/** | |
* \file | |
* | |
* \brief Commonly used includes, types and macros. | |
* | |
* Copyright (c) 2010-2012 Atmel Corporation. All rights reserved. | |
* | |
* \asf_license_start | |
* | |
* \page License | |
* | |
* Redistribution and use in source and binary forms, with or without | |
* modification, are permitted provided that the following conditions are met: | |
* | |
* 1. Redistributions of source code must retain the above copyright notice, | |
* this list of conditions and the following disclaimer. | |
* | |
* 2. Redistributions in binary form must reproduce the above copyright notice, | |
* this list of conditions and the following disclaimer in the documentation | |
* and/or other materials provided with the distribution. | |
* | |
* 3. The name of Atmel may not be used to endorse or promote products derived | |
* from this software without specific prior written permission. | |
* | |
* 4. This software may only be redistributed and used in connection with an | |
* Atmel microcontroller product. | |
* | |
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED | |
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF | |
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE | |
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR | |
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | |
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN | |
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | |
* POSSIBILITY OF SUCH DAMAGE. | |
* | |
* \asf_license_stop | |
* | |
*/ | |
#ifndef UTILS_COMPILER_H | |
#define UTILS_COMPILER_H | |
/** | |
* \defgroup group_sam_utils Compiler abstraction layer and code utilities | |
* | |
* Compiler abstraction layer and code utilities for AT91SAM. | |
* This module provides various abstraction layers and utilities to make code compatible between different compilers. | |
* | |
* \{ | |
*/ | |
#include <stddef.h> | |
#if (defined __ICCARM__) | |
# include <intrinsics.h> | |
#endif | |
#include <parts.h> | |
#include "preprocessor.h" | |
#include <io.h> | |
//_____ D E C L A R A T I O N S ____________________________________________ | |
#ifndef __ASSEMBLY__ // Not defined for assembling. | |
#include <stdio.h> | |
#include <stdbool.h> | |
#include <stdint.h> | |
#include <stdlib.h> | |
#ifdef __ICCARM__ | |
/*! \name Compiler Keywords | |
* | |
* Port of some keywords from GCC to IAR Embedded Workbench. | |
*/ | |
//! @{ | |
#define __asm__ asm | |
#define __inline__ inline | |
#define __volatile__ | |
//! @} | |
#endif | |
/** | |
* \def UNUSED | |
* \brief Marking \a v as a unused parameter or value. | |
*/ | |
#define UNUSED(v) (void)(v) | |
/** | |
* \def unused | |
* \brief Marking \a v as a unused parameter or value. | |
*/ | |
#define unused(v) do { (void)(v); } while(0) | |
/** | |
* \def barrier | |
* \brief Memory barrier | |
*/ | |
#define barrier() __DMB() | |
/** | |
* \brief Emit the compiler pragma \a arg. | |
* | |
* \param arg The pragma directive as it would appear after \e \#pragma | |
* (i.e. not stringified). | |
*/ | |
#define COMPILER_PRAGMA(arg) _Pragma(#arg) | |
/** | |
* \def COMPILER_PACK_SET(alignment) | |
* \brief Set maximum alignment for subsequent struct and union | |
* definitions to \a alignment. | |
*/ | |
#define COMPILER_PACK_SET(alignment) COMPILER_PRAGMA(pack(alignment)) | |
/** | |
* \def COMPILER_PACK_RESET() | |
* \brief Set default alignment for subsequent struct and union | |
* definitions. | |
*/ | |
#define COMPILER_PACK_RESET() COMPILER_PRAGMA(pack()) | |
/** | |
* \brief Set aligned boundary. | |
*/ | |
#if (defined __GNUC__) || (defined __CC_ARM) | |
# define COMPILER_ALIGNED(a) __attribute__((__aligned__(a))) | |
#elif (defined __ICCARM__) | |
# define COMPILER_ALIGNED(a) COMPILER_PRAGMA(data_alignment = a) | |
#endif | |
/** | |
* \brief Set word-aligned boundary. | |
*/ | |
#if (defined __GNUC__) || defined(__CC_ARM) | |
#define COMPILER_WORD_ALIGNED __attribute__((__aligned__(4))) | |
#elif (defined __ICCARM__) | |
#define COMPILER_WORD_ALIGNED COMPILER_PRAGMA(data_alignment = 4) | |
#endif | |
/** | |
* \def __always_inline | |
* \brief The function should always be inlined. | |
* | |
* This annotation instructs the compiler to ignore its inlining | |
* heuristics and inline the function no matter how big it thinks it | |
* becomes. | |
*/ | |
#if defined(__CC_ARM) | |
# define __always_inline __forceinline | |
#elif (defined __GNUC__) | |
# define __always_inline __attribute__((__always_inline__)) inline | |
#elif (defined __ICCARM__) | |
# define __always_inline _Pragma("inline=forced") | |
#endif | |
/*! \brief This macro is used to test fatal errors. | |
* | |
* The macro tests if the expression is false. If it is, a fatal error is | |
* detected and the application hangs up. If TEST_SUITE_DEFINE_ASSERT_MACRO | |
* is defined, a unit test version of the macro is used, to allow execution | |
* of further tests after a false expression. | |
* | |
* \param expr Expression to evaluate and supposed to be nonzero. | |
*/ | |
#if defined(_ASSERT_ENABLE_) | |
# if defined(TEST_SUITE_DEFINE_ASSERT_MACRO) | |
// Assert() is defined in unit_test/suite.h | |
# include "unit_test/suite.h" | |
# else | |
#undef TEST_SUITE_DEFINE_ASSERT_MACRO | |
# define Assert(expr) \ | |
{\ | |
if (!(expr)) while (true);\ | |
} | |
# endif | |
#else | |
# define Assert(expr) ((void) 0) | |
#endif | |
/* Define attribute */ | |
#if defined ( __CC_ARM ) /* Keil µVision 4 */ | |
# define WEAK __attribute__ ((weak)) | |
#elif defined ( __ICCARM__ ) /* IAR Ewarm 5.41+ */ | |
# define WEAK __weak | |
#elif defined ( __GNUC__ ) /* GCC CS3 2009q3-68 */ | |
# define WEAK __attribute__ ((weak)) | |
#endif | |
/* Define NO_INIT attribute */ | |
#if defined ( __CC_ARM ) | |
# define NO_INIT __attribute__((zero_init)) | |
#elif defined ( __ICCARM__ ) | |
# define NO_INIT __no_init | |
#elif defined ( __GNUC__ ) | |
# define NO_INIT __attribute__((section(".no_init"))) | |
#endif | |
#include "interrupt.h" | |
/*! \name Usual Types | |
*/ | |
//! @{ | |
typedef unsigned char Bool; //!< Boolean. | |
#ifndef __cplusplus | |
#if !defined(__bool_true_false_are_defined) | |
typedef unsigned char bool; //!< Boolean. | |
#endif | |
#endif | |
typedef int8_t S8 ; //!< 8-bit signed integer. | |
typedef uint8_t U8 ; //!< 8-bit unsigned integer. | |
typedef int16_t S16; //!< 16-bit signed integer. | |
typedef uint16_t U16; //!< 16-bit unsigned integer. | |
typedef uint16_t le16_t; | |
typedef uint16_t be16_t; | |
typedef int32_t S32; //!< 32-bit signed integer. | |
typedef uint32_t U32; //!< 32-bit unsigned integer. | |
typedef uint32_t le32_t; | |
typedef uint32_t be32_t; | |
typedef int64_t S64; //!< 64-bit signed integer. | |
typedef uint64_t U64; //!< 64-bit unsigned integer. | |
typedef float F32; //!< 32-bit floating-point number. | |
typedef double F64; //!< 64-bit floating-point number. | |
typedef uint32_t iram_size_t; | |
//! @} | |
/*! \name Status Types | |
*/ | |
//! @{ | |
typedef bool Status_bool_t; //!< Boolean status. | |
typedef U8 Status_t; //!< 8-bit-coded status. | |
//! @} | |
/*! \name Aliasing Aggregate Types | |
*/ | |
//! @{ | |
//! 16-bit union. | |
typedef union | |
{ | |
S16 s16 ; | |
U16 u16 ; | |
S8 s8 [2]; | |
U8 u8 [2]; | |
} Union16; | |
//! 32-bit union. | |
typedef union | |
{ | |
S32 s32 ; | |
U32 u32 ; | |
S16 s16[2]; | |
U16 u16[2]; | |
S8 s8 [4]; | |
U8 u8 [4]; | |
} Union32; | |
//! 64-bit union. | |
typedef union | |
{ | |
S64 s64 ; | |
U64 u64 ; | |
S32 s32[2]; | |
U32 u32[2]; | |
S16 s16[4]; | |
U16 u16[4]; | |
S8 s8 [8]; | |
U8 u8 [8]; | |
} Union64; | |
//! Union of pointers to 64-, 32-, 16- and 8-bit unsigned integers. | |
typedef union | |
{ | |
S64 *s64ptr; | |
U64 *u64ptr; | |
S32 *s32ptr; | |
U32 *u32ptr; | |
S16 *s16ptr; | |
U16 *u16ptr; | |
S8 *s8ptr ; | |
U8 *u8ptr ; | |
} UnionPtr; | |
//! Union of pointers to volatile 64-, 32-, 16- and 8-bit unsigned integers. | |
typedef union | |
{ | |
volatile S64 *s64ptr; | |
volatile U64 *u64ptr; | |
volatile S32 *s32ptr; | |
volatile U32 *u32ptr; | |
volatile S16 *s16ptr; | |
volatile U16 *u16ptr; | |
volatile S8 *s8ptr ; | |
volatile U8 *u8ptr ; | |
} UnionVPtr; | |
//! Union of pointers to constant 64-, 32-, 16- and 8-bit unsigned integers. | |
typedef union | |
{ | |
const S64 *s64ptr; | |
const U64 *u64ptr; | |
const S32 *s32ptr; | |
const U32 *u32ptr; | |
const S16 *s16ptr; | |
const U16 *u16ptr; | |
const S8 *s8ptr ; | |
const U8 *u8ptr ; | |
} UnionCPtr; | |
//! Union of pointers to constant volatile 64-, 32-, 16- and 8-bit unsigned integers. | |
typedef union | |
{ | |
const volatile S64 *s64ptr; | |
const volatile U64 *u64ptr; | |
const volatile S32 *s32ptr; | |
const volatile U32 *u32ptr; | |
const volatile S16 *s16ptr; | |
const volatile U16 *u16ptr; | |
const volatile S8 *s8ptr ; | |
const volatile U8 *u8ptr ; | |
} UnionCVPtr; | |
//! Structure of pointers to 64-, 32-, 16- and 8-bit unsigned integers. | |
typedef struct | |
{ | |
S64 *s64ptr; | |
U64 *u64ptr; | |
S32 *s32ptr; | |
U32 *u32ptr; | |
S16 *s16ptr; | |
U16 *u16ptr; | |
S8 *s8ptr ; | |
U8 *u8ptr ; | |
} StructPtr; | |
//! Structure of pointers to volatile 64-, 32-, 16- and 8-bit unsigned integers. | |
typedef struct | |
{ | |
volatile S64 *s64ptr; | |
volatile U64 *u64ptr; | |
volatile S32 *s32ptr; | |
volatile U32 *u32ptr; | |
volatile S16 *s16ptr; | |
volatile U16 *u16ptr; | |
volatile S8 *s8ptr ; | |
volatile U8 *u8ptr ; | |
} StructVPtr; | |
//! Structure of pointers to constant 64-, 32-, 16- and 8-bit unsigned integers. | |
typedef struct | |
{ | |
const S64 *s64ptr; | |
const U64 *u64ptr; | |
const S32 *s32ptr; | |
const U32 *u32ptr; | |
const S16 *s16ptr; | |
const U16 *u16ptr; | |
const S8 *s8ptr ; | |
const U8 *u8ptr ; | |
} StructCPtr; | |
//! Structure of pointers to constant volatile 64-, 32-, 16- and 8-bit unsigned integers. | |
typedef struct | |
{ | |
const volatile S64 *s64ptr; | |
const volatile U64 *u64ptr; | |
const volatile S32 *s32ptr; | |
const volatile U32 *u32ptr; | |
const volatile S16 *s16ptr; | |
const volatile U16 *u16ptr; | |
const volatile S8 *s8ptr ; | |
const volatile U8 *u8ptr ; | |
} StructCVPtr; | |
//! @} | |
#endif // #ifndef __ASSEMBLY__ | |
/*! \name Usual Constants | |
*/ | |
//! @{ | |
#define DISABLE 0 | |
#define ENABLE 1 | |
#ifndef __cplusplus | |
#if !defined(__bool_true_false_are_defined) | |
#define false 0 | |
#define true 1 | |
#endif | |
#endif | |
#define PASS 0 | |
#define FAIL 1 | |
#define LOW 0 | |
#define HIGH 1 | |
//! @} | |
#ifndef __ASSEMBLY__ // not for assembling. | |
//! \name Optimization Control | |
//@{ | |
/** | |
* \def likely(exp) | |
* \brief The expression \a exp is likely to be true | |
*/ | |
#ifndef likely | |
# define likely(exp) (exp) | |
#endif | |
/** | |
* \def unlikely(exp) | |
* \brief The expression \a exp is unlikely to be true | |
*/ | |
#ifndef unlikely | |
# define unlikely(exp) (exp) | |
#endif | |
/** | |
* \def is_constant(exp) | |
* \brief Determine if an expression evaluates to a constant value. | |
* | |
* \param exp Any expression | |
* | |
* \return true if \a exp is constant, false otherwise. | |
*/ | |
#if (defined __GNUC__) || (defined __CC_ARM) | |
# define is_constant(exp) __builtin_constant_p(exp) | |
#else | |
# define is_constant(exp) (0) | |
#endif | |
//! @} | |
/*! \name Bit-Field Handling | |
*/ | |
//! @{ | |
/*! \brief Reads the bits of a value specified by a given bit-mask. | |
* | |
* \param value Value to read bits from. | |
* \param mask Bit-mask indicating bits to read. | |
* | |
* \return Read bits. | |
*/ | |
#define Rd_bits( value, mask) ((value) & (mask)) | |
/*! \brief Writes the bits of a C lvalue specified by a given bit-mask. | |
* | |
* \param lvalue C lvalue to write bits to. | |
* \param mask Bit-mask indicating bits to write. | |
* \param bits Bits to write. | |
* | |
* \return Resulting value with written bits. | |
*/ | |
#define Wr_bits(lvalue, mask, bits) ((lvalue) = ((lvalue) & ~(mask)) |\ | |
((bits ) & (mask))) | |
/*! \brief Tests the bits of a value specified by a given bit-mask. | |
* | |
* \param value Value of which to test bits. | |
* \param mask Bit-mask indicating bits to test. | |
* | |
* \return \c 1 if at least one of the tested bits is set, else \c 0. | |
*/ | |
#define Tst_bits( value, mask) (Rd_bits(value, mask) != 0) | |
/*! \brief Clears the bits of a C lvalue specified by a given bit-mask. | |
* | |
* \param lvalue C lvalue of which to clear bits. | |
* \param mask Bit-mask indicating bits to clear. | |
* | |
* \return Resulting value with cleared bits. | |
*/ | |
#define Clr_bits(lvalue, mask) ((lvalue) &= ~(mask)) | |
/*! \brief Sets the bits of a C lvalue specified by a given bit-mask. | |
* | |
* \param lvalue C lvalue of which to set bits. | |
* \param mask Bit-mask indicating bits to set. | |
* | |
* \return Resulting value with set bits. | |
*/ | |
#define Set_bits(lvalue, mask) ((lvalue) |= (mask)) | |
/*! \brief Toggles the bits of a C lvalue specified by a given bit-mask. | |
* | |
* \param lvalue C lvalue of which to toggle bits. | |
* \param mask Bit-mask indicating bits to toggle. | |
* | |
* \return Resulting value with toggled bits. | |
*/ | |
#define Tgl_bits(lvalue, mask) ((lvalue) ^= (mask)) | |
/*! \brief Reads the bit-field of a value specified by a given bit-mask. | |
* | |
* \param value Value to read a bit-field from. | |
* \param mask Bit-mask indicating the bit-field to read. | |
* | |
* \return Read bit-field. | |
*/ | |
#define Rd_bitfield( value, mask) (Rd_bits( value, mask) >> ctz(mask)) | |
/*! \brief Writes the bit-field of a C lvalue specified by a given bit-mask. | |
* | |
* \param lvalue C lvalue to write a bit-field to. | |
* \param mask Bit-mask indicating the bit-field to write. | |
* \param bitfield Bit-field to write. | |
* | |
* \return Resulting value with written bit-field. | |
*/ | |
#define Wr_bitfield(lvalue, mask, bitfield) (Wr_bits(lvalue, mask, (U32)(bitfield) << ctz(mask))) | |
//! @} | |
/*! \name Zero-Bit Counting | |
* | |
* Under GCC, __builtin_clz and __builtin_ctz behave like macros when | |
* applied to constant expressions (values known at compile time), so they are | |
* more optimized than the use of the corresponding assembly instructions and | |
* they can be used as constant expressions e.g. to initialize objects having | |
* static storage duration, and like the corresponding assembly instructions | |
* when applied to non-constant expressions (values unknown at compile time), so | |
* they are more optimized than an assembly periphrasis. Hence, clz and ctz | |
* ensure a possible and optimized behavior for both constant and non-constant | |
* expressions. | |
*/ | |
//! @{ | |
/*! \brief Counts the leading zero bits of the given value considered as a 32-bit integer. | |
* | |
* \param u Value of which to count the leading zero bits. | |
* | |
* \return The count of leading zero bits in \a u. | |
*/ | |
#if (defined __GNUC__) || (defined __CC_ARM) | |
# define clz(u) __builtin_clz(u) | |
#elif (defined __ICCARM__) | |
# define clz(u) __CLZ(u) | |
#else | |
# define clz(u) (((u) == 0) ? 32 : \ | |
((u) & (1ul << 31)) ? 0 : \ | |
((u) & (1ul << 30)) ? 1 : \ | |
((u) & (1ul << 29)) ? 2 : \ | |
((u) & (1ul << 28)) ? 3 : \ | |
((u) & (1ul << 27)) ? 4 : \ | |
((u) & (1ul << 26)) ? 5 : \ | |
((u) & (1ul << 25)) ? 6 : \ | |
((u) & (1ul << 24)) ? 7 : \ | |
((u) & (1ul << 23)) ? 8 : \ | |
((u) & (1ul << 22)) ? 9 : \ | |
((u) & (1ul << 21)) ? 10 : \ | |
((u) & (1ul << 20)) ? 11 : \ | |
((u) & (1ul << 19)) ? 12 : \ | |
((u) & (1ul << 18)) ? 13 : \ | |
((u) & (1ul << 17)) ? 14 : \ | |
((u) & (1ul << 16)) ? 15 : \ | |
((u) & (1ul << 15)) ? 16 : \ | |
((u) & (1ul << 14)) ? 17 : \ | |
((u) & (1ul << 13)) ? 18 : \ | |
((u) & (1ul << 12)) ? 19 : \ | |
((u) & (1ul << 11)) ? 20 : \ | |
((u) & (1ul << 10)) ? 21 : \ | |
((u) & (1ul << 9)) ? 22 : \ | |
((u) & (1ul << 8)) ? 23 : \ | |
((u) & (1ul << 7)) ? 24 : \ | |
((u) & (1ul << 6)) ? 25 : \ | |
((u) & (1ul << 5)) ? 26 : \ | |
((u) & (1ul << 4)) ? 27 : \ | |
((u) & (1ul << 3)) ? 28 : \ | |
((u) & (1ul << 2)) ? 29 : \ | |
((u) & (1ul << 1)) ? 30 : \ | |
31) | |
#endif | |
/*! \brief Counts the trailing zero bits of the given value considered as a 32-bit integer. | |
* | |
* \param u Value of which to count the trailing zero bits. | |
* | |
* \return The count of trailing zero bits in \a u. | |
*/ | |
#if (defined __GNUC__) || (defined __CC_ARM) | |
# define ctz(u) __builtin_ctz(u) | |
#else | |
# define ctz(u) ((u) & (1ul << 0) ? 0 : \ | |
(u) & (1ul << 1) ? 1 : \ | |
(u) & (1ul << 2) ? 2 : \ | |
(u) & (1ul << 3) ? 3 : \ | |
(u) & (1ul << 4) ? 4 : \ | |
(u) & (1ul << 5) ? 5 : \ | |
(u) & (1ul << 6) ? 6 : \ | |
(u) & (1ul << 7) ? 7 : \ | |
(u) & (1ul << 8) ? 8 : \ | |
(u) & (1ul << 9) ? 9 : \ | |
(u) & (1ul << 10) ? 10 : \ | |
(u) & (1ul << 11) ? 11 : \ | |
(u) & (1ul << 12) ? 12 : \ | |
(u) & (1ul << 13) ? 13 : \ | |
(u) & (1ul << 14) ? 14 : \ | |
(u) & (1ul << 15) ? 15 : \ | |
(u) & (1ul << 16) ? 16 : \ | |
(u) & (1ul << 17) ? 17 : \ | |
(u) & (1ul << 18) ? 18 : \ | |
(u) & (1ul << 19) ? 19 : \ | |
(u) & (1ul << 20) ? 20 : \ | |
(u) & (1ul << 21) ? 21 : \ | |
(u) & (1ul << 22) ? 22 : \ | |
(u) & (1ul << 23) ? 23 : \ | |
(u) & (1ul << 24) ? 24 : \ | |
(u) & (1ul << 25) ? 25 : \ | |
(u) & (1ul << 26) ? 26 : \ | |
(u) & (1ul << 27) ? 27 : \ | |
(u) & (1ul << 28) ? 28 : \ | |
(u) & (1ul << 29) ? 29 : \ | |
(u) & (1ul << 30) ? 30 : \ | |
(u) & (1ul << 31) ? 31 : \ | |
32) | |
#endif | |
//! @} | |
/*! \name Bit Reversing | |
*/ | |
//! @{ | |
/*! \brief Reverses the bits of \a u8. | |
* | |
* \param u8 U8 of which to reverse the bits. | |
* | |
* \return Value resulting from \a u8 with reversed bits. | |
*/ | |
#define bit_reverse8(u8) ((U8)(bit_reverse32((U8)(u8)) >> 24)) | |
/*! \brief Reverses the bits of \a u16. | |
* | |
* \param u16 U16 of which to reverse the bits. | |
* | |
* \return Value resulting from \a u16 with reversed bits. | |
*/ | |
#define bit_reverse16(u16) ((U16)(bit_reverse32((U16)(u16)) >> 16)) | |
/*! \brief Reverses the bits of \a u32. | |
* | |
* \param u32 U32 of which to reverse the bits. | |
* | |
* \return Value resulting from \a u32 with reversed bits. | |
*/ | |
#define bit_reverse32(u32) __RBIT(u32) | |
/*! \brief Reverses the bits of \a u64. | |
* | |
* \param u64 U64 of which to reverse the bits. | |
* | |
* \return Value resulting from \a u64 with reversed bits. | |
*/ | |
#define bit_reverse64(u64) ((U64)(((U64)bit_reverse32((U64)(u64) >> 32)) |\ | |
((U64)bit_reverse32((U64)(u64)) << 32))) | |
//! @} | |
/*! \name Alignment | |
*/ | |
//! @{ | |
/*! \brief Tests alignment of the number \a val with the \a n boundary. | |
* | |
* \param val Input value. | |
* \param n Boundary. | |
* | |
* \return \c 1 if the number \a val is aligned with the \a n boundary, else \c 0. | |
*/ | |
#define Test_align(val, n ) (!Tst_bits( val, (n) - 1 ) ) | |
/*! \brief Gets alignment of the number \a val with respect to the \a n boundary. | |
* | |
* \param val Input value. | |
* \param n Boundary. | |
* | |
* \return Alignment of the number \a val with respect to the \a n boundary. | |
*/ | |
#define Get_align( val, n ) ( Rd_bits( val, (n) - 1 ) ) | |
/*! \brief Sets alignment of the lvalue number \a lval to \a alg with respect to the \a n boundary. | |
* | |
* \param lval Input/output lvalue. | |
* \param n Boundary. | |
* \param alg Alignment. | |
* | |
* \return New value of \a lval resulting from its alignment set to \a alg with respect to the \a n boundary. | |
*/ | |
#define Set_align(lval, n, alg) ( Wr_bits(lval, (n) - 1, alg) ) | |
/*! \brief Aligns the number \a val with the upper \a n boundary. | |
* | |
* \param val Input value. | |
* \param n Boundary. | |
* | |
* \return Value resulting from the number \a val aligned with the upper \a n boundary. | |
*/ | |
#define Align_up( val, n ) (((val) + ((n) - 1)) & ~((n) - 1)) | |
/*! \brief Aligns the number \a val with the lower \a n boundary. | |
* | |
* \param val Input value. | |
* \param n Boundary. | |
* | |
* \return Value resulting from the number \a val aligned with the lower \a n boundary. | |
*/ | |
#define Align_down(val, n ) ( (val) & ~((n) - 1)) | |
//! @} | |
/*! \name Mathematics | |
* | |
* The same considerations as for clz and ctz apply here but GCC does not | |
* provide built-in functions to access the assembly instructions abs, min and | |
* max and it does not produce them by itself in most cases, so two sets of | |
* macros are defined here: | |
* - Abs, Min and Max to apply to constant expressions (values known at | |
* compile time); | |
* - abs, min and max to apply to non-constant expressions (values unknown at | |
* compile time), abs is found in stdlib.h. | |
*/ | |
//! @{ | |
/*! \brief Takes the absolute value of \a a. | |
* | |
* \param a Input value. | |
* | |
* \return Absolute value of \a a. | |
* | |
* \note More optimized if only used with values known at compile time. | |
*/ | |
#define Abs(a) (((a) < 0 ) ? -(a) : (a)) | |
/*! \brief Takes the minimal value of \a a and \a b. | |
* | |
* \param a Input value. | |
* \param b Input value. | |
* | |
* \return Minimal value of \a a and \a b. | |
* | |
* \note More optimized if only used with values known at compile time. | |
*/ | |
#define Min(a, b) (((a) < (b)) ? (a) : (b)) | |
/*! \brief Takes the maximal value of \a a and \a b. | |
* | |
* \param a Input value. | |
* \param b Input value. | |
* | |
* \return Maximal value of \a a and \a b. | |
* | |
* \note More optimized if only used with values known at compile time. | |
*/ | |
#define Max(a, b) (((a) > (b)) ? (a) : (b)) | |
// abs() is already defined by stdlib.h | |
/*! \brief Takes the minimal value of \a a and \a b. | |
* | |
* \param a Input value. | |
* \param b Input value. | |
* | |
* \return Minimal value of \a a and \a b. | |
* | |
* \note More optimized if only used with values unknown at compile time. | |
*/ | |
#define min(a, b) Min(a, b) | |
/*! \brief Takes the maximal value of \a a and \a b. | |
* | |
* \param a Input value. | |
* \param b Input value. | |
* | |
* \return Maximal value of \a a and \a b. | |
* | |
* \note More optimized if only used with values unknown at compile time. | |
*/ | |
#define max(a, b) Max(a, b) | |
//! @} | |
/*! \brief Calls the routine at address \a addr. | |
* | |
* It generates a long call opcode. | |
* | |
* For example, `Long_call(0x80000000)' generates a software reset on a UC3 if | |
* it is invoked from the CPU supervisor mode. | |
* | |
* \param addr Address of the routine to call. | |
* | |
* \note It may be used as a long jump opcode in some special cases. | |
*/ | |
#define Long_call(addr) ((*(void (*)(void))(addr))()) | |
/*! \name MCU Endianism Handling | |
* ARM is MCU little endianism. | |
*/ | |
//! @{ | |
#define MSB(u16) (((U8 *)&(u16))[1]) //!< Most significant byte of \a u16. | |
#define LSB(u16) (((U8 *)&(u16))[0]) //!< Least significant byte of \a u16. | |
#define MSH(u32) (((U16 *)&(u32))[1]) //!< Most significant half-word of \a u32. | |
#define LSH(u32) (((U16 *)&(u32))[0]) //!< Least significant half-word of \a u32. | |
#define MSB0W(u32) (((U8 *)&(u32))[3]) //!< Most significant byte of 1st rank of \a u32. | |
#define MSB1W(u32) (((U8 *)&(u32))[2]) //!< Most significant byte of 2nd rank of \a u32. | |
#define MSB2W(u32) (((U8 *)&(u32))[1]) //!< Most significant byte of 3rd rank of \a u32. | |
#define MSB3W(u32) (((U8 *)&(u32))[0]) //!< Most significant byte of 4th rank of \a u32. | |
#define LSB3W(u32) MSB0W(u32) //!< Least significant byte of 4th rank of \a u32. | |
#define LSB2W(u32) MSB1W(u32) //!< Least significant byte of 3rd rank of \a u32. | |
#define LSB1W(u32) MSB2W(u32) //!< Least significant byte of 2nd rank of \a u32. | |
#define LSB0W(u32) MSB3W(u32) //!< Least significant byte of 1st rank of \a u32. | |
#define MSW(u64) (((U32 *)&(u64))[1]) //!< Most significant word of \a u64. | |
#define LSW(u64) (((U32 *)&(u64))[0]) //!< Least significant word of \a u64. | |
#define MSH0(u64) (((U16 *)&(u64))[3]) //!< Most significant half-word of 1st rank of \a u64. | |
#define MSH1(u64) (((U16 *)&(u64))[2]) //!< Most significant half-word of 2nd rank of \a u64. | |
#define MSH2(u64) (((U16 *)&(u64))[1]) //!< Most significant half-word of 3rd rank of \a u64. | |
#define MSH3(u64) (((U16 *)&(u64))[0]) //!< Most significant half-word of 4th rank of \a u64. | |
#define LSH3(u64) MSH0(u64) //!< Least significant half-word of 4th rank of \a u64. | |
#define LSH2(u64) MSH1(u64) //!< Least significant half-word of 3rd rank of \a u64. | |
#define LSH1(u64) MSH2(u64) //!< Least significant half-word of 2nd rank of \a u64. | |
#define LSH0(u64) MSH3(u64) //!< Least significant half-word of 1st rank of \a u64. | |
#define MSB0D(u64) (((U8 *)&(u64))[7]) //!< Most significant byte of 1st rank of \a u64. | |
#define MSB1D(u64) (((U8 *)&(u64))[6]) //!< Most significant byte of 2nd rank of \a u64. | |
#define MSB2D(u64) (((U8 *)&(u64))[5]) //!< Most significant byte of 3rd rank of \a u64. | |
#define MSB3D(u64) (((U8 *)&(u64))[4]) //!< Most significant byte of 4th rank of \a u64. | |
#define MSB4D(u64) (((U8 *)&(u64))[3]) //!< Most significant byte of 5th rank of \a u64. | |
#define MSB5D(u64) (((U8 *)&(u64))[2]) //!< Most significant byte of 6th rank of \a u64. | |
#define MSB6D(u64) (((U8 *)&(u64))[1]) //!< Most significant byte of 7th rank of \a u64. | |
#define MSB7D(u64) (((U8 *)&(u64))[0]) //!< Most significant byte of 8th rank of \a u64. | |
#define LSB7D(u64) MSB0D(u64) //!< Least significant byte of 8th rank of \a u64. | |
#define LSB6D(u64) MSB1D(u64) //!< Least significant byte of 7th rank of \a u64. | |
#define LSB5D(u64) MSB2D(u64) //!< Least significant byte of 6th rank of \a u64. | |
#define LSB4D(u64) MSB3D(u64) //!< Least significant byte of 5th rank of \a u64. | |
#define LSB3D(u64) MSB4D(u64) //!< Least significant byte of 4th rank of \a u64. | |
#define LSB2D(u64) MSB5D(u64) //!< Least significant byte of 3rd rank of \a u64. | |
#define LSB1D(u64) MSB6D(u64) //!< Least significant byte of 2nd rank of \a u64. | |
#define LSB0D(u64) MSB7D(u64) //!< Least significant byte of 1st rank of \a u64. | |
#define BE16(x) Swap16(x) | |
#define LE16(x) (x) | |
#define le16_to_cpu(x) (x) | |
#define cpu_to_le16(x) (x) | |
#define LE16_TO_CPU(x) (x) | |
#define CPU_TO_LE16(x) (x) | |
#define be16_to_cpu(x) Swap16(x) | |
#define cpu_to_be16(x) Swap16(x) | |
#define BE16_TO_CPU(x) Swap16(x) | |
#define CPU_TO_BE16(x) Swap16(x) | |
#define le32_to_cpu(x) (x) | |
#define cpu_to_le32(x) (x) | |
#define LE32_TO_CPU(x) (x) | |
#define CPU_TO_LE32(x) (x) | |
#define be32_to_cpu(x) swap32(x) | |
#define cpu_to_be32(x) swap32(x) | |
#define BE32_TO_CPU(x) swap32(x) | |
#define CPU_TO_BE32(x) swap32(x) | |
//! @} | |
/*! \name Endianism Conversion | |
* | |
* The same considerations as for clz and ctz apply here but GCC's | |
* __builtin_bswap_32 and __builtin_bswap_64 do not behave like macros when | |
* applied to constant expressions, so two sets of macros are defined here: | |
* - Swap16, Swap32 and Swap64 to apply to constant expressions (values known | |
* at compile time); | |
* - swap16, swap32 and swap64 to apply to non-constant expressions (values | |
* unknown at compile time). | |
*/ | |
//! @{ | |
/*! \brief Toggles the endianism of \a u16 (by swapping its bytes). | |
* | |
* \param u16 U16 of which to toggle the endianism. | |
* | |
* \return Value resulting from \a u16 with toggled endianism. | |
* | |
* \note More optimized if only used with values known at compile time. | |
*/ | |
#define Swap16(u16) ((U16)(((U16)(u16) >> 8) |\ | |
((U16)(u16) << 8))) | |
/*! \brief Toggles the endianism of \a u32 (by swapping its bytes). | |
* | |
* \param u32 U32 of which to toggle the endianism. | |
* | |
* \return Value resulting from \a u32 with toggled endianism. | |
* | |
* \note More optimized if only used with values known at compile time. | |
*/ | |
#define Swap32(u32) ((U32)(((U32)Swap16((U32)(u32) >> 16)) |\ | |
((U32)Swap16((U32)(u32)) << 16))) | |
/*! \brief Toggles the endianism of \a u64 (by swapping its bytes). | |
* | |
* \param u64 U64 of which to toggle the endianism. | |
* | |
* \return Value resulting from \a u64 with toggled endianism. | |
* | |
* \note More optimized if only used with values known at compile time. | |
*/ | |
#define Swap64(u64) ((U64)(((U64)Swap32((U64)(u64) >> 32)) |\ | |
((U64)Swap32((U64)(u64)) << 32))) | |
/*! \brief Toggles the endianism of \a u16 (by swapping its bytes). | |
* | |
* \param u16 U16 of which to toggle the endianism. | |
* | |
* \return Value resulting from \a u16 with toggled endianism. | |
* | |
* \note More optimized if only used with values unknown at compile time. | |
*/ | |
#define swap16(u16) Swap16(u16) | |
/*! \brief Toggles the endianism of \a u32 (by swapping its bytes). | |
* | |
* \param u32 U32 of which to toggle the endianism. | |
* | |
* \return Value resulting from \a u32 with toggled endianism. | |
* | |
* \note More optimized if only used with values unknown at compile time. | |
*/ | |
#if (defined __GNUC__) | |
# define swap32(u32) ((U32)__builtin_bswap32((U32)(u32))) | |
#else | |
# define swap32(u32) Swap32(u32) | |
#endif | |
/*! \brief Toggles the endianism of \a u64 (by swapping its bytes). | |
* | |
* \param u64 U64 of which to toggle the endianism. | |
* | |
* \return Value resulting from \a u64 with toggled endianism. | |
* | |
* \note More optimized if only used with values unknown at compile time. | |
*/ | |
#if (defined __GNUC__) | |
# define swap64(u64) ((U64)__builtin_bswap64((U64)(u64))) | |
#else | |
# define swap64(u64) ((U64)(((U64)swap32((U64)(u64) >> 32)) |\ | |
((U64)swap32((U64)(u64)) << 32))) | |
#endif | |
//! @} | |
/*! \name Target Abstraction | |
*/ | |
//! @{ | |
#define _GLOBEXT_ extern //!< extern storage-class specifier. | |
#define _CONST_TYPE_ const //!< const type qualifier. | |
#define _MEM_TYPE_SLOW_ //!< Slow memory type. | |
#define _MEM_TYPE_MEDFAST_ //!< Fairly fast memory type. | |
#define _MEM_TYPE_FAST_ //!< Fast memory type. | |
typedef U8 Byte; //!< 8-bit unsigned integer. | |
#define memcmp_ram2ram memcmp //!< Target-specific memcmp of RAM to RAM. | |
#define memcmp_code2ram memcmp //!< Target-specific memcmp of RAM to NVRAM. | |
#define memcpy_ram2ram memcpy //!< Target-specific memcpy from RAM to RAM. | |
#define memcpy_code2ram memcpy //!< Target-specific memcpy from NVRAM to RAM. | |
#define LSB0(u32) LSB0W(u32) //!< Least significant byte of 1st rank of \a u32. | |
#define LSB1(u32) LSB1W(u32) //!< Least significant byte of 2nd rank of \a u32. | |
#define LSB2(u32) LSB2W(u32) //!< Least significant byte of 3rd rank of \a u32. | |
#define LSB3(u32) LSB3W(u32) //!< Least significant byte of 4th rank of \a u32. | |
#define MSB3(u32) MSB3W(u32) //!< Most significant byte of 4th rank of \a u32. | |
#define MSB2(u32) MSB2W(u32) //!< Most significant byte of 3rd rank of \a u32. | |
#define MSB1(u32) MSB1W(u32) //!< Most significant byte of 2nd rank of \a u32. | |
#define MSB0(u32) MSB0W(u32) //!< Most significant byte of 1st rank of \a u32. | |
//! @} | |
/** | |
* \brief Calculate \f$ \left\lceil \frac{a}{b} \right\rceil \f$ using | |
* integer arithmetic. | |
* | |
* \param a An integer | |
* \param b Another integer | |
* | |
* \return (\a a / \a b) rounded up to the nearest integer. | |
*/ | |
#define div_ceil(a, b) (((a) + (b) - 1) / (b)) | |
#endif // #ifndef __ASSEMBLY__ | |
/** | |
* \} | |
*/ | |
#endif /* UTILS_COMPILER_H */ |