blob: e82a7694b6a5d874b6ea2f7bb208f2f75879cbe7 [file] [log] [blame] [edit]
/*
FreeRTOS V8.0.1 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/* Originally adapted from file written by Andreas Dannenberg. Supplied with permission. */
/* Kernel includes. */
#include "FreeRTOS.h"
#include "task.h"
#include "semphr.h"
/* Hardware specific includes. */
#include "EthDev_LPC17xx.h"
/* Time to wait between each inspection of the link status. */
#define emacWAIT_FOR_LINK_TO_ESTABLISH ( 500 / portTICK_PERIOD_MS )
/* Short delay used in several places during the initialisation process. */
#define emacSHORT_DELAY ( 2 )
/* Hardware specific bit definitions. */
#define emacLINK_ESTABLISHED ( 0x0020)
#define emacFULL_DUPLEX_ENABLED ( 0x0010 )
#define emac10BASE_T_MODE ( 0x0004 )
#define emacPINSEL2_VALUE ( 0x50150105 )
#define emacDIV_44 ( 0x28 )
/* If no buffers are available, then wait this long before looking again.... */
#define emacBUFFER_WAIT_DELAY ( 3 / portTICK_PERIOD_MS )
/* ...and don't look more than this many times. */
#define emacBUFFER_WAIT_ATTEMPTS ( 30 )
/* Index to the Tx descriptor that is always used first for every Tx. The second
descriptor is then used to re-send in order to speed up the uIP Tx process. */
#define emacTX_DESC_INDEX ( 0 )
/*-----------------------------------------------------------*/
/*
* Configure both the Rx and Tx descriptors during the init process.
*/
static void prvInitDescriptors( void );
/*
* Setup the IO and peripherals required for Ethernet communication.
*/
static void prvSetupEMACHardware( void );
/*
* Control the auto negotiate process.
*/
static void prvConfigurePHY( void );
/*
* Wait for a link to be established, then setup the PHY according to the link
* parameters.
*/
static long prvSetupLinkStatus( void );
/*
* Search the pool of buffers to find one that is free. If a buffer is found
* mark it as in use before returning its address.
*/
static unsigned char *prvGetNextBuffer( void );
/*
* Return an allocated buffer to the pool of free buffers.
*/
static void prvReturnBuffer( unsigned char *pucBuffer );
/*
* Send lValue to the lPhyReg within the PHY.
*/
static long prvWritePHY( long lPhyReg, long lValue );
/*
* Read a value from ucPhyReg within the PHY. *plStatus will be set to
* pdFALSE if there is an error.
*/
static unsigned short prvReadPHY( unsigned char ucPhyReg, long *plStatus );
/*-----------------------------------------------------------*/
/* The semaphore used to wake the uIP task when data arrives. */
extern SemaphoreHandle_t xEMACSemaphore;
/* Each ucBufferInUse index corresponds to a position in the pool of buffers.
If the index contains a 1 then the buffer within pool is in use, if it
contains a 0 then the buffer is free. */
static unsigned char ucBufferInUse[ ETH_NUM_BUFFERS ] = { pdFALSE };
/* The uip_buffer is not a fixed array, but instead gets pointed to the buffers
allocated within this file. */
unsigned char * uip_buf;
/* Store the length of the data being sent so the data can be sent twice. The
value will be set back to 0 once the data has been sent twice. */
static unsigned short usSendLen = 0;
/*-----------------------------------------------------------*/
long lEMACInit( void )
{
long lReturn = pdPASS;
unsigned long ulID1, ulID2;
/* Reset peripherals, configure port pins and registers. */
prvSetupEMACHardware();
/* Check the PHY part number is as expected. */
ulID1 = prvReadPHY( PHY_REG_IDR1, &lReturn );
ulID2 = prvReadPHY( PHY_REG_IDR2, &lReturn );
if( ( (ulID1 << 16UL ) | ( ulID2 & 0xFFFFUL ) ) == KS8721_ID )
{
/* Set the Ethernet MAC Address registers */
EMAC->SA0 = ( configMAC_ADDR0 << 8 ) | configMAC_ADDR1;
EMAC->SA1 = ( configMAC_ADDR2 << 8 ) | configMAC_ADDR3;
EMAC->SA2 = ( configMAC_ADDR4 << 8 ) | configMAC_ADDR5;
/* Initialize Tx and Rx DMA Descriptors */
prvInitDescriptors();
/* Receive broadcast and perfect match packets */
EMAC->RxFilterCtrl = RFC_UCAST_EN | RFC_BCAST_EN | RFC_PERFECT_EN;
/* Setup the PHY. */
prvConfigurePHY();
}
else
{
lReturn = pdFAIL;
}
/* Check the link status. */
if( lReturn == pdPASS )
{
lReturn = prvSetupLinkStatus();
}
if( lReturn == pdPASS )
{
/* Initialise uip_buf to ensure it points somewhere valid. */
uip_buf = prvGetNextBuffer();
/* Reset all interrupts */
EMAC->IntClear = ( INT_RX_OVERRUN | INT_RX_ERR | INT_RX_FIN | INT_RX_DONE | INT_TX_UNDERRUN | INT_TX_ERR | INT_TX_FIN | INT_TX_DONE | INT_SOFT_INT | INT_WAKEUP );
/* Enable receive and transmit mode of MAC Ethernet core */
EMAC->Command |= ( CR_RX_EN | CR_TX_EN );
EMAC->MAC1 |= MAC1_REC_EN;
}
return lReturn;
}
/*-----------------------------------------------------------*/
static unsigned char *prvGetNextBuffer( void )
{
long x;
unsigned char *pucReturn = NULL;
unsigned long ulAttempts = 0;
while( pucReturn == NULL )
{
/* Look through the buffers to find one that is not in use by
anything else. */
for( x = 0; x < ETH_NUM_BUFFERS; x++ )
{
if( ucBufferInUse[ x ] == pdFALSE )
{
ucBufferInUse[ x ] = pdTRUE;
pucReturn = ( unsigned char * ) ETH_BUF( x );
break;
}
}
/* Was a buffer found? */
if( pucReturn == NULL )
{
ulAttempts++;
if( ulAttempts >= emacBUFFER_WAIT_ATTEMPTS )
{
break;
}
/* Wait then look again. */
vTaskDelay( emacBUFFER_WAIT_DELAY );
}
}
return pucReturn;
}
/*-----------------------------------------------------------*/
static void prvInitDescriptors( void )
{
long x, lNextBuffer = 0;
for( x = 0; x < NUM_RX_FRAG; x++ )
{
/* Allocate the next Ethernet buffer to this descriptor. */
RX_DESC_PACKET( x ) = ETH_BUF( lNextBuffer );
RX_DESC_CTRL( x ) = RCTRL_INT | ( ETH_FRAG_SIZE - 1 );
RX_STAT_INFO( x ) = 0;
RX_STAT_HASHCRC( x ) = 0;
/* The Ethernet buffer is now in use. */
ucBufferInUse[ lNextBuffer ] = pdTRUE;
lNextBuffer++;
}
/* Set EMAC Receive Descriptor Registers. */
EMAC->RxDescriptor = RX_DESC_BASE;
EMAC->RxStatus = RX_STAT_BASE;
EMAC->RxDescriptorNumber = NUM_RX_FRAG - 1;
/* Rx Descriptors Point to 0 */
EMAC->RxConsumeIndex = 0;
/* A buffer is not allocated to the Tx descriptors until they are actually
used. */
for( x = 0; x < NUM_TX_FRAG; x++ )
{
TX_DESC_PACKET( x ) = ( unsigned long ) NULL;
TX_DESC_CTRL( x ) = 0;
TX_STAT_INFO( x ) = 0;
}
/* Set EMAC Transmit Descriptor Registers. */
EMAC->TxDescriptor = TX_DESC_BASE;
EMAC->TxStatus = TX_STAT_BASE;
EMAC->TxDescriptorNumber = NUM_TX_FRAG - 1;
/* Tx Descriptors Point to 0 */
EMAC->TxProduceIndex = 0;
}
/*-----------------------------------------------------------*/
static void prvSetupEMACHardware( void )
{
unsigned short us;
long x, lDummy;
/* Enable P1 Ethernet Pins. */
PINCON->PINSEL2 = emacPINSEL2_VALUE;
PINCON->PINSEL3 = ( PINCON->PINSEL3 & ~0x0000000F ) | 0x00000005;
/* Power Up the EMAC controller. */
SC->PCONP |= PCONP_PCENET;
vTaskDelay( emacSHORT_DELAY );
/* Reset all EMAC internal modules. */
EMAC->MAC1 = MAC1_RES_TX | MAC1_RES_MCS_TX | MAC1_RES_RX | MAC1_RES_MCS_RX | MAC1_SIM_RES | MAC1_SOFT_RES;
EMAC->Command = CR_REG_RES | CR_TX_RES | CR_RX_RES | CR_PASS_RUNT_FRM;
/* A short delay after reset. */
vTaskDelay( emacSHORT_DELAY );
/* Initialize MAC control registers. */
EMAC->MAC1 = MAC1_PASS_ALL;
EMAC->MAC2 = MAC2_CRC_EN | MAC2_PAD_EN;
EMAC->MAXF = ETH_MAX_FLEN;
EMAC->CLRT = CLRT_DEF;
EMAC->IPGR = IPGR_DEF;
EMAC->MCFG = emacDIV_44;
/* Enable Reduced MII interface. */
EMAC->Command = CR_RMII | CR_PASS_RUNT_FRM;
/* Reset Reduced MII Logic. */
EMAC->SUPP = SUPP_RES_RMII;
vTaskDelay( emacSHORT_DELAY );
EMAC->SUPP = 0;
/* Put the PHY in reset mode */
prvWritePHY( PHY_REG_BMCR, MCFG_RES_MII );
prvWritePHY( PHY_REG_BMCR, MCFG_RES_MII );
/* Wait for hardware reset to end. */
for( x = 0; x < 100; x++ )
{
vTaskDelay( emacSHORT_DELAY * 5 );
us = prvReadPHY( PHY_REG_BMCR, &lDummy );
if( !( us & MCFG_RES_MII ) )
{
/* Reset complete */
break;
}
}
}
/*-----------------------------------------------------------*/
static void prvConfigurePHY( void )
{
unsigned short us;
long x, lDummy;
/* Auto negotiate the configuration. */
if( prvWritePHY( PHY_REG_BMCR, PHY_AUTO_NEG ) )
{
vTaskDelay( emacSHORT_DELAY * 5 );
for( x = 0; x < 10; x++ )
{
us = prvReadPHY( PHY_REG_BMSR, &lDummy );
if( us & PHY_AUTO_NEG_COMPLETE )
{
break;
}
vTaskDelay( emacWAIT_FOR_LINK_TO_ESTABLISH );
}
}
}
/*-----------------------------------------------------------*/
static long prvSetupLinkStatus( void )
{
long lReturn = pdFAIL, x;
unsigned short usLinkStatus;
/* Wait with timeout for the link to be established. */
for( x = 0; x < 10; x++ )
{
usLinkStatus = prvReadPHY( PHY_CTRLER, &lReturn );
if( usLinkStatus != 0x00 )
{
/* Link is established. */
lReturn = pdPASS;
break;
}
vTaskDelay( emacWAIT_FOR_LINK_TO_ESTABLISH );
}
if( lReturn == pdPASS )
{
/* Configure Full/Half Duplex mode. */
if( usLinkStatus & emacFULL_DUPLEX_ENABLED )
{
/* Full duplex is enabled. */
EMAC->MAC2 |= MAC2_FULL_DUP;
EMAC->Command |= CR_FULL_DUP;
EMAC->IPGT = IPGT_FULL_DUP;
}
else
{
/* Half duplex mode. */
EMAC->IPGT = IPGT_HALF_DUP;
}
/* Configure 100MBit/10MBit mode. */
if( usLinkStatus & emac10BASE_T_MODE )
{
/* 10MBit mode. */
EMAC->SUPP = 0;
}
else
{
/* 100MBit mode. */
EMAC->SUPP = SUPP_SPEED;
}
}
return lReturn;
}
/*-----------------------------------------------------------*/
static void prvReturnBuffer( unsigned char *pucBuffer )
{
unsigned long ul;
/* Return a buffer to the pool of free buffers. */
for( ul = 0; ul < ETH_NUM_BUFFERS; ul++ )
{
if( ETH_BUF( ul ) == ( unsigned long ) pucBuffer )
{
ucBufferInUse[ ul ] = pdFALSE;
break;
}
}
}
/*-----------------------------------------------------------*/
unsigned long ulGetEMACRxData( void )
{
unsigned long ulLen = 0;
long lIndex;
if( EMAC->RxProduceIndex != EMAC->RxConsumeIndex )
{
/* Mark the current buffer as free as uip_buf is going to be set to
the buffer that contains the received data. */
prvReturnBuffer( uip_buf );
ulLen = ( RX_STAT_INFO( EMAC->RxConsumeIndex ) & RINFO_SIZE ) - 3;
uip_buf = ( unsigned char * ) RX_DESC_PACKET( EMAC->RxConsumeIndex );
/* Allocate a new buffer to the descriptor. */
RX_DESC_PACKET( EMAC->RxConsumeIndex ) = ( unsigned long ) prvGetNextBuffer();
/* Move the consume index onto the next position, ensuring it wraps to
the beginning at the appropriate place. */
lIndex = EMAC->RxConsumeIndex;
lIndex++;
if( lIndex >= NUM_RX_FRAG )
{
lIndex = 0;
}
EMAC->RxConsumeIndex = lIndex;
}
return ulLen;
}
/*-----------------------------------------------------------*/
void vSendEMACTxData( unsigned short usTxDataLen )
{
unsigned long ulAttempts = 0UL;
/* Check to see if the Tx descriptor is free, indicated by its buffer being
NULL. */
while( TX_DESC_PACKET( emacTX_DESC_INDEX ) != ( unsigned long ) NULL )
{
/* Wait for the Tx descriptor to become available. */
vTaskDelay( emacBUFFER_WAIT_DELAY );
ulAttempts++;
if( ulAttempts > emacBUFFER_WAIT_ATTEMPTS )
{
/* Something has gone wrong as the Tx descriptor is still in use.
Clear it down manually, the data it was sending will probably be
lost. */
prvReturnBuffer( ( unsigned char * ) TX_DESC_PACKET( emacTX_DESC_INDEX ) );
break;
}
}
/* Setup the Tx descriptor for transmission. Remember the length of the
data being sent so the second descriptor can be used to send it again from
within the ISR. */
usSendLen = usTxDataLen;
TX_DESC_PACKET( emacTX_DESC_INDEX ) = ( unsigned long ) uip_buf;
TX_DESC_CTRL( emacTX_DESC_INDEX ) = ( usTxDataLen | TCTRL_LAST | TCTRL_INT );
EMAC->TxProduceIndex = ( emacTX_DESC_INDEX + 1 );
/* uip_buf is being sent by the Tx descriptor. Allocate a new buffer. */
uip_buf = prvGetNextBuffer();
}
/*-----------------------------------------------------------*/
static long prvWritePHY( long lPhyReg, long lValue )
{
const long lMaxTime = 10;
long x;
EMAC->MADR = KS8721_DEF_ADR | lPhyReg;
EMAC->MWTD = lValue;
x = 0;
for( x = 0; x < lMaxTime; x++ )
{
if( ( EMAC->MIND & MIND_BUSY ) == 0 )
{
/* Operation has finished. */
break;
}
vTaskDelay( emacSHORT_DELAY );
}
if( x < lMaxTime )
{
return pdPASS;
}
else
{
return pdFAIL;
}
}
/*-----------------------------------------------------------*/
static unsigned short prvReadPHY( unsigned char ucPhyReg, long *plStatus )
{
long x;
const long lMaxTime = 10;
EMAC->MADR = KS8721_DEF_ADR | ucPhyReg;
EMAC->MCMD = MCMD_READ;
for( x = 0; x < lMaxTime; x++ )
{
/* Operation has finished. */
if( ( EMAC->MIND & MIND_BUSY ) == 0 )
{
break;
}
vTaskDelay( emacSHORT_DELAY );
}
EMAC->MCMD = 0;
if( x >= lMaxTime )
{
*plStatus = pdFAIL;
}
return( EMAC->MRDD );
}
/*-----------------------------------------------------------*/
void vEMAC_ISR( void )
{
unsigned long ulStatus;
long lHigherPriorityTaskWoken = pdFALSE;
ulStatus = EMAC->IntStatus;
/* Clear the interrupt. */
EMAC->IntClear = ulStatus;
if( ulStatus & INT_RX_DONE )
{
/* Ensure the uIP task is not blocked as data has arrived. */
xSemaphoreGiveFromISR( xEMACSemaphore, &lHigherPriorityTaskWoken );
}
if( ulStatus & INT_TX_DONE )
{
if( usSendLen > 0 )
{
/* Send the data again, using the second descriptor. As there are
only two descriptors the index is set back to 0. */
TX_DESC_PACKET( ( emacTX_DESC_INDEX + 1 ) ) = TX_DESC_PACKET( emacTX_DESC_INDEX );
TX_DESC_CTRL( ( emacTX_DESC_INDEX + 1 ) ) = ( usSendLen | TCTRL_LAST | TCTRL_INT );
EMAC->TxProduceIndex = ( emacTX_DESC_INDEX );
/* This is the second Tx so set usSendLen to 0 to indicate that the
Tx descriptors will be free again. */
usSendLen = 0UL;
}
else
{
/* The Tx buffer is no longer required. */
prvReturnBuffer( ( unsigned char * ) TX_DESC_PACKET( emacTX_DESC_INDEX ) );
TX_DESC_PACKET( emacTX_DESC_INDEX ) = ( unsigned long ) NULL;
}
}
portEND_SWITCHING_ISR( lHigherPriorityTaskWoken );
}