/**************************************************************************//** | |
* @file core_cmInstr.h | |
* @brief CMSIS Cortex-M Core Instruction Access Header File | |
* @version V3.20 | |
* @date 05. March 2013 | |
* | |
* @note | |
* | |
******************************************************************************/ | |
/* Copyright (c) 2009 - 2013 ARM LIMITED | |
All rights reserved. | |
Redistribution and use in source and binary forms, with or without | |
modification, are permitted provided that the following conditions are met: | |
- Redistributions of source code must retain the above copyright | |
notice, this list of conditions and the following disclaimer. | |
- Redistributions in binary form must reproduce the above copyright | |
notice, this list of conditions and the following disclaimer in the | |
documentation and/or other materials provided with the distribution. | |
- Neither the name of ARM nor the names of its contributors may be used | |
to endorse or promote products derived from this software without | |
specific prior written permission. | |
* | |
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE | |
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | |
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | |
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | |
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | |
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | |
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | |
POSSIBILITY OF SUCH DAMAGE. | |
---------------------------------------------------------------------------*/ | |
#ifndef __CORE_CMINSTR_H | |
#define __CORE_CMINSTR_H | |
/* ########################## Core Instruction Access ######################### */ | |
/** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface | |
Access to dedicated instructions | |
@{ | |
*/ | |
#if defined ( __CC_ARM ) /*------------------RealView Compiler -----------------*/ | |
/* ARM armcc specific functions */ | |
#if (__ARMCC_VERSION < 400677) | |
#error "Please use ARM Compiler Toolchain V4.0.677 or later!" | |
#endif | |
/** \brief No Operation | |
No Operation does nothing. This instruction can be used for code alignment purposes. | |
*/ | |
#define __NOP __nop | |
/** \brief Wait For Interrupt | |
Wait For Interrupt is a hint instruction that suspends execution | |
until one of a number of events occurs. | |
*/ | |
#define __WFI __wfi | |
/** \brief Wait For Event | |
Wait For Event is a hint instruction that permits the processor to enter | |
a low-power state until one of a number of events occurs. | |
*/ | |
#define __WFE __wfe | |
/** \brief Send Event | |
Send Event is a hint instruction. It causes an event to be signaled to the CPU. | |
*/ | |
#define __SEV __sev | |
/** \brief Instruction Synchronization Barrier | |
Instruction Synchronization Barrier flushes the pipeline in the processor, | |
so that all instructions following the ISB are fetched from cache or | |
memory, after the instruction has been completed. | |
*/ | |
#define __ISB() __isb(0xF) | |
/** \brief Data Synchronization Barrier | |
This function acts as a special kind of Data Memory Barrier. | |
It completes when all explicit memory accesses before this instruction complete. | |
*/ | |
#define __DSB() __dsb(0xF) | |
/** \brief Data Memory Barrier | |
This function ensures the apparent order of the explicit memory operations before | |
and after the instruction, without ensuring their completion. | |
*/ | |
#define __DMB() __dmb(0xF) | |
/** \brief Reverse byte order (32 bit) | |
This function reverses the byte order in integer value. | |
\param [in] value Value to reverse | |
\return Reversed value | |
*/ | |
#define __REV __rev | |
/** \brief Reverse byte order (16 bit) | |
This function reverses the byte order in two unsigned short values. | |
\param [in] value Value to reverse | |
\return Reversed value | |
*/ | |
#ifndef __NO_EMBEDDED_ASM | |
__attribute__((section(".rev16_text"))) __STATIC_INLINE __ASM uint32_t __REV16(uint32_t value) | |
{ | |
rev16 r0, r0 | |
bx lr | |
} | |
#endif | |
/** \brief Reverse byte order in signed short value | |
This function reverses the byte order in a signed short value with sign extension to integer. | |
\param [in] value Value to reverse | |
\return Reversed value | |
*/ | |
#ifndef __NO_EMBEDDED_ASM | |
__attribute__((section(".revsh_text"))) __STATIC_INLINE __ASM int32_t __REVSH(int32_t value) | |
{ | |
revsh r0, r0 | |
bx lr | |
} | |
#endif | |
/** \brief Rotate Right in unsigned value (32 bit) | |
This function Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits. | |
\param [in] value Value to rotate | |
\param [in] value Number of Bits to rotate | |
\return Rotated value | |
*/ | |
#define __ROR __ror | |
/** \brief Breakpoint | |
This function causes the processor to enter Debug state. | |
Debug tools can use this to investigate system state when the instruction at a particular address is reached. | |
\param [in] value is ignored by the processor. | |
If required, a debugger can use it to store additional information about the breakpoint. | |
*/ | |
#define __BKPT(value) __breakpoint(value) | |
#if (__CORTEX_M >= 0x03) | |
/** \brief Reverse bit order of value | |
This function reverses the bit order of the given value. | |
\param [in] value Value to reverse | |
\return Reversed value | |
*/ | |
#define __RBIT __rbit | |
/** \brief LDR Exclusive (8 bit) | |
This function performs a exclusive LDR command for 8 bit value. | |
\param [in] ptr Pointer to data | |
\return value of type uint8_t at (*ptr) | |
*/ | |
#define __LDREXB(ptr) ((uint8_t ) __ldrex(ptr)) | |
/** \brief LDR Exclusive (16 bit) | |
This function performs a exclusive LDR command for 16 bit values. | |
\param [in] ptr Pointer to data | |
\return value of type uint16_t at (*ptr) | |
*/ | |
#define __LDREXH(ptr) ((uint16_t) __ldrex(ptr)) | |
/** \brief LDR Exclusive (32 bit) | |
This function performs a exclusive LDR command for 32 bit values. | |
\param [in] ptr Pointer to data | |
\return value of type uint32_t at (*ptr) | |
*/ | |
#define __LDREXW(ptr) ((uint32_t ) __ldrex(ptr)) | |
/** \brief STR Exclusive (8 bit) | |
This function performs a exclusive STR command for 8 bit values. | |
\param [in] value Value to store | |
\param [in] ptr Pointer to location | |
\return 0 Function succeeded | |
\return 1 Function failed | |
*/ | |
#define __STREXB(value, ptr) __strex(value, ptr) | |
/** \brief STR Exclusive (16 bit) | |
This function performs a exclusive STR command for 16 bit values. | |
\param [in] value Value to store | |
\param [in] ptr Pointer to location | |
\return 0 Function succeeded | |
\return 1 Function failed | |
*/ | |
#define __STREXH(value, ptr) __strex(value, ptr) | |
/** \brief STR Exclusive (32 bit) | |
This function performs a exclusive STR command for 32 bit values. | |
\param [in] value Value to store | |
\param [in] ptr Pointer to location | |
\return 0 Function succeeded | |
\return 1 Function failed | |
*/ | |
#define __STREXW(value, ptr) __strex(value, ptr) | |
/** \brief Remove the exclusive lock | |
This function removes the exclusive lock which is created by LDREX. | |
*/ | |
#define __CLREX __clrex | |
/** \brief Signed Saturate | |
This function saturates a signed value. | |
\param [in] value Value to be saturated | |
\param [in] sat Bit position to saturate to (1..32) | |
\return Saturated value | |
*/ | |
#define __SSAT __ssat | |
/** \brief Unsigned Saturate | |
This function saturates an unsigned value. | |
\param [in] value Value to be saturated | |
\param [in] sat Bit position to saturate to (0..31) | |
\return Saturated value | |
*/ | |
#define __USAT __usat | |
/** \brief Count leading zeros | |
This function counts the number of leading zeros of a data value. | |
\param [in] value Value to count the leading zeros | |
\return number of leading zeros in value | |
*/ | |
#define __CLZ __clz | |
#endif /* (__CORTEX_M >= 0x03) */ | |
#elif defined ( __ICCARM__ ) /*------------------ ICC Compiler -------------------*/ | |
/* IAR iccarm specific functions */ | |
#include <cmsis_iar.h> | |
#elif defined ( __TMS470__ ) /*---------------- TI CCS Compiler ------------------*/ | |
/* TI CCS specific functions */ | |
#include <cmsis_ccs.h> | |
#elif defined ( __GNUC__ ) /*------------------ GNU Compiler ---------------------*/ | |
/* GNU gcc specific functions */ | |
/* Define macros for porting to both thumb1 and thumb2. | |
* For thumb1, use low register (r0-r7), specified by constrant "l" | |
* Otherwise, use general registers, specified by constrant "r" */ | |
#if defined (__thumb__) && !defined (__thumb2__) | |
#define __CMSIS_GCC_OUT_REG(r) "=l" (r) | |
#define __CMSIS_GCC_USE_REG(r) "l" (r) | |
#else | |
#define __CMSIS_GCC_OUT_REG(r) "=r" (r) | |
#define __CMSIS_GCC_USE_REG(r) "r" (r) | |
#endif | |
/** \brief No Operation | |
No Operation does nothing. This instruction can be used for code alignment purposes. | |
*/ | |
__attribute__( ( always_inline ) ) __STATIC_INLINE void __NOP(void) | |
{ | |
__ASM volatile ("nop"); | |
} | |
/** \brief Wait For Interrupt | |
Wait For Interrupt is a hint instruction that suspends execution | |
until one of a number of events occurs. | |
*/ | |
__attribute__( ( always_inline ) ) __STATIC_INLINE void __WFI(void) | |
{ | |
__ASM volatile ("wfi"); | |
} | |
/** \brief Wait For Event | |
Wait For Event is a hint instruction that permits the processor to enter | |
a low-power state until one of a number of events occurs. | |
*/ | |
__attribute__( ( always_inline ) ) __STATIC_INLINE void __WFE(void) | |
{ | |
__ASM volatile ("wfe"); | |
} | |
/** \brief Send Event | |
Send Event is a hint instruction. It causes an event to be signaled to the CPU. | |
*/ | |
__attribute__( ( always_inline ) ) __STATIC_INLINE void __SEV(void) | |
{ | |
__ASM volatile ("sev"); | |
} | |
/** \brief Instruction Synchronization Barrier | |
Instruction Synchronization Barrier flushes the pipeline in the processor, | |
so that all instructions following the ISB are fetched from cache or | |
memory, after the instruction has been completed. | |
*/ | |
__attribute__( ( always_inline ) ) __STATIC_INLINE void __ISB(void) | |
{ | |
__ASM volatile ("isb"); | |
} | |
/** \brief Data Synchronization Barrier | |
This function acts as a special kind of Data Memory Barrier. | |
It completes when all explicit memory accesses before this instruction complete. | |
*/ | |
__attribute__( ( always_inline ) ) __STATIC_INLINE void __DSB(void) | |
{ | |
__ASM volatile ("dsb"); | |
} | |
/** \brief Data Memory Barrier | |
This function ensures the apparent order of the explicit memory operations before | |
and after the instruction, without ensuring their completion. | |
*/ | |
__attribute__( ( always_inline ) ) __STATIC_INLINE void __DMB(void) | |
{ | |
__ASM volatile ("dmb"); | |
} | |
/** \brief Reverse byte order (32 bit) | |
This function reverses the byte order in integer value. | |
\param [in] value Value to reverse | |
\return Reversed value | |
*/ | |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __REV(uint32_t value) | |
{ | |
#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5) | |
return __builtin_bswap32(value); | |
#else | |
uint32_t result; | |
__ASM volatile ("rev %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) ); | |
return(result); | |
#endif | |
} | |
/** \brief Reverse byte order (16 bit) | |
This function reverses the byte order in two unsigned short values. | |
\param [in] value Value to reverse | |
\return Reversed value | |
*/ | |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __REV16(uint32_t value) | |
{ | |
uint32_t result; | |
__ASM volatile ("rev16 %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) ); | |
return(result); | |
} | |
/** \brief Reverse byte order in signed short value | |
This function reverses the byte order in a signed short value with sign extension to integer. | |
\param [in] value Value to reverse | |
\return Reversed value | |
*/ | |
__attribute__( ( always_inline ) ) __STATIC_INLINE int32_t __REVSH(int32_t value) | |
{ | |
#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8) | |
return (short)__builtin_bswap16(value); | |
#else | |
uint32_t result; | |
__ASM volatile ("revsh %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) ); | |
return(result); | |
#endif | |
} | |
/** \brief Rotate Right in unsigned value (32 bit) | |
This function Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits. | |
\param [in] value Value to rotate | |
\param [in] value Number of Bits to rotate | |
\return Rotated value | |
*/ | |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __ROR(uint32_t op1, uint32_t op2) | |
{ | |
return (op1 >> op2) | (op1 << (32 - op2)); | |
} | |
/** \brief Breakpoint | |
This function causes the processor to enter Debug state. | |
Debug tools can use this to investigate system state when the instruction at a particular address is reached. | |
\param [in] value is ignored by the processor. | |
If required, a debugger can use it to store additional information about the breakpoint. | |
*/ | |
#define __BKPT(value) __ASM volatile ("bkpt "#value) | |
#if (__CORTEX_M >= 0x03) | |
/** \brief Reverse bit order of value | |
This function reverses the bit order of the given value. | |
\param [in] value Value to reverse | |
\return Reversed value | |
*/ | |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __RBIT(uint32_t value) | |
{ | |
uint32_t result; | |
__ASM volatile ("rbit %0, %1" : "=r" (result) : "r" (value) ); | |
return(result); | |
} | |
/** \brief LDR Exclusive (8 bit) | |
This function performs a exclusive LDR command for 8 bit value. | |
\param [in] ptr Pointer to data | |
\return value of type uint8_t at (*ptr) | |
*/ | |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint8_t __LDREXB(volatile uint8_t *addr) | |
{ | |
uint32_t result; | |
#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8) | |
__ASM volatile ("ldrexb %0, %1" : "=r" (result) : "Q" (*addr) ); | |
#else | |
/* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not | |
accepted by assembler. So has to use following less efficient pattern. | |
*/ | |
__ASM volatile ("ldrexb %0, [%1]" : "=r" (result) : "r" (addr) : "memory" ); | |
#endif | |
return(result); | |
} | |
/** \brief LDR Exclusive (16 bit) | |
This function performs a exclusive LDR command for 16 bit values. | |
\param [in] ptr Pointer to data | |
\return value of type uint16_t at (*ptr) | |
*/ | |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint16_t __LDREXH(volatile uint16_t *addr) | |
{ | |
uint32_t result; | |
#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8) | |
__ASM volatile ("ldrexh %0, %1" : "=r" (result) : "Q" (*addr) ); | |
#else | |
/* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not | |
accepted by assembler. So has to use following less efficient pattern. | |
*/ | |
__ASM volatile ("ldrexh %0, [%1]" : "=r" (result) : "r" (addr) : "memory" ); | |
#endif | |
return(result); | |
} | |
/** \brief LDR Exclusive (32 bit) | |
This function performs a exclusive LDR command for 32 bit values. | |
\param [in] ptr Pointer to data | |
\return value of type uint32_t at (*ptr) | |
*/ | |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __LDREXW(volatile uint32_t *addr) | |
{ | |
uint32_t result; | |
__ASM volatile ("ldrex %0, %1" : "=r" (result) : "Q" (*addr) ); | |
return(result); | |
} | |
/** \brief STR Exclusive (8 bit) | |
This function performs a exclusive STR command for 8 bit values. | |
\param [in] value Value to store | |
\param [in] ptr Pointer to location | |
\return 0 Function succeeded | |
\return 1 Function failed | |
*/ | |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __STREXB(uint8_t value, volatile uint8_t *addr) | |
{ | |
uint32_t result; | |
__ASM volatile ("strexb %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" (value) ); | |
return(result); | |
} | |
/** \brief STR Exclusive (16 bit) | |
This function performs a exclusive STR command for 16 bit values. | |
\param [in] value Value to store | |
\param [in] ptr Pointer to location | |
\return 0 Function succeeded | |
\return 1 Function failed | |
*/ | |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __STREXH(uint16_t value, volatile uint16_t *addr) | |
{ | |
uint32_t result; | |
__ASM volatile ("strexh %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" (value) ); | |
return(result); | |
} | |
/** \brief STR Exclusive (32 bit) | |
This function performs a exclusive STR command for 32 bit values. | |
\param [in] value Value to store | |
\param [in] ptr Pointer to location | |
\return 0 Function succeeded | |
\return 1 Function failed | |
*/ | |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __STREXW(uint32_t value, volatile uint32_t *addr) | |
{ | |
uint32_t result; | |
__ASM volatile ("strex %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" (value) ); | |
return(result); | |
} | |
/** \brief Remove the exclusive lock | |
This function removes the exclusive lock which is created by LDREX. | |
*/ | |
__attribute__( ( always_inline ) ) __STATIC_INLINE void __CLREX(void) | |
{ | |
__ASM volatile ("clrex" ::: "memory"); | |
} | |
/** \brief Signed Saturate | |
This function saturates a signed value. | |
\param [in] value Value to be saturated | |
\param [in] sat Bit position to saturate to (1..32) | |
\return Saturated value | |
*/ | |
#define __SSAT(ARG1,ARG2) \ | |
({ \ | |
uint32_t __RES, __ARG1 = (ARG1); \ | |
__ASM ("ssat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \ | |
__RES; \ | |
}) | |
/** \brief Unsigned Saturate | |
This function saturates an unsigned value. | |
\param [in] value Value to be saturated | |
\param [in] sat Bit position to saturate to (0..31) | |
\return Saturated value | |
*/ | |
#define __USAT(ARG1,ARG2) \ | |
({ \ | |
uint32_t __RES, __ARG1 = (ARG1); \ | |
__ASM ("usat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \ | |
__RES; \ | |
}) | |
/** \brief Count leading zeros | |
This function counts the number of leading zeros of a data value. | |
\param [in] value Value to count the leading zeros | |
\return number of leading zeros in value | |
*/ | |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint8_t __CLZ(uint32_t value) | |
{ | |
uint32_t result; | |
__ASM volatile ("clz %0, %1" : "=r" (result) : "r" (value) ); | |
return(result); | |
} | |
#endif /* (__CORTEX_M >= 0x03) */ | |
#elif defined ( __TASKING__ ) /*------------------ TASKING Compiler --------------*/ | |
/* TASKING carm specific functions */ | |
/* | |
* The CMSIS functions have been implemented as intrinsics in the compiler. | |
* Please use "carm -?i" to get an up to date list of all intrinsics, | |
* Including the CMSIS ones. | |
*/ | |
#endif | |
/*@}*/ /* end of group CMSIS_Core_InstructionInterface */ | |
#endif /* __CORE_CMINSTR_H */ |