
*/ | |
//! @{ | |
/*! \brief Tests alignment of the number \a val with the \a n boundary. | |
* | |
* \param val Input value. | |
* \param n Boundary. | |
* | |
* \return \c 1 if the number \a val is aligned with the \a n boundary, else \c 0. | |
*/ | |
#define Test_align(val, n ) (!Tst_bits( val, (n) - 1 ) ) | |
/*! \brief Gets alignment of the number \a val with respect to the \a n boundary. | |
* | |
* \param val Input value. | |
* \param n Boundary. | |
* | |
* \return Alignment of the number \a val with respect to the \a n boundary. | |
*/ | |
#define Get_align( val, n ) ( Rd_bits( val, (n) - 1 ) ) | |
/*! \brief Sets alignment of the lvalue number \a lval to \a alg with respect to the \a n boundary. | |
* | |
* \param lval Input/output lvalue. | |
* \param n Boundary. | |
* \param alg Alignment. | |
* | |
* \return New value of \a lval resulting from its alignment set to \a alg with respect to the \a n boundary. | |
*/ | |
#define Set_align(lval, n, alg) ( Wr_bits(lval, (n) - 1, alg) ) | |
/*! \brief Aligns the number \a val with the upper \a n boundary. | |
* | |
* \param val Input value. | |
* \param n Boundary. | |
* | |
* \return Value resulting from the number \a val aligned with the upper \a n boundary. | |
*/ | |
#define Align_up( val, n ) (((val) + ((n) - 1)) & ~((n) - 1)) | |
/*! \brief Aligns the number \a val with the lower \a n boundary. | |
* | |
* \param val Input value. | |
* \param n Boundary. | |
* | |
* \return Value resulting from the number \a val aligned with the lower \a n boundary. | |
*/ | |
#define Align_down(val, n ) ( (val) & ~((n) - 1)) | |
//! @} | |
/*! \name Mathematics | |
* | |
* The same considerations as for clz and ctz apply here but AVR32-GCC does not | |
* provide built-in functions to access the assembly instructions abs, min and | |
* max and it does not produce them by itself in most cases, so two sets of | |
* macros are defined here: | |
* - Abs, Min and Max to apply to constant expressions (values known at | |
* compile time); | |
* - abs, min and max to apply to non-constant expressions (values unknown at | |
* compile time). | |
*/ | |
//! @{ | |
/*! \brief Takes the absolute value of \a a. | |
* | |
* \param a Input value. | |
* | |
* \return Absolute value of \a a. | |
* | |
* \note More optimized if only used with values known at compile time. | |
*/ | |
#define Abs(a) (((a) < 0 ) ? -(a) : (a)) | |
/*! \brief Takes the minimal value of \a a and \a b. | |
* | |
* \param a Input value. | |
* \param b Input value. | |
* | |
* \return Minimal value of \a a and \a b. | |
* | |
* \note More optimized if only used with values known at compile time. | |
*/ | |
#define Min(a, b) (((a) < (b)) ? (a) : (b)) | |
/*! \brief Takes the maximal value of \a a and \a b. | |
* | |
* \param a Input value. | |
* \param b Input value. | |
* | |
* \return Maximal value of \a a and \a b. | |
* | |
* \note More optimized if only used with values known at compile time. | |
*/ | |
#define Max(a, b) (((a) > (b)) ? (a) : (b)) | |
/*! \brief Takes the absolute value of \a a. | |
* | |
* \param a Input value. | |
* | |
* \return Absolute value of \a a. | |
* | |
* \note More optimized if only used with values unknown at compile time. | |
*/ | |
#if __GNUC__ | |
#define abs(a) \ | |
(\ | |
{\ | |
int __value = (a);\ | |
__asm__ ("abs\t%0" : "+r" (__value) : : "cc");\ | |
__value;\ | |
}\ | |
) | |
#elif __ICCAVR32__ | |
#define abs(a) Abs(a) | |
#endif | |
/*! \brief Takes the minimal value of \a a and \a b. | |
* | |
* \param a Input value. | |
* \param b Input value. | |
* | |
* \return Minimal value of \a a and \a b. | |
* | |
* \note More optimized if only used with values unknown at compile time. | |
*/ | |
#if __GNUC__ | |
#define min(a, b) \ | |
(\ | |
{\ | |
int __value, __arg_a = (a), __arg_b = (b);\ | |
__asm__ ("min\t%0, %1, %2" : "=r" (__value) : "r" (__arg_a), "r" (__arg_b));\ | |
__value;\ | |
}\ | |
) | |
#elif __ICCAVR32__ | |
#define min(a, b) __min(a, b) | |
#endif | |
/*! \brief Takes the maximal value of \a a and \a b. | |
* | |
* \param a Input value. | |
* \param b Input value. | |
* | |
* \return Maximal value of \a a and \a b. | |
* | |
* \note More optimized if only used with values unknown at compile time. | |
*/ | |
#if __GNUC__ | |
#define max(a, b) \ | |
(\ | |
{\ | |
int __value, __arg_a = (a), __arg_b = (b);\ | |
__asm__ ("max\t%0, %1, %2" : "=r" (__value) : "r" (__arg_a), "r" (__arg_b));\ | |
__value;\ | |
}\ | |
) | |
#elif __ICCAVR32__ | |
#define max(a, b) __max(a, b) | |
#endif | |
//! @} | |
/*! \brief Calls the routine at address \a addr. | |
* | |
* It generates a long call opcode. | |
* | |
* For example, `Long_call(0x80000000)' generates a software reset on a UC3 if | |
* it is invoked from the CPU supervisor mode. | |
* | |
* \param addr Address of the routine to call. | |
* | |
* \note It may be used as a long jump opcode in some special cases. | |
*/ | |
#define Long_call(addr) ((*(void (*)(void))(addr))()) | |
/*! \brief Resets the CPU by software. | |
* | |
* \warning It shall not be called from the CPU application mode. | |
*/ | |
#if __GNUC__ | |
#define Reset_CPU() \ | |
(\ | |
{\ | |
__asm__ __volatile__ (\ | |
"lddpc r9, 3f\n\t"\ | |
"mfsr r8, %[SR]\n\t"\ | |
"bfextu r8, r8, %[SR_MX_OFFSET], %[SR_MX_SIZE]\n\t"\ | |
"cp.w r8, 0b001\n\t"\ | |
"breq 0f\n\t"\ | |
"sub r8, pc, $ - 1f\n\t"\ | |
"pushm r8-r9\n\t"\ | |
"rete\n"\ | |
"0:\n\t"\ | |
"mtsr %[SR], r9\n"\ | |
"1:\n\t"\ | |
"mov r0, 0\n\t"\ | |
"mov r1, 0\n\t"\ | |
"mov r2, 0\n\t"\ | |
"mov r3, 0\n\t"\ | |
"mov r4, 0\n\t"\ | |
"mov r5, 0\n\t"\ | |
"mov r6, 0\n\t"\ | |
"mov r7, 0\n\t"\ | |
"mov r8, 0\n\t"\ | |
"mov r9, 0\n\t"\ | |
"mov r10, 0\n\t"\ | |
"mov r11, 0\n\t"\ | |
"mov r12, 0\n\t"\ | |
"mov sp, 0\n\t"\ | |
"stdsp sp[0], sp\n\t"\ | |
"ldmts sp, sp\n\t"\ | |
"mov lr, 0\n\t"\ | |
"lddpc pc, 2f\n\t"\ | |
".balign 4\n"\ | |
"2:\n\t"\ | |
".word _start\n"\ | |
"3:\n\t"\ | |
".word %[RESET_SR]"\ | |
:\ | |
: [SR] "i" (AVR32_SR),\ | |
[SR_MX_OFFSET] "i" (AVR32_SR_M0_OFFSET),\ | |
[SR_MX_SIZE] "i" (AVR32_SR_M0_SIZE + AVR32_SR_M1_SIZE + AVR32_SR_M2_SIZE),\ | |
[RESET_SR] "i" (AVR32_SR_GM_MASK | AVR32_SR_EM_MASK | AVR32_SR_M0_MASK)\ | |
);\ | |
}\ | |
) | |
#elif __ICCAVR32__ | |
#define Reset_CPU() \ | |
{\ | |
extern void *volatile __program_start;\ | |
__asm__ __volatile__ (\ | |
"mov r7, LWRD(__program_start)\n\t"\ | |
"orh r7, HWRD(__program_start)\n\t"\ | |
"mov r9, LWRD("ASTRINGZ(AVR32_SR_GM_MASK | AVR32_SR_EM_MASK | AVR32_SR_M0_MASK)")\n\t"\ | |
"orh r9, HWRD("ASTRINGZ(AVR32_SR_GM_MASK | AVR32_SR_EM_MASK | AVR32_SR_M0_MASK)")\n\t"\ | |
"mfsr r8, "ASTRINGZ(AVR32_SR)"\n\t"\ | |
"bfextu r8, r8, "ASTRINGZ(AVR32_SR_M0_OFFSET)", "ASTRINGZ(AVR32_SR_M0_SIZE + AVR32_SR_M1_SIZE + AVR32_SR_M2_SIZE)"\n\t"\ | |
"cp.w r8, 001b\n\t"\ | |
"breq $ + 10\n\t"\ | |
"sub r8, pc, -12\n\t"\ | |
"pushm r8-r9\n\t"\ | |
"rete\n\t"\ | |
"mtsr "ASTRINGZ(AVR32_SR)", r9\n\t"\ | |
"mov r0, 0\n\t"\ | |
"mov r1, 0\n\t"\ | |
"mov r2, 0\n\t"\ | |
"mov r3, 0\n\t"\ | |
"mov r4, 0\n\t"\ | |
"mov r5, 0\n\t"\ | |
"mov r6, 0\n\t"\ | |
"st.w r0[4], r7\n\t"\ | |
"mov r7, 0\n\t"\ | |
"mov r8, 0\n\t"\ | |
"mov r9, 0\n\t"\ | |
"mov r10, 0\n\t"\ | |
"mov r11, 0\n\t"\ | |
"mov r12, 0\n\t"\ | |
"mov sp, 0\n\t"\ | |
"stdsp sp[0], sp\n\t"\ | |
"ldmts sp, sp\n\t"\ | |
"mov lr, 0\n\t"\ | |
"ld.w pc, lr[4]"\ | |
);\ | |
__program_start;\ | |
} | |
#endif | |
/*! \name System Register Access | |
*/ | |
//! @{ | |
/*! \brief Gets the value of the \a sysreg system register. | |
* | |
* \param sysreg Address of the system register of which to get the value. | |
* | |
* \return Value of the \a sysreg system register. | |
*/ | |
#if __GNUC__ | |
#define Get_system_register(sysreg) __builtin_mfsr(sysreg) | |
#elif __ICCAVR32__ | |
#define Get_system_register(sysreg) __get_system_register(sysreg) | |
#endif | |
/*! \brief Sets the value of the \a sysreg system register to \a value. | |
* | |
* \param sysreg Address of the system register of which to set the value. | |
* \param value Value to set the \a sysreg system register to. | |
*/ | |
#if __GNUC__ | |
#define Set_system_register(sysreg, value) __builtin_mtsr(sysreg, value) | |
#elif __ICCAVR32__ | |
#define Set_system_register(sysreg, value) __set_system_register(sysreg, value) | |
#endif | |
//! @} | |
/*! \name CPU Status Register Access | |
*/ | |
//! @{ | |
/*! \brief Tells whether exceptions are globally enabled. | |
* | |
* \return \c 1 if exceptions are globally enabled, else \c 0. | |
*/ | |
#define Is_global_exception_enabled() (!Tst_bits(Get_system_register(AVR32_SR), AVR32_SR_EM_MASK)) | |
/*! \brief Disables exceptions globally. | |
*/ | |
#if __GNUC__ | |
#define Disable_global_exception() ({__asm__ __volatile__ ("ssrf\t%0" : : "i" (AVR32_SR_EM_OFFSET));}) | |
#elif __ICCAVR32__ | |
#define Disable_global_exception() (__set_status_flag(AVR32_SR_EM_OFFSET)) | |
#endif | |
/*! \brief Enables exceptions globally. | |
*/ | |
#if __GNUC__ | |
#define Enable_global_exception() ({__asm__ __volatile__ ("csrf\t%0" : : "i" (AVR32_SR_EM_OFFSET));}) | |
#elif __ICCAVR32__ | |
#define Enable_global_exception() (__clear_status_flag(AVR32_SR_EM_OFFSET)) | |
#endif | |
/*! \brief Tells whether interrupts are globally enabled. | |
* | |
* \return \c 1 if interrupts are globally enabled, else \c 0. | |
*/ | |
#define Is_global_interrupt_enabled() (!Tst_bits(Get_system_register(AVR32_SR), AVR32_SR_GM_MASK)) | |
/*! \brief Disables interrupts globally. | |
*/ | |
#if __GNUC__ | |
#define Disable_global_interrupt() ({__asm__ __volatile__ ("ssrf\t%0\n\tnop\n\tnop" : : "i" (AVR32_SR_GM_OFFSET));}) | |
#elif __ICCAVR32__ | |
#define Disable_global_interrupt() {__asm__ __volatile__ ("ssrf\t"ASTRINGZ(AVR32_SR_GM_OFFSET)"\n\tnop\n\tnop");} | |
#endif | |
/*! \brief Enables interrupts globally. | |
*/ | |
#if __GNUC__ | |
#define Enable_global_interrupt() ({__asm__ __volatile__ ("csrf\t%0" : : "i" (AVR32_SR_GM_OFFSET));}) | |
#elif __ICCAVR32__ | |
#define Enable_global_interrupt() (__enable_interrupt()) | |
#endif | |
/*! \brief Tells whether interrupt level \a int_lev is enabled. | |
* | |
* \param int_lev Interrupt level (0 to 3). | |
* | |
* \return \c 1 if interrupt level \a int_lev is enabled, else \c 0. | |
*/ | |
#define Is_interrupt_level_enabled(int_lev) (!Tst_bits(Get_system_register(AVR32_SR), TPASTE3(AVR32_SR_I, int_lev, M_MASK))) | |
/*! \brief Disables interrupt level \a int_lev. | |
* | |
* \param int_lev Interrupt level to disable (0 to 3). | |
*/ | |
#if __GNUC__ | |
#define Disable_interrupt_level(int_lev) ({__asm__ __volatile__ ("ssrf\t%0\n\tnop\n\tnop" : : "i" (TPASTE3(AVR32_SR_I, int_lev, M_OFFSET)));}) | |
#elif __ICCAVR32__ | |
#define Disable_interrupt_level(int_lev) {__asm__ __volatile__ ("ssrf\t"ASTRINGZ(TPASTE3(AVR32_SR_I, int_lev, M_OFFSET))"\n\tnop\n\tnop");} | |
#endif | |
/*! \brief Enables interrupt level \a int_lev. | |
* | |
* \param int_lev Interrupt level to enable (0 to 3). | |
*/ | |
#if __GNUC__ | |
#define Enable_interrupt_level(int_lev) ({__asm__ __volatile__ ("csrf\t%0" : : "i" (TPASTE3(AVR32_SR_I, int_lev, M_OFFSET)));}) | |
#elif __ICCAVR32__ | |
#define Enable_interrupt_level(int_lev) (__clear_status_flag(TPASTE3(AVR32_SR_I, int_lev, M_OFFSET))) | |
#endif | |
//! @} | |
/*! \name Debug Register Access | |
*/ | |
//! @{ | |
/*! \brief Gets the value of the \a dbgreg debug register. | |
* | |
* \param dbgreg Address of the debug register of which to get the value. | |
* | |
* \return Value of the \a dbgreg debug register. | |
*/ | |
#if __GNUC__ | |
#define Get_debug_register(dbgreg) __builtin_mfdr(dbgreg) | |
#elif __ICCAVR32__ | |
#define Get_debug_register(dbgreg) __get_debug_register(dbgreg) | |
#endif | |
/*! \brief Sets the value of the \a dbgreg debug register to \a value. | |
* | |
* \param dbgreg Address of the debug register of which to set the value. | |
* \param value Value to set the \a dbgreg debug register to. | |
*/ | |
#if __GNUC__ | |
#define Set_debug_register(dbgreg, value) __builtin_mtdr(dbgreg, value) | |
#elif __ICCAVR32__ | |
#define Set_debug_register(dbgreg, value) __set_debug_register(dbgreg, value) | |
#endif | |
//! @} | |
#endif // __AVR32_ABI_COMPILER__ | |
//! Boolean evaluating MCU little endianism. | |
#if (__GNUC__ && __AVR32__) || (__ICCAVR32__ || __AAVR32__) | |
#define LITTLE_ENDIAN_MCU FALSE | |
#endif | |
// Check that MCU endianism is correctly defined. | |
#ifndef LITTLE_ENDIAN_MCU | |
#error YOU MUST define the MCU endianism with LITTLE_ENDIAN_MCU: either FALSE or TRUE | |
#endif | |
//! Boolean evaluating MCU big endianism. | |
#define BIG_ENDIAN_MCU (!LITTLE_ENDIAN_MCU) | |
#ifdef __AVR32_ABI_COMPILER__ // Automatically defined when compiling for AVR32, not when assembling. | |
/*! \name MCU Endianism Handling | |
*/ | |
//! @{ | |
#if LITTLE_ENDIAN_MCU | |
#define LSB(u16) (((U8 *)&(u16))[0]) //!< Least significant byte of \a u16. | |
#define MSB(u16) (((U8 *)&(u16))[1]) //!< Most significant byte of \a u16. | |
#define LSH(u32) (((U16 *)&(u32))[0]) //!< Least significant half-word of \a u32. | |
#define MSH(u32) (((U16 *)&(u32))[1]) //!< Most significant half-word of \a u32. | |
#define LSB0W(u32) (((U8 *)&(u32))[0]) //!< Least significant byte of 1st rank of \a u32. | |
#define LSB1W(u32) (((U8 *)&(u32))[1]) //!< Least significant byte of 2nd rank of \a u32. | |
#define LSB2W(u32) (((U8 *)&(u32))[2]) //!< Least significant byte of 3rd rank of \a u32. | |
#define LSB3W(u32) (((U8 *)&(u32))[3]) //!< Least significant byte of 4th rank of \a u32. | |
#define MSB3W(u32) LSB0W(u32) //!< Most significant byte of 4th rank of \a u32. | |
#define MSB2W(u32) LSB1W(u32) //!< Most significant byte of 3rd rank of \a u32. | |
#define MSB1W(u32) LSB2W(u32) //!< Most significant byte of 2nd rank of \a u32. | |
#define MSB0W(u32) LSB3W(u32) //!< Most significant byte of 1st rank of \a u32. | |
#define LSW(u64) (((U32 *)&(u64))[0]) //!< Least significant word of \a u64. | |
#define MSW(u64) (((U32 *)&(u64))[1]) //!< Most significant word of \a u64. | |
#define LSH0(u64) (((U16 *)&(u64))[0]) //!< Least significant half-word of 1st rank of \a u64. | |
#define LSH1(u64) (((U16 *)&(u64))[1]) //!< Least significant half-word of 2nd rank of \a u64. | |
#define LSH2(u64) (((U16 *)&(u64))[2]) //!< Least significant half-word of 3rd rank of \a u64. | |
#define LSH3(u64) (((U16 *)&(u64))[3]) //!< Least significant half-word of 4th rank of \a u64. | |
#define MSH3(u64) LSH0(u64) //!< Most significant half-word of 4th rank of \a u64. | |
#define MSH2(u64) LSH1(u64) //!< Most significant half-word of 3rd rank of \a u64. | |
#define MSH1(u64) LSH2(u64) //!< Most significant half-word of 2nd rank of \a u64. | |
#define MSH0(u64) LSH3(u64) //!< Most significant half-word of 1st rank of \a u64. | |
#define LSB0D(u64) (((U8 *)&(u64))[0]) //!< Least significant byte of 1st rank of \a u64. | |
#define LSB1D(u64) (((U8 *)&(u64))[1]) //!< Least significant byte of 2nd rank of \a u64. | |
#define LSB2D(u64) (((U8 *)&(u64))[2]) //!< Least significant byte of 3rd rank of \a u64. | |
#define LSB3D(u64) (((U8 *)&(u64))[3]) //!< Least significant byte of 4th rank of \a u64. | |
#define LSB4D(u64) (((U8 *)&(u64))[4]) //!< Least significant byte of 5th rank of \a u64. | |
#define LSB5D(u64) (((U8 *)&(u64))[5]) //!< Least significant byte of 6th rank of \a u64. | |
#define LSB6D(u64) (((U8 *)&(u64))[6]) //!< Least significant byte of 7th rank of \a u64. | |
#define LSB7D(u64) (((U8 *)&(u64))[7]) //!< Least significant byte of 8th rank of \a u64. | |
#define MSB7D(u64) LSB0D(u64) //!< Most significant byte of 8th rank of \a u64. | |
#define MSB6D(u64) LSB1D(u64) //!< Most significant byte of 7th rank of \a u64. | |
#define MSB5D(u64) LSB2D(u64) //!< Most significant byte of 6th rank of \a u64. | |
#define MSB4D(u64) LSB3D(u64) //!< Most significant byte of 5th rank of \a u64. | |
#define MSB3D(u64) LSB4D(u64) //!< Most significant byte of 4th rank of \a u64. | |
#define MSB2D(u64) LSB5D(u64) //!< Most significant byte of 3rd rank of \a u64. | |
#define MSB1D(u64) LSB6D(u64) //!< Most significant byte of 2nd rank of \a u64. | |
#define MSB0D(u64) LSB7D(u64) //!< Most significant byte of 1st rank of \a u64. | |
#else // BIG_ENDIAN_MCU | |
#define MSB(u16) (((U8 *)&(u16))[0]) //!< Most significant byte of \a u16. | |
#define LSB(u16) (((U8 *)&(u16))[1]) //!< Least significant byte of \a u16. | |
#define MSH(u32) (((U16 *)&(u32))[0]) //!< Most significant half-word of \a u32. | |
#define LSH(u32) (((U16 *)&(u32))[1]) //!< Least significant half-word of \a u32. | |
#define MSB0W(u32) (((U8 *)&(u32))[0]) //!< Most significant byte of 1st rank of \a u32. | |
#define MSB1W(u32) (((U8 *)&(u32))[1]) //!< Most significant byte of 2nd rank of \a u32. | |
#define MSB2W(u32) (((U8 *)&(u32))[2]) //!< Most significant byte of 3rd rank of \a u32. | |
#define MSB3W(u32) (((U8 *)&(u32))[3]) //!< Most significant byte of 4th rank of \a u32. | |
#define LSB3W(u32) MSB0W(u32) //!< Least significant byte of 4th rank of \a u32. | |
#define LSB2W(u32) MSB1W(u32) //!< Least significant byte of 3rd rank of \a u32. | |
#define LSB1W(u32) MSB2W(u32) //!< Least significant byte of 2nd rank of \a u32. | |
#define LSB0W(u32) MSB3W(u32) //!< Least significant byte of 1st rank of \a u32. | |
#define MSW(u64) (((U32 *)&(u64))[0]) //!< Most significant word of \a u64. | |
#define LSW(u64) (((U32 *)&(u64))[1]) //!< Least significant word of \a u64. | |
#define MSH0(u64) (((U16 *)&(u64))[0]) //!< Most significant half-word of 1st rank of \a u64. | |
#define MSH1(u64) (((U16 *)&(u64))[1]) //!< Most significant half-word of 2nd rank of \a u64. | |
#define MSH2(u64) (((U16 *)&(u64))[2]) //!< Most significant half-word of 3rd rank of \a u64. | |
#define MSH3(u64) (((U16 *)&(u64))[3]) //!< Most significant half-word of 4th rank of \a u64. | |
#define LSH3(u64) MSH0(u64) //!< Least significant half-word of 4th rank of \a u64. | |
#define LSH2(u64) MSH1(u64) //!< Least significant half-word of 3rd rank of \a u64. | |
#define LSH1(u64) MSH2(u64) //!< Least significant half-word of 2nd rank of \a u64. | |
#define LSH0(u64) MSH3(u64) //!< Least significant half-word of 1st rank of \a u64. | |
#define MSB0D(u64) (((U8 *)&(u64))[0]) //!< Most significant byte of 1st rank of \a u64. | |
#define MSB1D(u64) (((U8 *)&(u64))[1]) //!< Most significant byte of 2nd rank of \a u64. | |
#define MSB2D(u64) (((U8 *)&(u64))[2]) //!< Most significant byte of 3rd rank of \a u64. | |
#define MSB3D(u64) (((U8 *)&(u64))[3]) //!< Most significant byte of 4th rank of \a u64. | |
#define MSB4D(u64) (((U8 *)&(u64))[4]) //!< Most significant byte of 5th rank of \a u64. | |
#define MSB5D(u64) (((U8 *)&(u64))[5]) //!< Most significant byte of 6th rank of \a u64. | |
#define MSB6D(u64) (((U8 *)&(u64))[6]) //!< Most significant byte of 7th rank of \a u64. | |
#define MSB7D(u64) (((U8 *)&(u64))[7]) //!< Most significant byte of 8th rank of \a u64. | |
#define LSB7D(u64) MSB0D(u64) //!< Least significant byte of 8th rank of \a u64. | |
#define LSB6D(u64) MSB1D(u64) //!< Least significant byte of 7th rank of \a u64. | |
#define LSB5D(u64) MSB2D(u64) //!< Least significant byte of 6th rank of \a u64. | |
#define LSB4D(u64) MSB3D(u64) //!< Least significant byte of 5th rank of \a u64. | |
#define LSB3D(u64) MSB4D(u64) //!< Least significant byte of 4th rank of \a u64. | |
#define LSB2D(u64) MSB5D(u64) //!< Least significant byte of 3rd rank of \a u64. | |
#define LSB1D(u64) MSB6D(u64) //!< Least significant byte of 2nd rank of \a u64. | |
#define LSB0D(u64) MSB7D(u64) //!< Least significant byte of 1st rank of \a u64. | |
#endif | |
//! @} | |
/*! \name Endianism Conversion | |
* | |
* The same considerations as for clz and ctz apply here but AVR32-GCC's | |
* __builtin_bswap_16 and __builtin_bswap_32 do not behave like macros when | |
* applied to constant expressions, so two sets of macros are defined here: | |
* - Swap16, Swap32 and Swap64 to apply to constant expressions (values known | |
* at compile time); | |
* - swap16, swap32 and swap64 to apply to non-constant expressions (values | |
* unknown at compile time). | |
*/ | |
//! @{ | |
/*! \brief Toggles the endianism of \a u16 (by swapping its bytes). | |
* | |
* \param u16 U16 of which to toggle the endianism. | |
* | |
* \return Value resulting from \a u16 with toggled endianism. | |
* | |
* \note More optimized if only used with values known at compile time. | |
*/ | |
#define Swap16(u16) ((U16)(((U16)(u16) >> 8) |\ | |
((U16)(u16) << 8))) | |
/*! \brief Toggles the endianism of \a u32 (by swapping its bytes). | |
* | |
* \param u32 U32 of which to toggle the endianism. | |
* | |
* \return Value resulting from \a u32 with toggled endianism. | |
* | |
* \note More optimized if only used with values known at compile time. | |
*/ | |
#define Swap32(u32) ((U32)(((U32)Swap16((U32)(u32) >> 16)) |\ | |
((U32)Swap16((U32)(u32)) << 16))) | |
/*! \brief Toggles the endianism of \a u64 (by swapping its bytes). | |
* | |
* \param u64 U64 of which to toggle the endianism. | |
* | |
* \return Value resulting from \a u64 with toggled endianism. | |
* | |
* \note More optimized if only used with values known at compile time. | |
*/ | |
#define Swap64(u64) ((U64)(((U64)Swap32((U64)(u64) >> 32)) |\ | |
((U64)Swap32((U64)(u64)) << 32))) | |
/*! \brief Toggles the endianism of \a u16 (by swapping its bytes). | |
* | |
* \param u16 U16 of which to toggle the endianism. | |
* | |
* \return Value resulting from \a u16 with toggled endianism. | |
* | |
* \note More optimized if only used with values unknown at compile time. | |
*/ | |
#if __GNUC__ | |
#define swap16(u16) ((U16)__builtin_bswap_16((U16)(u16))) | |
#elif __ICCAVR32__ | |
#define swap16(u16) ((U16)__swap_bytes_in_halfwords((U16)(u16))) | |
#endif | |
/*! \brief Toggles the endianism of \a u32 (by swapping its bytes). | |
* | |
* \param u32 U32 of which to toggle the endianism. | |
* | |
* \return Value resulting from \a u32 with toggled endianism. | |
* | |
* \note More optimized if only used with values unknown at compile time. | |
*/ | |
#if __GNUC__ | |
#define swap32(u32) ((U32)__builtin_bswap_32((U32)(u32))) | |
#elif __ICCAVR32__ | |
#define swap32(u32) ((U32)__swap_bytes((U32)(u32))) | |
#endif | |
/*! \brief Toggles the endianism of \a u64 (by swapping its bytes). | |
* | |
* \param u64 U64 of which to toggle the endianism. | |
* | |
* \return Value resulting from \a u64 with toggled endianism. | |
* | |
* \note More optimized if only used with values unknown at compile time. | |
*/ | |
#define swap64(u64) ((U64)(((U64)swap32((U64)(u64) >> 32)) |\ | |
((U64)swap32((U64)(u64)) << 32))) | |
//! @} | |
/*! \name Target Abstraction | |
*/ | |
//! @{ | |
#define _GLOBEXT_ extern //!< extern storage-class specifier. | |
#define _CONST_TYPE_ const //!< const type qualifier. | |
#define _MEM_TYPE_SLOW_ //!< Slow memory type. | |
#define _MEM_TYPE_MEDFAST_ //!< Fairly fast memory type. | |
#define _MEM_TYPE_FAST_ //!< Fast memory type. | |
typedef U8 Byte; //!< 8-bit unsigned integer. | |
#define memcmp_ram2ram memcmp //!< Target-specific memcmp of RAM to RAM. | |
#define memcmp_code2ram memcmp //!< Target-specific memcmp of RAM to NVRAM. | |
#define memcpy_ram2ram memcpy //!< Target-specific memcpy from RAM to RAM. | |
#define memcpy_code2ram memcpy //!< Target-specific memcpy from NVRAM to RAM. | |
#define LSB0(u32) LSB0W(u32) //!< Least significant byte of 1st rank of \a u32. | |
#define LSB1(u32) LSB1W(u32) //!< Least significant byte of 2nd rank of \a u32. | |
#define LSB2(u32) LSB2W(u32) //!< Least significant byte of 3rd rank of \a u32. | |
#define LSB3(u32) LSB3W(u32) //!< Least significant byte of 4th rank of \a u32. | |
#define MSB3(u32) MSB3W(u32) //!< Most significant byte of 4th rank of \a u32. | |
#define MSB2(u32) MSB2W(u32) //!< Most significant byte of 3rd rank of \a u32. | |
#define MSB1(u32) MSB1W(u32) //!< Most significant byte of 2nd rank of \a u32. | |
#define MSB0(u32) MSB0W(u32) //!< Most significant byte of 1st rank of \a u32. | |
//! @} | |
#endif // __AVR32_ABI_COMPILER__ | |
#endif // _COMPILER_H_ |