/* | |
FreeRTOS V8.0.1 - Copyright (C) 2014 Real Time Engineers Ltd. | |
All rights reserved | |
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION. | |
*************************************************************************** | |
* * | |
* FreeRTOS provides completely free yet professionally developed, * | |
* robust, strictly quality controlled, supported, and cross * | |
* platform software that has become a de facto standard. * | |
* * | |
* Help yourself get started quickly and support the FreeRTOS * | |
* project by purchasing a FreeRTOS tutorial book, reference * | |
* manual, or both from: http://www.FreeRTOS.org/Documentation * | |
* * | |
* Thank you! * | |
* * | |
*************************************************************************** | |
This file is part of the FreeRTOS distribution. | |
FreeRTOS is free software; you can redistribute it and/or modify it under | |
the terms of the GNU General Public License (version 2) as published by the | |
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception. | |
>>! NOTE: The modification to the GPL is included to allow you to !<< | |
>>! distribute a combined work that includes FreeRTOS without being !<< | |
>>! obliged to provide the source code for proprietary components !<< | |
>>! outside of the FreeRTOS kernel. !<< | |
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY | |
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | |
FOR A PARTICULAR PURPOSE. Full license text is available from the following | |
link: http://www.freertos.org/a00114.html | |
1 tab == 4 spaces! | |
*************************************************************************** | |
* * | |
* Having a problem? Start by reading the FAQ "My application does * | |
* not run, what could be wrong?" * | |
* * | |
* http://www.FreeRTOS.org/FAQHelp.html * | |
* * | |
*************************************************************************** | |
http://www.FreeRTOS.org - Documentation, books, training, latest versions, | |
license and Real Time Engineers Ltd. contact details. | |
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products, | |
including FreeRTOS+Trace - an indispensable productivity tool, a DOS | |
compatible FAT file system, and our tiny thread aware UDP/IP stack. | |
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High | |
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS | |
licenses offer ticketed support, indemnification and middleware. | |
http://www.SafeRTOS.com - High Integrity Systems also provide a safety | |
engineered and independently SIL3 certified version for use in safety and | |
mission critical applications that require provable dependability. | |
1 tab == 4 spaces! | |
*/ | |
/* Standard includes. */ | |
#include <stdlib.h> | |
#include <string.h> | |
/* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining | |
all the API functions to use the MPU wrappers. That should only be done when | |
task.h is included from an application file. */ | |
#define MPU_WRAPPERS_INCLUDED_FROM_API_FILE | |
/* FreeRTOS includes. */ | |
#include "FreeRTOS.h" | |
#include "task.h" | |
#include "timers.h" | |
#include "StackMacros.h" | |
#include "static-allocator.h" | |
/* Lint e961 and e750 are suppressed as a MISRA exception justified because the | |
MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined for the | |
header files above, but not in this file, in order to generate the correct | |
privileged Vs unprivileged linkage and placement. */ | |
#undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE /*lint !e961 !e750. */ | |
#if ( configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) | |
/* At the bottom of this file are two optional functions that can be used | |
to generate human readable text from the raw data generated by the | |
uxTaskGetSystemState() function. Note the formatting functions are provided | |
for convenience only, and are NOT considered part of the kernel. */ | |
#include <stdio.h> | |
#endif /* configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) */ | |
/* Sanity check the configuration. */ | |
#if configUSE_TICKLESS_IDLE != 0 | |
#if INCLUDE_vTaskSuspend != 1 | |
#error INCLUDE_vTaskSuspend must be set to 1 if configUSE_TICKLESS_IDLE is not set to 0 | |
#endif /* INCLUDE_vTaskSuspend */ | |
#endif /* configUSE_TICKLESS_IDLE */ | |
/* | |
* Defines the size, in words, of the stack allocated to the idle task. | |
*/ | |
#define tskIDLE_STACK_SIZE configMINIMAL_STACK_SIZE | |
portSTACK_TYPE sIdleStack[tskIDLE_STACK_SIZE] __attribute__((section(".stack"))); | |
#if( configUSE_PREEMPTION == 0 ) | |
/* If the cooperative scheduler is being used then a yield should not be | |
performed just because a higher priority task has been woken. */ | |
#define taskYIELD_IF_USING_PREEMPTION() | |
#else | |
#define taskYIELD_IF_USING_PREEMPTION() portYIELD_WITHIN_API() | |
#endif | |
/* | |
* Task control block. A task control block (TCB) is allocated for each task, | |
* and stores task state information, including a pointer to the task's context | |
* (the task's run time environment, including register values) | |
*/ | |
typedef struct tskTaskControlBlock | |
{ | |
volatile StackType_t *pxTopOfStack; /*< Points to the location of the last item placed on the tasks stack. THIS MUST BE THE FIRST MEMBER OF THE TCB STRUCT. */ | |
#if ( portUSING_MPU_WRAPPERS == 1 ) | |
xMPU_SETTINGS xMPUSettings; /*< The MPU settings are defined as part of the port layer. THIS MUST BE THE SECOND MEMBER OF THE TCB STRUCT. */ | |
#endif | |
ListItem_t xGenericListItem; /*< The list that the state list item of a task is reference from denotes the state of that task (Ready, Blocked, Suspended ). */ | |
ListItem_t xEventListItem; /*< Used to reference a task from an event list. */ | |
UBaseType_t uxPriority; /*< The priority of the task. 0 is the lowest priority. */ | |
StackType_t *pxStack; /*< Points to the start of the stack. */ | |
char pcTaskName[ configMAX_TASK_NAME_LEN ];/*< Descriptive name given to the task when created. Facilitates debugging only. */ /*lint !e971 Unqualified char types are allowed for strings and single characters only. */ | |
#if ( portSTACK_GROWTH > 0 ) | |
StackType_t *pxEndOfStack; /*< Points to the end of the stack on architectures where the stack grows up from low memory. */ | |
#endif | |
#if ( portCRITICAL_NESTING_IN_TCB == 1 ) | |
UBaseType_t uxCriticalNesting; /*< Holds the critical section nesting depth for ports that do not maintain their own count in the port layer. */ | |
#endif | |
#if ( configUSE_TRACE_FACILITY == 1 ) | |
UBaseType_t uxTCBNumber; /*< Stores a number that increments each time a TCB is created. It allows debuggers to determine when a task has been deleted and then recreated. */ | |
UBaseType_t uxTaskNumber; /*< Stores a number specifically for use by third party trace code. */ | |
#endif | |
#if ( configUSE_MUTEXES == 1 ) | |
UBaseType_t uxBasePriority; /*< The priority last assigned to the task - used by the priority inheritance mechanism. */ | |
#endif | |
#if ( configUSE_APPLICATION_TASK_TAG == 1 ) | |
TaskHookFunction_t pxTaskTag; | |
#endif | |
#if ( configGENERATE_RUN_TIME_STATS == 1 ) | |
uint32_t ulRunTimeCounter; /*< Stores the amount of time the task has spent in the Running state. */ | |
#endif | |
#if ( configUSE_NEWLIB_REENTRANT == 1 ) | |
/* Allocate a Newlib reent structure that is specific to this task. | |
Note Newlib support has been included by popular demand, but is not | |
used by the FreeRTOS maintainers themselves. FreeRTOS is not | |
responsible for resulting newlib operation. User must be familiar with | |
newlib and must provide system-wide implementations of the necessary | |
stubs. Be warned that (at the time of writing) the current newlib design | |
implements a system-wide malloc() that must be provided with locks. */ | |
struct _reent xNewLib_reent; | |
#endif | |
} tskTCB; | |
/* The old tskTCB name is maintained above then typedefed to the new TCB_t name | |
below to enable the use of older kernel aware debuggers. */ | |
typedef tskTCB TCB_t; | |
#define ARRAY_SIZE(a) (sizeof(a)/sizeof(a[0])) | |
static struct { | |
static_pool_header_t pool_header; | |
tskTCB pool[configMAX_NUM_TASKS]; | |
} sTCBsPool __attribute__((section(".noinit"))); | |
void xInitTCBs(void); | |
void xInitTCBs(void) | |
{ | |
poolInit( (static_pool_t*)&sTCBsPool, | |
sizeof(sTCBsPool.pool[0]), | |
ARRAY_SIZE(sTCBsPool.pool)); | |
} | |
/* | |
* Some kernel aware debuggers require the data the debugger needs access to to | |
* be global, rather than file scope. | |
*/ | |
#ifdef portREMOVE_STATIC_QUALIFIER | |
#define static | |
#endif | |
/*lint -e956 A manual analysis and inspection has been used to determine which | |
static variables must be declared volatile. */ | |
PRIVILEGED_DATA TCB_t * volatile pxCurrentTCB = NULL; | |
/* Lists for ready and blocked tasks. --------------------*/ | |
PRIVILEGED_DATA static List_t pxReadyTasksLists[ configMAX_PRIORITIES ];/*< Prioritised ready tasks. */ | |
PRIVILEGED_DATA static List_t xDelayedTaskList1; /*< Delayed tasks. */ | |
PRIVILEGED_DATA static List_t xDelayedTaskList2; /*< Delayed tasks (two lists are used - one for delays that have overflowed the current tick count. */ | |
PRIVILEGED_DATA static List_t * volatile pxDelayedTaskList; /*< Points to the delayed task list currently being used. */ | |
PRIVILEGED_DATA static List_t * volatile pxOverflowDelayedTaskList; /*< Points to the delayed task list currently being used to hold tasks that have overflowed the current tick count. */ | |
PRIVILEGED_DATA static List_t xPendingReadyList; /*< Tasks that have been readied while the scheduler was suspended. They will be moved to the ready list when the scheduler is resumed. */ | |
#if ( INCLUDE_vTaskDelete == 1 ) | |
PRIVILEGED_DATA static List_t xTasksWaitingTermination; /*< Tasks that have been deleted - but their memory not yet freed. */ | |
PRIVILEGED_DATA static volatile UBaseType_t uxTasksDeleted = ( UBaseType_t ) 0U; | |
#endif | |
#if ( INCLUDE_vTaskSuspend == 1 ) | |
PRIVILEGED_DATA static List_t xSuspendedTaskList; /*< Tasks that are currently suspended. */ | |
#endif | |
#if ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) | |
PRIVILEGED_DATA static TaskHandle_t xIdleTaskHandle = NULL; /*< Holds the handle of the idle task. The idle task is created automatically when the scheduler is started. */ | |
#endif | |
/* Other file private variables. --------------------------------*/ | |
PRIVILEGED_DATA static volatile UBaseType_t uxCurrentNumberOfTasks = ( UBaseType_t ) 0U; | |
PRIVILEGED_DATA static volatile TickType_t xTickCount = ( TickType_t ) 0U; | |
PRIVILEGED_DATA static volatile UBaseType_t uxTopReadyPriority = tskIDLE_PRIORITY; | |
PRIVILEGED_DATA static volatile BaseType_t xSchedulerRunning = pdFALSE; | |
PRIVILEGED_DATA static volatile UBaseType_t uxPendedTicks = ( UBaseType_t ) 0U; | |
PRIVILEGED_DATA static volatile BaseType_t xYieldPending = pdFALSE; | |
PRIVILEGED_DATA static volatile BaseType_t xNumOfOverflows = ( BaseType_t ) 0; | |
PRIVILEGED_DATA static UBaseType_t uxTaskNumber = ( UBaseType_t ) 0U; | |
PRIVILEGED_DATA static volatile TickType_t xNextTaskUnblockTime = portMAX_DELAY; | |
/* Context switches are held pending while the scheduler is suspended. Also, | |
interrupts must not manipulate the xStateListItem of a TCB, or any of the | |
lists the xStateListItem can be referenced from, if the scheduler is suspended. | |
If an interrupt needs to unblock a task while the scheduler is suspended then it | |
moves the task's event list item into the xPendingReadyList, ready for the | |
kernel to move the task from the pending ready list into the real ready list | |
when the scheduler is unsuspended. The pending ready list itself can only be | |
accessed from a critical section. */ | |
PRIVILEGED_DATA static volatile UBaseType_t uxSchedulerSuspended = ( UBaseType_t ) pdFALSE; | |
#if ( configGENERATE_RUN_TIME_STATS == 1 ) | |
PRIVILEGED_DATA static uint32_t ulTaskSwitchedInTime = 0UL; /*< Holds the value of a timer/counter the last time a task was switched in. */ | |
PRIVILEGED_DATA static uint32_t ulTotalRunTime = 0UL; /*< Holds the total amount of execution time as defined by the run time counter clock. */ | |
#endif | |
/*lint +e956 */ | |
/* Debugging and trace facilities private variables and macros. ------------*/ | |
/* | |
* The value used to fill the stack of a task when the task is created. This | |
* is used purely for checking the high water mark for tasks. | |
*/ | |
#define tskSTACK_FILL_BYTE ( 0xa5U ) | |
/* | |
* Macros used by vListTask to indicate which state a task is in. | |
*/ | |
#define tskBLOCKED_CHAR ( 'B' ) | |
#define tskREADY_CHAR ( 'R' ) | |
#define tskDELETED_CHAR ( 'D' ) | |
#define tskSUSPENDED_CHAR ( 'S' ) | |
/*-----------------------------------------------------------*/ | |
#if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 ) | |
/* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 0 then task selection is | |
performed in a generic way that is not optimised to any particular | |
microcontroller architecture. */ | |
/* uxTopReadyPriority holds the priority of the highest priority ready | |
state task. */ | |
#define taskRECORD_READY_PRIORITY( uxPriority ) \ | |
{ \ | |
if( ( uxPriority ) > uxTopReadyPriority ) \ | |
{ \ | |
uxTopReadyPriority = ( uxPriority ); \ | |
} \ | |
} /* taskRECORD_READY_PRIORITY */ | |
/*-----------------------------------------------------------*/ | |
#define taskSELECT_HIGHEST_PRIORITY_TASK() \ | |
{ \ | |
/* Find the highest priority queue that contains ready tasks. */ \ | |
while( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxTopReadyPriority ] ) ) ) \ | |
{ \ | |
configASSERT( uxTopReadyPriority ); \ | |
--uxTopReadyPriority; \ | |
} \ | |
\ | |
/* listGET_OWNER_OF_NEXT_ENTRY indexes through the list, so the tasks of \ | |
the same priority get an equal share of the processor time. */ \ | |
listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopReadyPriority ] ) ); \ | |
} /* taskSELECT_HIGHEST_PRIORITY_TASK */ | |
/*-----------------------------------------------------------*/ | |
/* Define away taskRESET_READY_PRIORITY() and portRESET_READY_PRIORITY() as | |
they are only required when a port optimised method of task selection is | |
being used. */ | |
#define taskRESET_READY_PRIORITY( uxPriority ) | |
#define portRESET_READY_PRIORITY( uxPriority, uxTopReadyPriority ) | |
#else /* configUSE_PORT_OPTIMISED_TASK_SELECTION */ | |
/* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 1 then task selection is | |
performed in a way that is tailored to the particular microcontroller | |
architecture being used. */ | |
/* A port optimised version is provided. Call the port defined macros. */ | |
#define taskRECORD_READY_PRIORITY( uxPriority ) portRECORD_READY_PRIORITY( uxPriority, uxTopReadyPriority ) | |
/*-----------------------------------------------------------*/ | |
#define taskSELECT_HIGHEST_PRIORITY_TASK() \ | |
{ \ | |
UBaseType_t uxTopPriority; \ | |
\ | |
/* Find the highest priority queue that contains ready tasks. */ \ | |
portGET_HIGHEST_PRIORITY( uxTopPriority, uxTopReadyPriority ); \ | |
configASSERT( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ uxTopPriority ] ) ) > 0 ); \ | |
listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) ); \ | |
} /* taskSELECT_HIGHEST_PRIORITY_TASK() */ | |
/*-----------------------------------------------------------*/ | |
/* A port optimised version is provided, call it only if the TCB being reset | |
is being referenced from a ready list. If it is referenced from a delayed | |
or suspended list then it won't be in a ready list. */ | |
#define taskRESET_READY_PRIORITY( uxPriority ) \ | |
{ \ | |
if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ ( uxPriority ) ] ) ) == 0 ) \ | |
{ \ | |
portRESET_READY_PRIORITY( ( uxPriority ), ( uxTopReadyPriority ) ); \ | |
} \ | |
} | |
#endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */ | |
/*-----------------------------------------------------------*/ | |
/* pxDelayedTaskList and pxOverflowDelayedTaskList are switched when the tick | |
count overflows. */ | |
#define taskSWITCH_DELAYED_LISTS() \ | |
{ \ | |
List_t *pxTemp; \ | |
\ | |
/* The delayed tasks list should be empty when the lists are switched. */ \ | |
configASSERT( ( listLIST_IS_EMPTY( pxDelayedTaskList ) ) ); \ | |
\ | |
pxTemp = pxDelayedTaskList; \ | |
pxDelayedTaskList = pxOverflowDelayedTaskList; \ | |
pxOverflowDelayedTaskList = pxTemp; \ | |
xNumOfOverflows++; \ | |
prvResetNextTaskUnblockTime(); \ | |
} | |
/*-----------------------------------------------------------*/ | |
/* | |
* Place the task represented by pxTCB into the appropriate ready list for | |
* the task. It is inserted at the end of the list. | |
*/ | |
#define prvAddTaskToReadyList( pxTCB ) \ | |
traceMOVED_TASK_TO_READY_STATE( pxTCB ) \ | |
taskRECORD_READY_PRIORITY( ( pxTCB )->uxPriority ); \ | |
vListInsertEnd( &( pxReadyTasksLists[ ( pxTCB )->uxPriority ] ), &( ( pxTCB )->xGenericListItem ) ) | |
/*-----------------------------------------------------------*/ | |
/* | |
* Several functions take an TaskHandle_t parameter that can optionally be NULL, | |
* where NULL is used to indicate that the handle of the currently executing | |
* task should be used in place of the parameter. This macro simply checks to | |
* see if the parameter is NULL and returns a pointer to the appropriate TCB. | |
*/ | |
#define prvGetTCBFromHandle( pxHandle ) ( ( ( pxHandle ) == NULL ) ? ( TCB_t * ) pxCurrentTCB : ( TCB_t * ) ( pxHandle ) ) | |
/* The item value of the event list item is normally used to hold the priority | |
of the task to which it belongs (coded to allow it to be held in reverse | |
priority order). However, it is occasionally borrowed for other purposes. It | |
is important its value is not updated due to a task priority change while it is | |
being used for another purpose. The following bit definition is used to inform | |
the scheduler that the value should not be changed - in which case it is the | |
responsibility of whichever module is using the value to ensure it gets set back | |
to its original value when it is released. */ | |
#if configUSE_16_BIT_TICKS == 1 | |
#define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x8000U | |
#else | |
#define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x80000000UL | |
#endif | |
/* Callback function prototypes. --------------------------*/ | |
#if configCHECK_FOR_STACK_OVERFLOW > 0 | |
extern void vApplicationStackOverflowHook( TaskHandle_t xTask, char *pcTaskName ); | |
#endif | |
#if configUSE_TICK_HOOK > 0 | |
extern void vApplicationTickHook( void ); | |
#endif | |
/* File private functions. --------------------------------*/ | |
/* | |
* Utility to ready a TCB for a given task. Mainly just copies the parameters | |
* into the TCB structure. | |
*/ | |
static void prvInitialiseTCBVariables( TCB_t * const pxTCB, const char * const pcName, UBaseType_t uxPriority, const MemoryRegion_t * const xRegions, const uint16_t usStackDepth ) PRIVILEGED_FUNCTION; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */ | |
/** | |
* Utility task that simply returns pdTRUE if the task referenced by xTask is | |
* currently in the Suspended state, or pdFALSE if the task referenced by xTask | |
* is in any other state. | |
*/ | |
static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask ) PRIVILEGED_FUNCTION; | |
/* | |
* Utility to ready all the lists used by the scheduler. This is called | |
* automatically upon the creation of the first task. | |
*/ | |
static void prvInitialiseTaskLists( void ) PRIVILEGED_FUNCTION; | |
/* | |
* The idle task, which as all tasks is implemented as a never ending loop. | |
* The idle task is automatically created and added to the ready lists upon | |
* creation of the first user task. | |
* | |
* The portTASK_FUNCTION_PROTO() macro is used to allow port/compiler specific | |
* language extensions. The equivalent prototype for this function is: | |
* | |
* void prvIdleTask( void *pvParameters ); | |
* | |
*/ | |
static portTASK_FUNCTION_PROTO( prvIdleTask, pvParameters ); | |
/* | |
* Utility to free all memory allocated by the scheduler to hold a TCB, | |
* including the stack pointed to by the TCB. | |
* | |
* This does not free memory allocated by the task itself (i.e. memory | |
* allocated by calls to pvPortMalloc from within the tasks application code). | |
*/ | |
#if ( INCLUDE_vTaskDelete == 1 ) | |
static void prvDeleteTCB( TCB_t *pxTCB ) PRIVILEGED_FUNCTION; | |
#endif | |
/* | |
* Used only by the idle task. This checks to see if anything has been placed | |
* in the list of tasks waiting to be deleted. If so the task is cleaned up | |
* and its TCB deleted. | |
*/ | |
static void prvCheckTasksWaitingTermination( void ) PRIVILEGED_FUNCTION; | |
/* | |
* The currently executing task is entering the Blocked state. Add the task to | |
* either the current or the overflow delayed task list. | |
*/ | |
static void prvAddCurrentTaskToDelayedList( const TickType_t xTimeToWake ) PRIVILEGED_FUNCTION; | |
/* | |
* Allocates memory from the heap for a TCB and associated stack. Checks the | |
* allocation was successful. | |
*/ | |
static TCB_t *prvAllocateTCBAndStack( const uint16_t usStackDepth, StackType_t * const puxStackBuffer ) PRIVILEGED_FUNCTION; | |
/* | |
* Fills an TaskStatus_t structure with information on each task that is | |
* referenced from the pxList list (which may be a ready list, a delayed list, | |
* a suspended list, etc.). | |
* | |
* THIS FUNCTION IS INTENDED FOR DEBUGGING ONLY, AND SHOULD NOT BE CALLED FROM | |
* NORMAL APPLICATION CODE. | |
*/ | |
#if ( configUSE_TRACE_FACILITY == 1 ) | |
static UBaseType_t prvListTaskWithinSingleList( TaskStatus_t *pxTaskStatusArray, List_t *pxList, eTaskState eState ) PRIVILEGED_FUNCTION; | |
#endif | |
/* | |
* When a task is created, the stack of the task is filled with a known value. | |
* This function determines the 'high water mark' of the task stack by | |
* determining how much of the stack remains at the original preset value. | |
*/ | |
#if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) ) | |
static uint16_t prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte ) PRIVILEGED_FUNCTION; | |
#endif | |
/* | |
* Return the amount of time, in ticks, that will pass before the kernel will | |
* next move a task from the Blocked state to the Running state. | |
* | |
* This conditional compilation should use inequality to 0, not equality to 1. | |
* This is to ensure portSUPPRESS_TICKS_AND_SLEEP() can be called when user | |
* defined low power mode implementations require configUSE_TICKLESS_IDLE to be | |
* set to a value other than 1. | |
*/ | |
#if ( configUSE_TICKLESS_IDLE != 0 ) | |
static TickType_t prvGetExpectedIdleTime( void ) PRIVILEGED_FUNCTION; | |
#endif | |
/* | |
* Set xNextTaskUnblockTime to the time at which the next Blocked state task | |
* will exit the Blocked state. | |
*/ | |
static void prvResetNextTaskUnblockTime( void ); | |
/*-----------------------------------------------------------*/ | |
BaseType_t xTaskGenericCreate( TaskFunction_t pxTaskCode, const char * const pcName, const uint16_t usStackDepth, void * const pvParameters, UBaseType_t uxPriority, TaskHandle_t * const pxCreatedTask, StackType_t * const puxStackBuffer, const MemoryRegion_t * const xRegions ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */ | |
{ | |
BaseType_t xReturn; | |
TCB_t * pxNewTCB; | |
configASSERT( pxTaskCode ); | |
configASSERT( puxStackBuffer ); | |
configASSERT( ( ( uxPriority & ( ~portPRIVILEGE_BIT ) ) < configMAX_PRIORITIES ) ); | |
/* Allocate the memory required by the TCB and stack for the new task, | |
checking that the allocation was successful. */ | |
pxNewTCB = prvAllocateTCBAndStack( usStackDepth, puxStackBuffer ); | |
if( pxNewTCB != NULL ) | |
{ | |
StackType_t *pxTopOfStack; | |
#if( portUSING_MPU_WRAPPERS == 1 ) | |
/* Should the task be created in privileged mode? */ | |
BaseType_t xRunPrivileged; | |
if( ( uxPriority & portPRIVILEGE_BIT ) != 0U ) | |
{ | |
xRunPrivileged = pdTRUE; | |
} | |
else | |
{ | |
xRunPrivileged = pdFALSE; | |
} | |
uxPriority &= ~portPRIVILEGE_BIT; | |
#endif /* portUSING_MPU_WRAPPERS == 1 */ | |
/* Calculate the top of stack address. This depends on whether the | |
stack grows from high memory to low (as per the 80x86) or vice versa. | |
portSTACK_GROWTH is used to make the result positive or negative as | |
required by the port. */ | |
#if( portSTACK_GROWTH < 0 ) | |
{ | |
pxTopOfStack = pxNewTCB->pxStack + ( usStackDepth - ( uint16_t ) 1 ); | |
pxTopOfStack = ( StackType_t * ) ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack ) & ( ( portPOINTER_SIZE_TYPE ) ~portBYTE_ALIGNMENT_MASK ) ); /*lint !e923 MISRA exception. Avoiding casts between pointers and integers is not practical. Size differences accounted for using portPOINTER_SIZE_TYPE type. */ | |
/* Check the alignment of the calculated top of stack is correct. */ | |
configASSERT( ( ( ( uint32_t ) pxTopOfStack & ( uint32_t ) portBYTE_ALIGNMENT_MASK ) == 0UL ) ); | |
} | |
#else /* portSTACK_GROWTH */ | |
{ | |
pxTopOfStack = pxNewTCB->pxStack; | |
/* Check the alignment of the stack buffer is correct. */ | |
configASSERT( ( ( ( uint32_t ) pxNewTCB->pxStack & ( uint32_t ) portBYTE_ALIGNMENT_MASK ) == 0UL ) ); | |
/* If we want to use stack checking on architectures that use | |
a positive stack growth direction then we also need to store the | |
other extreme of the stack space. */ | |
pxNewTCB->pxEndOfStack = pxNewTCB->pxStack + ( usStackDepth - 1 ); | |
} | |
#endif /* portSTACK_GROWTH */ | |
/* Setup the newly allocated TCB with the initial state of the task. */ | |
prvInitialiseTCBVariables( pxNewTCB, pcName, uxPriority, xRegions, usStackDepth ); | |
/* Initialize the TCB stack to look as if the task was already running, | |
but had been interrupted by the scheduler. The return address is set | |
to the start of the task function. Once the stack has been initialised | |
the top of stack variable is updated. */ | |
#if( portUSING_MPU_WRAPPERS == 1 ) | |
{ | |
pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters, xRunPrivileged ); | |
} | |
#else /* portUSING_MPU_WRAPPERS */ | |
{ | |
pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters ); | |
} | |
#endif /* portUSING_MPU_WRAPPERS */ | |
if( ( void * ) pxCreatedTask != NULL ) | |
{ | |
/* Pass the TCB out - in an anonymous way. The calling function/ | |
task can use this as a handle to delete the task later if | |
required.*/ | |
*pxCreatedTask = ( TaskHandle_t ) pxNewTCB; | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
/* Ensure interrupts don't access the task lists while they are being | |
updated. */ | |
taskENTER_CRITICAL(); | |
{ | |
uxCurrentNumberOfTasks++; | |
if( pxCurrentTCB == NULL ) | |
{ | |
/* There are no other tasks, or all the other tasks are in | |
the suspended state - make this the current task. */ | |
pxCurrentTCB = pxNewTCB; | |
if( uxCurrentNumberOfTasks == ( UBaseType_t ) 1 ) | |
{ | |
/* This is the first task to be created so do the preliminary | |
initialisation required. We will not recover if this call | |
fails, but we will report the failure. */ | |
prvInitialiseTaskLists(); | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
} | |
else | |
{ | |
/* If the scheduler is not already running, make this task the | |
current task if it is the highest priority task to be created | |
so far. */ | |
if( xSchedulerRunning == pdFALSE ) | |
{ | |
if( pxCurrentTCB->uxPriority <= uxPriority ) | |
{ | |
pxCurrentTCB = pxNewTCB; | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
} | |
uxTaskNumber++; | |
#if ( configUSE_TRACE_FACILITY == 1 ) | |
{ | |
/* Add a counter into the TCB for tracing only. */ | |
pxNewTCB->uxTCBNumber = uxTaskNumber; | |
} | |
#endif /* configUSE_TRACE_FACILITY */ | |
traceTASK_CREATE( pxNewTCB ); | |
prvAddTaskToReadyList( pxNewTCB ); | |
xReturn = pdPASS; | |
portSETUP_TCB( pxNewTCB ); | |
} | |
taskEXIT_CRITICAL(); | |
} | |
else | |
{ | |
xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY; | |
traceTASK_CREATE_FAILED(); | |
} | |
if( xReturn == pdPASS ) | |
{ | |
if( xSchedulerRunning != pdFALSE ) | |
{ | |
/* If the created task is of a higher priority than the current task | |
then it should run now. */ | |
if( pxCurrentTCB->uxPriority < uxPriority ) | |
{ | |
taskYIELD_IF_USING_PREEMPTION(); | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
} | |
return xReturn; | |
} | |
/*-----------------------------------------------------------*/ | |
#if ( INCLUDE_vTaskDelete == 1 ) | |
void vTaskDelete( TaskHandle_t xTaskToDelete ) | |
{ | |
TCB_t *pxTCB; | |
taskENTER_CRITICAL(); | |
{ | |
/* If null is passed in here then it is the calling task that is | |
being deleted. */ | |
pxTCB = prvGetTCBFromHandle( xTaskToDelete ); | |
/* Remove task from the ready list and place in the termination list. | |
This will stop the task from be scheduled. The idle task will check | |
the termination list and free up any memory allocated by the | |
scheduler for the TCB and stack. */ | |
if( uxListRemove( &( pxTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 ) | |
{ | |
taskRESET_READY_PRIORITY( pxTCB->uxPriority ); | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
/* Is the task waiting on an event also? */ | |
if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL ) | |
{ | |
( void ) uxListRemove( &( pxTCB->xEventListItem ) ); | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
vListInsertEnd( &xTasksWaitingTermination, &( pxTCB->xGenericListItem ) ); | |
/* Increment the ucTasksDeleted variable so the idle task knows | |
there is a task that has been deleted and that it should therefore | |
check the xTasksWaitingTermination list. */ | |
++uxTasksDeleted; | |
/* Increment the uxTaskNumberVariable also so kernel aware debuggers | |
can detect that the task lists need re-generating. */ | |
uxTaskNumber++; | |
traceTASK_DELETE( pxTCB ); | |
} | |
taskEXIT_CRITICAL(); | |
/* Force a reschedule if it is the currently running task that has just | |
been deleted. */ | |
if( xSchedulerRunning != pdFALSE ) | |
{ | |
if( pxTCB == pxCurrentTCB ) | |
{ | |
configASSERT( uxSchedulerSuspended == 0 ); | |
/* The pre-delete hook is primarily for the Windows simulator, | |
in which Windows specific clean up operations are performed, | |
after which it is not possible to yield away from this task - | |
hence xYieldPending is used to latch that a context switch is | |
required. */ | |
portPRE_TASK_DELETE_HOOK( pxTCB, &xYieldPending ); | |
portYIELD_WITHIN_API(); | |
} | |
else | |
{ | |
/* Reset the next expected unblock time in case it referred to | |
the task that has just been deleted. */ | |
taskENTER_CRITICAL(); | |
{ | |
prvResetNextTaskUnblockTime(); | |
} | |
taskEXIT_CRITICAL(); | |
} | |
} | |
} | |
#endif /* INCLUDE_vTaskDelete */ | |
/*-----------------------------------------------------------*/ | |
#if ( INCLUDE_vTaskDelayUntil == 1 ) | |
void vTaskDelayUntil( TickType_t * const pxPreviousWakeTime, const TickType_t xTimeIncrement ) | |
{ | |
TickType_t xTimeToWake; | |
BaseType_t xAlreadyYielded, xShouldDelay = pdFALSE; | |
configASSERT( pxPreviousWakeTime ); | |
configASSERT( ( xTimeIncrement > 0U ) ); | |
configASSERT( uxSchedulerSuspended == 0 ); | |
vTaskSuspendAll(); | |
{ | |
/* Minor optimisation. The tick count cannot change in this | |
block. */ | |
const TickType_t xConstTickCount = xTickCount; | |
/* Generate the tick time at which the task wants to wake. */ | |
xTimeToWake = *pxPreviousWakeTime + xTimeIncrement; | |
if( xConstTickCount < *pxPreviousWakeTime ) | |
{ | |
/* The tick count has overflowed since this function was | |
lasted called. In this case the only time we should ever | |
actually delay is if the wake time has also overflowed, | |
and the wake time is greater than the tick time. When this | |
is the case it is as if neither time had overflowed. */ | |
if( ( xTimeToWake < *pxPreviousWakeTime ) && ( xTimeToWake > xConstTickCount ) ) | |
{ | |
xShouldDelay = pdTRUE; | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
} | |
else | |
{ | |
/* The tick time has not overflowed. In this case we will | |
delay if either the wake time has overflowed, and/or the | |
tick time is less than the wake time. */ | |
if( ( xTimeToWake < *pxPreviousWakeTime ) || ( xTimeToWake > xConstTickCount ) ) | |
{ | |
xShouldDelay = pdTRUE; | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
} | |
/* Update the wake time ready for the next call. */ | |
*pxPreviousWakeTime = xTimeToWake; | |
if( xShouldDelay != pdFALSE ) | |
{ | |
traceTASK_DELAY_UNTIL(); | |
/* Remove the task from the ready list before adding it to the | |
blocked list as the same list item is used for both lists. */ | |
if( uxListRemove( &( pxCurrentTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 ) | |
{ | |
/* The current task must be in a ready list, so there is | |
no need to check, and the port reset macro can be called | |
directly. */ | |
portRESET_READY_PRIORITY( pxCurrentTCB->uxPriority, uxTopReadyPriority ); | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
prvAddCurrentTaskToDelayedList( xTimeToWake ); | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
} | |
xAlreadyYielded = xTaskResumeAll(); | |
/* Force a reschedule if xTaskResumeAll has not already done so, we may | |
have put ourselves to sleep. */ | |
if( xAlreadyYielded == pdFALSE ) | |
{ | |
portYIELD_WITHIN_API(); | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
} | |
#endif /* INCLUDE_vTaskDelayUntil */ | |
/*-----------------------------------------------------------*/ | |
#if ( INCLUDE_vTaskDelay == 1 ) | |
void vTaskDelay( const TickType_t xTicksToDelay ) | |
{ | |
TickType_t xTimeToWake; | |
BaseType_t xAlreadyYielded = pdFALSE; | |
/* A delay time of zero just forces a reschedule. */ | |
if( xTicksToDelay > ( TickType_t ) 0U ) | |
{ | |
configASSERT( uxSchedulerSuspended == 0 ); | |
vTaskSuspendAll(); | |
{ | |
traceTASK_DELAY(); | |
/* A task that is removed from the event list while the | |
scheduler is suspended will not get placed in the ready | |
list or removed from the blocked list until the scheduler | |
is resumed. | |
This task cannot be in an event list as it is the currently | |
executing task. */ | |
/* Calculate the time to wake - this may overflow but this is | |
not a problem. */ | |
xTimeToWake = xTickCount + xTicksToDelay; | |
/* We must remove ourselves from the ready list before adding | |
ourselves to the blocked list as the same list item is used for | |
both lists. */ | |
if( uxListRemove( &( pxCurrentTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 ) | |
{ | |
/* The current task must be in a ready list, so there is | |
no need to check, and the port reset macro can be called | |
directly. */ | |
portRESET_READY_PRIORITY( pxCurrentTCB->uxPriority, uxTopReadyPriority ); | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
prvAddCurrentTaskToDelayedList( xTimeToWake ); | |
} | |
xAlreadyYielded = xTaskResumeAll(); | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
/* Force a reschedule if xTaskResumeAll has not already done so, we may | |
have put ourselves to sleep. */ | |
if( xAlreadyYielded == pdFALSE ) | |
{ | |
portYIELD_WITHIN_API(); | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
} | |
#endif /* INCLUDE_vTaskDelay */ | |
/*-----------------------------------------------------------*/ | |
#if ( INCLUDE_eTaskGetState == 1 ) | |
eTaskState eTaskGetState( TaskHandle_t xTask ) | |
{ | |
eTaskState eReturn; | |
List_t *pxStateList; | |
const TCB_t * const pxTCB = ( TCB_t * ) xTask; | |
configASSERT( pxTCB ); | |
if( pxTCB == pxCurrentTCB ) | |
{ | |
/* The task calling this function is querying its own state. */ | |
eReturn = eRunning; | |
} | |
else | |
{ | |
taskENTER_CRITICAL(); | |
{ | |
pxStateList = ( List_t * ) listLIST_ITEM_CONTAINER( &( pxTCB->xGenericListItem ) ); | |
} | |
taskEXIT_CRITICAL(); | |
if( ( pxStateList == pxDelayedTaskList ) || ( pxStateList == pxOverflowDelayedTaskList ) ) | |
{ | |
/* The task being queried is referenced from one of the Blocked | |
lists. */ | |
eReturn = eBlocked; | |
} | |
#if ( INCLUDE_vTaskSuspend == 1 ) | |
else if( pxStateList == &xSuspendedTaskList ) | |
{ | |
/* The task being queried is referenced from the suspended | |
list. Is it genuinely suspended or is it block | |
indefinitely? */ | |
if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL ) | |
{ | |
eReturn = eSuspended; | |
} | |
else | |
{ | |
eReturn = eBlocked; | |
} | |
} | |
#endif | |
#if ( INCLUDE_vTaskDelete == 1 ) | |
else if( pxStateList == &xTasksWaitingTermination ) | |
{ | |
/* The task being queried is referenced from the deleted | |
tasks list. */ | |
eReturn = eDeleted; | |
} | |
#endif | |
else | |
{ | |
/* If the task is not in any other state, it must be in the | |
Ready (including pending ready) state. */ | |
eReturn = eReady; | |
} | |
} | |
return eReturn; | |
} | |
#endif /* INCLUDE_eTaskGetState */ | |
/*-----------------------------------------------------------*/ | |
#if ( INCLUDE_uxTaskPriorityGet == 1 ) | |
UBaseType_t uxTaskPriorityGet( TaskHandle_t xTask ) | |
{ | |
TCB_t *pxTCB; | |
UBaseType_t uxReturn; | |
taskENTER_CRITICAL(); | |
{ | |
/* If null is passed in here then we are changing the | |
priority of the calling function. */ | |
pxTCB = prvGetTCBFromHandle( xTask ); | |
uxReturn = pxTCB->uxPriority; | |
} | |
taskEXIT_CRITICAL(); | |
return uxReturn; | |
} | |
#endif /* INCLUDE_uxTaskPriorityGet */ | |
/*-----------------------------------------------------------*/ | |
#if ( INCLUDE_vTaskPrioritySet == 1 ) | |
void vTaskPrioritySet( TaskHandle_t xTask, UBaseType_t uxNewPriority ) | |
{ | |
TCB_t *pxTCB; | |
UBaseType_t uxCurrentBasePriority, uxPriorityUsedOnEntry; | |
BaseType_t xYieldRequired = pdFALSE; | |
configASSERT( ( uxNewPriority < configMAX_PRIORITIES ) ); | |
/* Ensure the new priority is valid. */ | |
if( uxNewPriority >= ( UBaseType_t ) configMAX_PRIORITIES ) | |
{ | |
uxNewPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U; | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
taskENTER_CRITICAL(); | |
{ | |
/* If null is passed in here then it is the priority of the calling | |
task that is being changed. */ | |
pxTCB = prvGetTCBFromHandle( xTask ); | |
traceTASK_PRIORITY_SET( pxTCB, uxNewPriority ); | |
#if ( configUSE_MUTEXES == 1 ) | |
{ | |
uxCurrentBasePriority = pxTCB->uxBasePriority; | |
} | |
#else | |
{ | |
uxCurrentBasePriority = pxTCB->uxPriority; | |
} | |
#endif | |
if( uxCurrentBasePriority != uxNewPriority ) | |
{ | |
/* The priority change may have readied a task of higher | |
priority than the calling task. */ | |
if( uxNewPriority > uxCurrentBasePriority ) | |
{ | |
if( pxTCB != pxCurrentTCB ) | |
{ | |
/* The priority of a task other than the currently | |
running task is being raised. Is the priority being | |
raised above that of the running task? */ | |
if( uxNewPriority >= pxCurrentTCB->uxPriority ) | |
{ | |
xYieldRequired = pdTRUE; | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
} | |
else | |
{ | |
/* The priority of the running task is being raised, | |
but the running task must already be the highest | |
priority task able to run so no yield is required. */ | |
} | |
} | |
else if( pxTCB == pxCurrentTCB ) | |
{ | |
/* Setting the priority of the running task down means | |
there may now be another task of higher priority that | |
is ready to execute. */ | |
xYieldRequired = pdTRUE; | |
} | |
else | |
{ | |
/* Setting the priority of any other task down does not | |
require a yield as the running task must be above the | |
new priority of the task being modified. */ | |
} | |
/* Remember the ready list the task might be referenced from | |
before its uxPriority member is changed so the | |
taskRESET_READY_PRIORITY() macro can function correctly. */ | |
uxPriorityUsedOnEntry = pxTCB->uxPriority; | |
#if ( configUSE_MUTEXES == 1 ) | |
{ | |
/* Only change the priority being used if the task is not | |
currently using an inherited priority. */ | |
if( pxTCB->uxBasePriority == pxTCB->uxPriority ) | |
{ | |
pxTCB->uxPriority = uxNewPriority; | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
/* The base priority gets set whatever. */ | |
pxTCB->uxBasePriority = uxNewPriority; | |
} | |
#else | |
{ | |
pxTCB->uxPriority = uxNewPriority; | |
} | |
#endif | |
/* Only reset the event list item value if the value is not | |
being used for anything else. */ | |
if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL ) | |
{ | |
listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxNewPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */ | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
/* If the task is in the blocked or suspended list we need do | |
nothing more than change it's priority variable. However, if | |
the task is in a ready list it needs to be removed and placed | |
in the list appropriate to its new priority. */ | |
if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xGenericListItem ) ) != pdFALSE ) | |
{ | |
/* The task is currently in its ready list - remove before adding | |
it to it's new ready list. As we are in a critical section we | |
can do this even if the scheduler is suspended. */ | |
if( uxListRemove( &( pxTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 ) | |
{ | |
/* It is known that the task is in its ready list so | |
there is no need to check again and the port level | |
reset macro can be called directly. */ | |
portRESET_READY_PRIORITY( uxPriorityUsedOnEntry, uxTopReadyPriority ); | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
prvAddTaskToReadyList( pxTCB ); | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
if( xYieldRequired == pdTRUE ) | |
{ | |
taskYIELD_IF_USING_PREEMPTION(); | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
/* Remove compiler warning about unused variables when the port | |
optimised task selection is not being used. */ | |
( void ) uxPriorityUsedOnEntry; | |
} | |
} | |
taskEXIT_CRITICAL(); | |
} | |
#endif /* INCLUDE_vTaskPrioritySet */ | |
/*-----------------------------------------------------------*/ | |
#if ( INCLUDE_vTaskSuspend == 1 ) | |
void vTaskSuspend( TaskHandle_t xTaskToSuspend ) | |
{ | |
TCB_t *pxTCB; | |
taskENTER_CRITICAL(); | |
{ | |
/* If null is passed in here then it is the running task that is | |
being suspended. */ | |
pxTCB = prvGetTCBFromHandle( xTaskToSuspend ); | |
traceTASK_SUSPEND( pxTCB ); | |
/* Remove task from the ready/delayed list and place in the | |
suspended list. */ | |
if( uxListRemove( &( pxTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 ) | |
{ | |
taskRESET_READY_PRIORITY( pxTCB->uxPriority ); | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
/* Is the task waiting on an event also? */ | |
if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL ) | |
{ | |
( void ) uxListRemove( &( pxTCB->xEventListItem ) ); | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
vListInsertEnd( &xSuspendedTaskList, &( pxTCB->xGenericListItem ) ); | |
} | |
taskEXIT_CRITICAL(); | |
if( pxTCB == pxCurrentTCB ) | |
{ | |
if( xSchedulerRunning != pdFALSE ) | |
{ | |
/* The current task has just been suspended. */ | |
configASSERT( uxSchedulerSuspended == 0 ); | |
portYIELD_WITHIN_API(); | |
} | |
else | |
{ | |
/* The scheduler is not running, but the task that was pointed | |
to by pxCurrentTCB has just been suspended and pxCurrentTCB | |
must be adjusted to point to a different task. */ | |
if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == uxCurrentNumberOfTasks ) | |
{ | |
/* No other tasks are ready, so set pxCurrentTCB back to | |
NULL so when the next task is created pxCurrentTCB will | |
be set to point to it no matter what its relative priority | |
is. */ | |
pxCurrentTCB = NULL; | |
} | |
else | |
{ | |
vTaskSwitchContext(); | |
} | |
} | |
} | |
else | |
{ | |
if( xSchedulerRunning != pdFALSE ) | |
{ | |
/* A task other than the currently running task was suspended, | |
reset the next expected unblock time in case it referred to the | |
task that is now in the Suspended state. */ | |
taskENTER_CRITICAL(); | |
{ | |
prvResetNextTaskUnblockTime(); | |
} | |
taskEXIT_CRITICAL(); | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
} | |
} | |
#endif /* INCLUDE_vTaskSuspend */ | |
/*-----------------------------------------------------------*/ | |
#if ( INCLUDE_vTaskSuspend == 1 ) | |
static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask ) | |
{ | |
BaseType_t xReturn = pdFALSE; | |
const TCB_t * const pxTCB = ( TCB_t * ) xTask; | |
/* Accesses xPendingReadyList so must be called from a critical | |
section. */ | |
/* It does not make sense to check if the calling task is suspended. */ | |
configASSERT( xTask ); | |
/* Is the task being resumed actually in the suspended list? */ | |
if( listIS_CONTAINED_WITHIN( &xSuspendedTaskList, &( pxTCB->xGenericListItem ) ) != pdFALSE ) | |
{ | |
/* Has the task already been resumed from within an ISR? */ | |
if( listIS_CONTAINED_WITHIN( &xPendingReadyList, &( pxTCB->xEventListItem ) ) == pdFALSE ) | |
{ | |
/* Is it in the suspended list because it is in the Suspended | |
state, or because is is blocked with no timeout? */ | |
if( listIS_CONTAINED_WITHIN( NULL, &( pxTCB->xEventListItem ) ) != pdFALSE ) | |
{ | |
xReturn = pdTRUE; | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
return xReturn; | |
} /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */ | |
#endif /* INCLUDE_vTaskSuspend */ | |
/*-----------------------------------------------------------*/ | |
#if ( INCLUDE_vTaskSuspend == 1 ) | |
void vTaskResume( TaskHandle_t xTaskToResume ) | |
{ | |
TCB_t * const pxTCB = ( TCB_t * ) xTaskToResume; | |
/* It does not make sense to resume the calling task. */ | |
configASSERT( xTaskToResume ); | |
/* The parameter cannot be NULL as it is impossible to resume the | |
currently executing task. */ | |
if( ( pxTCB != NULL ) && ( pxTCB != pxCurrentTCB ) ) | |
{ | |
taskENTER_CRITICAL(); | |
{ | |
if( prvTaskIsTaskSuspended( pxTCB ) == pdTRUE ) | |
{ | |
traceTASK_RESUME( pxTCB ); | |
/* As we are in a critical section we can access the ready | |
lists even if the scheduler is suspended. */ | |
( void ) uxListRemove( &( pxTCB->xGenericListItem ) ); | |
prvAddTaskToReadyList( pxTCB ); | |
/* We may have just resumed a higher priority task. */ | |
if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority ) | |
{ | |
/* This yield may not cause the task just resumed to run, | |
but will leave the lists in the correct state for the | |
next yield. */ | |
taskYIELD_IF_USING_PREEMPTION(); | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
} | |
taskEXIT_CRITICAL(); | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
} | |
#endif /* INCLUDE_vTaskSuspend */ | |
/*-----------------------------------------------------------*/ | |
#if ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) ) | |
BaseType_t xTaskResumeFromISR( TaskHandle_t xTaskToResume ) | |
{ | |
BaseType_t xYieldRequired = pdFALSE; | |
TCB_t * const pxTCB = ( TCB_t * ) xTaskToResume; | |
UBaseType_t uxSavedInterruptStatus; | |
configASSERT( xTaskToResume ); | |
/* RTOS ports that support interrupt nesting have the concept of a | |
maximum system call (or maximum API call) interrupt priority. | |
Interrupts that are above the maximum system call priority are keep | |
permanently enabled, even when the RTOS kernel is in a critical section, | |
but cannot make any calls to FreeRTOS API functions. If configASSERT() | |
is defined in FreeRTOSConfig.h then | |
portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion | |
failure if a FreeRTOS API function is called from an interrupt that has | |
been assigned a priority above the configured maximum system call | |
priority. Only FreeRTOS functions that end in FromISR can be called | |
from interrupts that have been assigned a priority at or (logically) | |
below the maximum system call interrupt priority. FreeRTOS maintains a | |
separate interrupt safe API to ensure interrupt entry is as fast and as | |
simple as possible. More information (albeit Cortex-M specific) is | |
provided on the following link: | |
http://www.freertos.org/RTOS-Cortex-M3-M4.html */ | |
portASSERT_IF_INTERRUPT_PRIORITY_INVALID(); | |
uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR(); | |
{ | |
if( prvTaskIsTaskSuspended( pxTCB ) == pdTRUE ) | |
{ | |
traceTASK_RESUME_FROM_ISR( pxTCB ); | |
/* Check the ready lists can be accessed. */ | |
if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE ) | |
{ | |
/* Ready lists can be accessed so move the task from the | |
suspended list to the ready list directly. */ | |
if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority ) | |
{ | |
xYieldRequired = pdTRUE; | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
( void ) uxListRemove( &( pxTCB->xGenericListItem ) ); | |
prvAddTaskToReadyList( pxTCB ); | |
} | |
else | |
{ | |
/* The delayed or ready lists cannot be accessed so the task | |
is held in the pending ready list until the scheduler is | |
unsuspended. */ | |
vListInsertEnd( &( xPendingReadyList ), &( pxTCB->xEventListItem ) ); | |
} | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
} | |
portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus ); | |
return xYieldRequired; | |
} | |
#endif /* ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) ) */ | |
/*-----------------------------------------------------------*/ | |
void vTaskStartScheduler( void ) | |
{ | |
BaseType_t xReturn; | |
/* Add the idle task at the lowest priority. */ | |
#if ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) | |
{ | |
/* Create the idle task, storing its handle in xIdleTaskHandle so it can | |
be returned by the xTaskGetIdleTaskHandle() function. */ | |
xReturn = xTaskGenericCreate( prvIdleTask, "IDLE", tskIDLE_STACK_SIZE, ( void * ) NULL, ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), &xIdleTaskHandle, (void*)&sIdleStack, NULL ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */ | |
} | |
#else | |
{ | |
/* Create the idle task without storing its handle. */ | |
xReturn = xTaskGenericCreate( prvIdleTask, "IDLE", tskIDLE_STACK_SIZE, ( void * ) NULL, ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), NULL, (void*)&sIdleStack, NULL ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */ | |
} | |
#endif /* INCLUDE_xTaskGetIdleTaskHandle */ | |
#if ( configUSE_TIMERS == 1 ) | |
{ | |
if( xReturn == pdPASS ) | |
{ | |
xReturn = xTimerCreateTimerTask(); | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
} | |
#endif /* configUSE_TIMERS */ | |
if( xReturn == pdPASS ) | |
{ | |
/* Interrupts are turned off here, to ensure a tick does not occur | |
before or during the call to xPortStartScheduler(). The stacks of | |
the created tasks contain a status word with interrupts switched on | |
so interrupts will automatically get re-enabled when the first task | |
starts to run. */ | |
portDISABLE_INTERRUPTS(); | |
#if ( configUSE_NEWLIB_REENTRANT == 1 ) | |
{ | |
/* Switch Newlib's _impure_ptr variable to point to the _reent | |
structure specific to the task that will run first. */ | |
_impure_ptr = &( pxCurrentTCB->xNewLib_reent ); | |
} | |
#endif /* configUSE_NEWLIB_REENTRANT */ | |
xSchedulerRunning = pdTRUE; | |
xTickCount = ( TickType_t ) 0U; | |
/* If configGENERATE_RUN_TIME_STATS is defined then the following | |
macro must be defined to configure the timer/counter used to generate | |
the run time counter time base. */ | |
portCONFIGURE_TIMER_FOR_RUN_TIME_STATS(); | |
/* Setting up the timer tick is hardware specific and thus in the | |
portable interface. */ | |
if( xPortStartScheduler() != pdFALSE ) | |
{ | |
/* Should not reach here as if the scheduler is running the | |
function will not return. */ | |
} | |
else | |
{ | |
/* Should only reach here if a task calls xTaskEndScheduler(). */ | |
} | |
} | |
else | |
{ | |
/* This line will only be reached if the kernel could not be started, | |
because there was not enough FreeRTOS heap to create the idle task | |
or the timer task. */ | |
configASSERT( xReturn ); | |
} | |
} | |
/*-----------------------------------------------------------*/ | |
void vTaskEndScheduler( void ) | |
{ | |
/* Stop the scheduler interrupts and call the portable scheduler end | |
routine so the original ISRs can be restored if necessary. The port | |
layer must ensure interrupts enable bit is left in the correct state. */ | |
portDISABLE_INTERRUPTS(); | |
xSchedulerRunning = pdFALSE; | |
vPortEndScheduler(); | |
} | |
/*----------------------------------------------------------*/ | |
void vTaskSuspendAll( void ) | |
{ | |
/* A critical section is not required as the variable is of type | |
BaseType_t. Please read Richard Barry's reply in the following link to a | |
post in the FreeRTOS support forum before reporting this as a bug! - | |
http://goo.gl/wu4acr */ | |
++uxSchedulerSuspended; | |
} | |
/*----------------------------------------------------------*/ | |
#if ( configUSE_TICKLESS_IDLE != 0 ) | |
static TickType_t prvGetExpectedIdleTime( void ) | |
{ | |
TickType_t xReturn; | |
if( pxCurrentTCB->uxPriority > tskIDLE_PRIORITY ) | |
{ | |
xReturn = 0; | |
} | |
else if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > 1 ) | |
{ | |
/* There are other idle priority tasks in the ready state. If | |
time slicing is used then the very next tick interrupt must be | |
processed. */ | |
xReturn = 0; | |
} | |
else | |
{ | |
xReturn = xNextTaskUnblockTime - xTickCount; | |
} | |
return xReturn; | |
} | |
#endif /* configUSE_TICKLESS_IDLE */ | |
/*----------------------------------------------------------*/ | |
BaseType_t xTaskResumeAll( void ) | |
{ | |
TCB_t *pxTCB; | |
BaseType_t xAlreadyYielded = pdFALSE; | |
/* If uxSchedulerSuspended is zero then this function does not match a | |
previous call to vTaskSuspendAll(). */ | |
configASSERT( uxSchedulerSuspended ); | |
/* It is possible that an ISR caused a task to be removed from an event | |
list while the scheduler was suspended. If this was the case then the | |
removed task will have been added to the xPendingReadyList. Once the | |
scheduler has been resumed it is safe to move all the pending ready | |
tasks from this list into their appropriate ready list. */ | |
taskENTER_CRITICAL(); | |
{ | |
--uxSchedulerSuspended; | |
if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE ) | |
{ | |
if( uxCurrentNumberOfTasks > ( UBaseType_t ) 0U ) | |
{ | |
/* Move any readied tasks from the pending list into the | |
appropriate ready list. */ | |
while( listLIST_IS_EMPTY( &xPendingReadyList ) == pdFALSE ) | |
{ | |
pxTCB = ( TCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( ( &xPendingReadyList ) ); | |
( void ) uxListRemove( &( pxTCB->xEventListItem ) ); | |
( void ) uxListRemove( &( pxTCB->xGenericListItem ) ); | |
prvAddTaskToReadyList( pxTCB ); | |
/* If we have moved a task that has a priority higher than | |
the current task then we should yield. */ | |
if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority ) | |
{ | |
xYieldPending = pdTRUE; | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
} | |
/* If any ticks occurred while the scheduler was suspended then | |
they should be processed now. This ensures the tick count does | |
not slip, and that any delayed tasks are resumed at the correct | |
time. */ | |
if( uxPendedTicks > ( UBaseType_t ) 0U ) | |
{ | |
while( uxPendedTicks > ( UBaseType_t ) 0U ) | |
{ | |
if( xTaskIncrementTick() != pdFALSE ) | |
{ | |
xYieldPending = pdTRUE; | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
--uxPendedTicks; | |
} | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
if( xYieldPending == pdTRUE ) | |
{ | |
#if( configUSE_PREEMPTION != 0 ) | |
{ | |
xAlreadyYielded = pdTRUE; | |
} | |
#endif | |
taskYIELD_IF_USING_PREEMPTION(); | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
} | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
} | |
taskEXIT_CRITICAL(); | |
return xAlreadyYielded; | |
} | |
/*-----------------------------------------------------------*/ | |
TickType_t xTaskGetTickCount( void ) | |
{ | |
TickType_t xTicks; | |
/* Critical section required if running on a 16 bit processor. */ | |
taskENTER_CRITICAL(); | |
{ | |
xTicks = xTickCount; | |
} | |
taskEXIT_CRITICAL(); | |
return xTicks; | |
} | |
/*-----------------------------------------------------------*/ | |
TickType_t xTaskGetTickCountFromISR( void ) | |
{ | |
TickType_t xReturn; | |
UBaseType_t uxSavedInterruptStatus; | |
/* RTOS ports that support interrupt nesting have the concept of a maximum | |
system call (or maximum API call) interrupt priority. Interrupts that are | |
above the maximum system call priority are kept permanently enabled, even | |
when the RTOS kernel is in a critical section, but cannot make any calls to | |
FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h | |
then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion | |
failure if a FreeRTOS API function is called from an interrupt that has been | |
assigned a priority above the configured maximum system call priority. | |
Only FreeRTOS functions that end in FromISR can be called from interrupts | |
that have been assigned a priority at or (logically) below the maximum | |
system call interrupt priority. FreeRTOS maintains a separate interrupt | |
safe API to ensure interrupt entry is as fast and as simple as possible. | |
More information (albeit Cortex-M specific) is provided on the following | |
link: http://www.freertos.org/RTOS-Cortex-M3-M4.html */ | |
portASSERT_IF_INTERRUPT_PRIORITY_INVALID(); | |
uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR(); | |
{ | |
xReturn = xTickCount; | |
} | |
portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus ); | |
return xReturn; | |
} | |
/*-----------------------------------------------------------*/ | |
UBaseType_t uxTaskGetNumberOfTasks( void ) | |
{ | |
/* A critical section is not required because the variables are of type | |
BaseType_t. */ | |
return uxCurrentNumberOfTasks; | |
} | |
/*-----------------------------------------------------------*/ | |
#if ( INCLUDE_pcTaskGetTaskName == 1 ) | |
char *pcTaskGetTaskName( TaskHandle_t xTaskToQuery ) | |
{ | |
TCB_t *pxTCB; | |
/* If null is passed in here then the name of the calling task is being queried. */ | |
pxTCB = prvGetTCBFromHandle( xTaskToQuery ); | |
configASSERT( pxTCB ); | |
return &( pxTCB->pcTaskName[ 0 ] ); | |
} | |
#endif /* INCLUDE_pcTaskGetTaskName */ | |
/*-----------------------------------------------------------*/ | |
#if ( configUSE_TRACE_FACILITY == 1 ) | |
UBaseType_t uxTaskGetSystemState( TaskStatus_t * const pxTaskStatusArray, const UBaseType_t uxArraySize, uint32_t * const pulTotalRunTime ) | |
{ | |
UBaseType_t uxTask = 0, uxQueue = configMAX_PRIORITIES; | |
vTaskSuspendAll(); | |
{ | |
/* Is there a space in the array for each task in the system? */ | |
if( uxArraySize >= uxCurrentNumberOfTasks ) | |
{ | |
/* Fill in an TaskStatus_t structure with information on each | |
task in the Ready state. */ | |
do | |
{ | |
uxQueue--; | |
uxTask += prvListTaskWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &( pxReadyTasksLists[ uxQueue ] ), eReady ); | |
} while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */ | |
/* Fill in an TaskStatus_t structure with information on each | |
task in the Blocked state. */ | |
uxTask += prvListTaskWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxDelayedTaskList, eBlocked ); | |
uxTask += prvListTaskWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxOverflowDelayedTaskList, eBlocked ); | |
#if( INCLUDE_vTaskDelete == 1 ) | |
{ | |
/* Fill in an TaskStatus_t structure with information on | |
each task that has been deleted but not yet cleaned up. */ | |
uxTask += prvListTaskWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xTasksWaitingTermination, eDeleted ); | |
} | |
#endif | |
#if ( INCLUDE_vTaskSuspend == 1 ) | |
{ | |
/* Fill in an TaskStatus_t structure with information on | |
each task in the Suspended state. */ | |
uxTask += prvListTaskWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xSuspendedTaskList, eSuspended ); | |
} | |
#endif | |
#if ( configGENERATE_RUN_TIME_STATS == 1) | |
{ | |
if( pulTotalRunTime != NULL ) | |
{ | |
#ifdef portALT_GET_RUN_TIME_COUNTER_VALUE | |
portALT_GET_RUN_TIME_COUNTER_VALUE( ( *pulTotalRunTime ) ); | |
#else | |
*pulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE(); | |
#endif | |
} | |
} | |
#else | |
{ | |
if( pulTotalRunTime != NULL ) | |
{ | |
*pulTotalRunTime = 0; | |
} | |
} | |
#endif | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
} | |
( void ) xTaskResumeAll(); | |
return uxTask; | |
} | |
#endif /* configUSE_TRACE_FACILITY */ | |
/*----------------------------------------------------------*/ | |
#if ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) | |
TaskHandle_t xTaskGetIdleTaskHandle( void ) | |
{ | |
/* If xTaskGetIdleTaskHandle() is called before the scheduler has been | |
started, then xIdleTaskHandle will be NULL. */ | |
configASSERT( ( xIdleTaskHandle != NULL ) ); | |
return xIdleTaskHandle; | |
} | |
#endif /* INCLUDE_xTaskGetIdleTaskHandle */ | |
/*----------------------------------------------------------*/ | |
/* This conditional compilation should use inequality to 0, not equality to 1. | |
This is to ensure vTaskStepTick() is available when user defined low power mode | |
implementations require configUSE_TICKLESS_IDLE to be set to a value other than | |
1. */ | |
#if ( configUSE_TICKLESS_IDLE != 0 ) | |
void vTaskStepTick( const TickType_t xTicksToJump ) | |
{ | |
/* Correct the tick count value after a period during which the tick | |
was suppressed. Note this does *not* call the tick hook function for | |
each stepped tick. */ | |
configASSERT( ( xTickCount + xTicksToJump ) <= xNextTaskUnblockTime ); | |
xTickCount += xTicksToJump; | |
traceINCREASE_TICK_COUNT( xTicksToJump ); | |
} | |
#endif /* configUSE_TICKLESS_IDLE */ | |
/*----------------------------------------------------------*/ | |
BaseType_t xTaskIncrementTick( void ) | |
{ | |
TCB_t * pxTCB; | |
TickType_t xItemValue; | |
BaseType_t xSwitchRequired = pdFALSE; | |
/* Called by the portable layer each time a tick interrupt occurs. | |
Increments the tick then checks to see if the new tick value will cause any | |
tasks to be unblocked. */ | |
traceTASK_INCREMENT_TICK( xTickCount ); | |
if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE ) | |
{ | |
/* Increment the RTOS tick, switching the delayed and overflowed | |
delayed lists if it wraps to 0. */ | |
++xTickCount; | |
{ | |
/* Minor optimisation. The tick count cannot change in this | |
block. */ | |
const TickType_t xConstTickCount = xTickCount; | |
if( xConstTickCount == ( TickType_t ) 0U ) | |
{ | |
taskSWITCH_DELAYED_LISTS(); | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
/* See if this tick has made a timeout expire. Tasks are stored in | |
the queue in the order of their wake time - meaning once one task | |
has been found whose block time has not expired there is no need to | |
look any further down the list. */ | |
if( xConstTickCount >= xNextTaskUnblockTime ) | |
{ | |
for( ;; ) | |
{ | |
if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE ) | |
{ | |
/* The delayed list is empty. Set xNextTaskUnblockTime | |
to the maximum possible value so it is extremely | |
unlikely that the | |
if( xTickCount >= xNextTaskUnblockTime ) test will pass | |
next time through. */ | |
xNextTaskUnblockTime = portMAX_DELAY; | |
break; | |
} | |
else | |
{ | |
/* The delayed list is not empty, get the value of the | |
item at the head of the delayed list. This is the time | |
at which the task at the head of the delayed list must | |
be removed from the Blocked state. */ | |
pxTCB = ( TCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( pxDelayedTaskList ); | |
xItemValue = listGET_LIST_ITEM_VALUE( &( pxTCB->xGenericListItem ) ); | |
if( xConstTickCount < xItemValue ) | |
{ | |
/* It is not time to unblock this item yet, but the | |
item value is the time at which the task at the head | |
of the blocked list must be removed from the Blocked | |
state - so record the item value in | |
xNextTaskUnblockTime. */ | |
xNextTaskUnblockTime = xItemValue; | |
break; | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
/* It is time to remove the item from the Blocked state. */ | |
( void ) uxListRemove( &( pxTCB->xGenericListItem ) ); | |
/* Is the task waiting on an event also? If so remove | |
it from the event list. */ | |
if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL ) | |
{ | |
( void ) uxListRemove( &( pxTCB->xEventListItem ) ); | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
/* Place the unblocked task into the appropriate ready | |
list. */ | |
prvAddTaskToReadyList( pxTCB ); | |
/* A task being unblocked cannot cause an immediate | |
context switch if preemption is turned off. */ | |
#if ( configUSE_PREEMPTION == 1 ) | |
{ | |
/* Preemption is on, but a context switch should | |
only be performed if the unblocked task has a | |
priority that is equal to or higher than the | |
currently executing task. */ | |
if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority ) | |
{ | |
xSwitchRequired = pdTRUE; | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
} | |
#endif /* configUSE_PREEMPTION */ | |
} | |
} | |
} | |
} | |
/* Tasks of equal priority to the currently running task will share | |
processing time (time slice) if preemption is on, and the application | |
writer has not explicitly turned time slicing off. */ | |
#if ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) ) | |
{ | |
if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ pxCurrentTCB->uxPriority ] ) ) > ( UBaseType_t ) 1 ) | |
{ | |
xSwitchRequired = pdTRUE; | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
} | |
#endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) ) */ | |
#if ( configUSE_TICK_HOOK == 1 ) | |
{ | |
/* Guard against the tick hook being called when the pended tick | |
count is being unwound (when the scheduler is being unlocked). */ | |
if( uxPendedTicks == ( UBaseType_t ) 0U ) | |
{ | |
vApplicationTickHook(); | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
} | |
#endif /* configUSE_TICK_HOOK */ | |
} | |
else | |
{ | |
++uxPendedTicks; | |
/* The tick hook gets called at regular intervals, even if the | |
scheduler is locked. */ | |
#if ( configUSE_TICK_HOOK == 1 ) | |
{ | |
vApplicationTickHook(); | |
} | |
#endif | |
} | |
#if ( configUSE_PREEMPTION == 1 ) | |
{ | |
if( xYieldPending != pdFALSE ) | |
{ | |
xSwitchRequired = pdTRUE; | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
} | |
#endif /* configUSE_PREEMPTION */ | |
return xSwitchRequired; | |
} | |
/*-----------------------------------------------------------*/ | |
#if ( configUSE_APPLICATION_TASK_TAG == 1 ) | |
void vTaskSetApplicationTaskTag( TaskHandle_t xTask, TaskHookFunction_t pxHookFunction ) | |
{ | |
TCB_t *xTCB; | |
/* If xTask is NULL then it is the task hook of the calling task that is | |
getting set. */ | |
if( xTask == NULL ) | |
{ | |
xTCB = ( TCB_t * ) pxCurrentTCB; | |
} | |
else | |
{ | |
xTCB = ( TCB_t * ) xTask; | |
} | |
/* Save the hook function in the TCB. A critical section is required as | |
the value can be accessed from an interrupt. */ | |
taskENTER_CRITICAL(); | |
xTCB->pxTaskTag = pxHookFunction; | |
taskEXIT_CRITICAL(); | |
} | |
#endif /* configUSE_APPLICATION_TASK_TAG */ | |
/*-----------------------------------------------------------*/ | |
#if ( configUSE_APPLICATION_TASK_TAG == 1 ) | |
TaskHookFunction_t xTaskGetApplicationTaskTag( TaskHandle_t xTask ) | |
{ | |
TCB_t *xTCB; | |
TaskHookFunction_t xReturn; | |
/* If xTask is NULL then we are setting our own task hook. */ | |
if( xTask == NULL ) | |
{ | |
xTCB = ( TCB_t * ) pxCurrentTCB; | |
} | |
else | |
{ | |
xTCB = ( TCB_t * ) xTask; | |
} | |
/* Save the hook function in the TCB. A critical section is required as | |
the value can be accessed from an interrupt. */ | |
taskENTER_CRITICAL(); | |
{ | |
xReturn = xTCB->pxTaskTag; | |
} | |
taskEXIT_CRITICAL(); | |
return xReturn; | |
} | |
#endif /* configUSE_APPLICATION_TASK_TAG */ | |
/*-----------------------------------------------------------*/ | |
#if ( configUSE_APPLICATION_TASK_TAG == 1 ) | |
BaseType_t xTaskCallApplicationTaskHook( TaskHandle_t xTask, void *pvParameter ) | |
{ | |
TCB_t *xTCB; | |
BaseType_t xReturn; | |
/* If xTask is NULL then we are calling our own task hook. */ | |
if( xTask == NULL ) | |
{ | |
xTCB = ( TCB_t * ) pxCurrentTCB; | |
} | |
else | |
{ | |
xTCB = ( TCB_t * ) xTask; | |
} | |
if( xTCB->pxTaskTag != NULL ) | |
{ | |
xReturn = xTCB->pxTaskTag( pvParameter ); | |
} | |
else | |
{ | |
xReturn = pdFAIL; | |
} | |
return xReturn; | |
} | |
#endif /* configUSE_APPLICATION_TASK_TAG */ | |
/*-----------------------------------------------------------*/ | |
void vTaskSwitchContext( void ) | |
{ | |
if( uxSchedulerSuspended != ( UBaseType_t ) pdFALSE ) | |
{ | |
/* The scheduler is currently suspended - do not allow a context | |
switch. */ | |
xYieldPending = pdTRUE; | |
} | |
else | |
{ | |
xYieldPending = pdFALSE; | |
traceTASK_SWITCHED_OUT(); | |
#if ( configGENERATE_RUN_TIME_STATS == 1 ) | |
{ | |
#ifdef portALT_GET_RUN_TIME_COUNTER_VALUE | |
portALT_GET_RUN_TIME_COUNTER_VALUE( ulTotalRunTime ); | |
#else | |
ulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE(); | |
#endif | |
/* Add the amount of time the task has been running to the | |
accumulated time so far. The time the task started running was | |
stored in ulTaskSwitchedInTime. Note that there is no overflow | |
protection here so count values are only valid until the timer | |
overflows. The guard against negative values is to protect | |
against suspect run time stat counter implementations - which | |
are provided by the application, not the kernel. */ | |
if( ulTotalRunTime > ulTaskSwitchedInTime ) | |
{ | |
pxCurrentTCB->ulRunTimeCounter += ( ulTotalRunTime - ulTaskSwitchedInTime ); | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
ulTaskSwitchedInTime = ulTotalRunTime; | |
} | |
#endif /* configGENERATE_RUN_TIME_STATS */ | |
taskFIRST_CHECK_FOR_STACK_OVERFLOW(); | |
taskSECOND_CHECK_FOR_STACK_OVERFLOW(); | |
taskSELECT_HIGHEST_PRIORITY_TASK(); | |
traceTASK_SWITCHED_IN(); | |
#if ( configUSE_NEWLIB_REENTRANT == 1 ) | |
{ | |
/* Switch Newlib's _impure_ptr variable to point to the _reent | |
structure specific to this task. */ | |
_impure_ptr = &( pxCurrentTCB->xNewLib_reent ); | |
} | |
#endif /* configUSE_NEWLIB_REENTRANT */ | |
} | |
} | |
/*-----------------------------------------------------------*/ | |
void vTaskPlaceOnEventList( List_t * const pxEventList, const TickType_t xTicksToWait ) | |
{ | |
TickType_t xTimeToWake; | |
configASSERT( pxEventList ); | |
/* THIS FUNCTION MUST BE CALLED WITH EITHER INTERRUPTS DISABLED OR THE | |
SCHEDULER SUSPENDED AND THE QUEUE BEING ACCESSED LOCKED. */ | |
/* Place the event list item of the TCB in the appropriate event list. | |
This is placed in the list in priority order so the highest priority task | |
is the first to be woken by the event. The queue that contains the event | |
list is locked, preventing simultaneous access from interrupts. */ | |
vListInsert( pxEventList, &( pxCurrentTCB->xEventListItem ) ); | |
/* The task must be removed from from the ready list before it is added to | |
the blocked list as the same list item is used for both lists. Exclusive | |
access to the ready lists guaranteed because the scheduler is locked. */ | |
if( uxListRemove( &( pxCurrentTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 ) | |
{ | |
/* The current task must be in a ready list, so there is no need to | |
check, and the port reset macro can be called directly. */ | |
portRESET_READY_PRIORITY( pxCurrentTCB->uxPriority, uxTopReadyPriority ); | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
#if ( INCLUDE_vTaskSuspend == 1 ) | |
{ | |
if( xTicksToWait == portMAX_DELAY ) | |
{ | |
/* Add the task to the suspended task list instead of a delayed task | |
list to ensure the task is not woken by a timing event. It will | |
block indefinitely. */ | |
vListInsertEnd( &xSuspendedTaskList, &( pxCurrentTCB->xGenericListItem ) ); | |
} | |
else | |
{ | |
/* Calculate the time at which the task should be woken if the event | |
does not occur. This may overflow but this doesn't matter, the | |
scheduler will handle it. */ | |
xTimeToWake = xTickCount + xTicksToWait; | |
prvAddCurrentTaskToDelayedList( xTimeToWake ); | |
} | |
} | |
#else /* INCLUDE_vTaskSuspend */ | |
{ | |
/* Calculate the time at which the task should be woken if the event does | |
not occur. This may overflow but this doesn't matter, the scheduler | |
will handle it. */ | |
xTimeToWake = xTickCount + xTicksToWait; | |
prvAddCurrentTaskToDelayedList( xTimeToWake ); | |
} | |
#endif /* INCLUDE_vTaskSuspend */ | |
} | |
/*-----------------------------------------------------------*/ | |
void vTaskPlaceOnUnorderedEventList( List_t * pxEventList, const TickType_t xItemValue, const TickType_t xTicksToWait ) | |
{ | |
TickType_t xTimeToWake; | |
configASSERT( pxEventList ); | |
/* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by | |
the event groups implementation. */ | |
configASSERT( uxSchedulerSuspended != 0 ); | |
/* Store the item value in the event list item. It is safe to access the | |
event list item here as interrupts won't access the event list item of a | |
task that is not in the Blocked state. */ | |
listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE ); | |
/* Place the event list item of the TCB at the end of the appropriate event | |
list. It is safe to access the event list here because it is part of an | |
event group implementation - and interrupts don't access event groups | |
directly (instead they access them indirectly by pending function calls to | |
the task level). */ | |
vListInsertEnd( pxEventList, &( pxCurrentTCB->xEventListItem ) ); | |
/* The task must be removed from the ready list before it is added to the | |
blocked list. Exclusive access can be assured to the ready list as the | |
scheduler is locked. */ | |
if( uxListRemove( &( pxCurrentTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 ) | |
{ | |
/* The current task must be in a ready list, so there is no need to | |
check, and the port reset macro can be called directly. */ | |
portRESET_READY_PRIORITY( pxCurrentTCB->uxPriority, uxTopReadyPriority ); | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
#if ( INCLUDE_vTaskSuspend == 1 ) | |
{ | |
if( xTicksToWait == portMAX_DELAY ) | |
{ | |
/* Add the task to the suspended task list instead of a delayed task | |
list to ensure it is not woken by a timing event. It will block | |
indefinitely. */ | |
vListInsertEnd( &xSuspendedTaskList, &( pxCurrentTCB->xGenericListItem ) ); | |
} | |
else | |
{ | |
/* Calculate the time at which the task should be woken if the event | |
does not occur. This may overflow but this doesn't matter, the | |
kernel will manage it correctly. */ | |
xTimeToWake = xTickCount + xTicksToWait; | |
prvAddCurrentTaskToDelayedList( xTimeToWake ); | |
} | |
} | |
#else /* INCLUDE_vTaskSuspend */ | |
{ | |
/* Calculate the time at which the task should be woken if the event does | |
not occur. This may overflow but this doesn't matter, the kernel | |
will manage it correctly. */ | |
xTimeToWake = xTickCount + xTicksToWait; | |
prvAddCurrentTaskToDelayedList( xTimeToWake ); | |
} | |
#endif /* INCLUDE_vTaskSuspend */ | |
} | |
/*-----------------------------------------------------------*/ | |
#if configUSE_TIMERS == 1 | |
void vTaskPlaceOnEventListRestricted( List_t * const pxEventList, const TickType_t xTicksToWait ) | |
{ | |
TickType_t xTimeToWake; | |
configASSERT( pxEventList ); | |
/* This function should not be called by application code hence the | |
'Restricted' in its name. It is not part of the public API. It is | |
designed for use by kernel code, and has special calling requirements - | |
it should be called from a critical section. */ | |
/* Place the event list item of the TCB in the appropriate event list. | |
In this case it is assume that this is the only task that is going to | |
be waiting on this event list, so the faster vListInsertEnd() function | |
can be used in place of vListInsert. */ | |
vListInsertEnd( pxEventList, &( pxCurrentTCB->xEventListItem ) ); | |
/* We must remove this task from the ready list before adding it to the | |
blocked list as the same list item is used for both lists. This | |
function is called form a critical section. */ | |
if( uxListRemove( &( pxCurrentTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 ) | |
{ | |
/* The current task must be in a ready list, so there is no need to | |
check, and the port reset macro can be called directly. */ | |
portRESET_READY_PRIORITY( pxCurrentTCB->uxPriority, uxTopReadyPriority ); | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
/* Calculate the time at which the task should be woken if the event does | |
not occur. This may overflow but this doesn't matter. */ | |
xTimeToWake = xTickCount + xTicksToWait; | |
traceTASK_DELAY_UNTIL(); | |
prvAddCurrentTaskToDelayedList( xTimeToWake ); | |
} | |
#endif /* configUSE_TIMERS */ | |
/*-----------------------------------------------------------*/ | |
BaseType_t xTaskRemoveFromEventList( const List_t * const pxEventList ) | |
{ | |
TCB_t *pxUnblockedTCB; | |
BaseType_t xReturn; | |
/* THIS FUNCTION MUST BE CALLED FROM A CRITICAL SECTION. It can also be | |
called from a critical section within an ISR. */ | |
/* The event list is sorted in priority order, so the first in the list can | |
be removed as it is known to be the highest priority. Remove the TCB from | |
the delayed list, and add it to the ready list. | |
If an event is for a queue that is locked then this function will never | |
get called - the lock count on the queue will get modified instead. This | |
means exclusive access to the event list is guaranteed here. | |
This function assumes that a check has already been made to ensure that | |
pxEventList is not empty. */ | |
pxUnblockedTCB = ( TCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( pxEventList ); | |
configASSERT( pxUnblockedTCB ); | |
( void ) uxListRemove( &( pxUnblockedTCB->xEventListItem ) ); | |
if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE ) | |
{ | |
( void ) uxListRemove( &( pxUnblockedTCB->xGenericListItem ) ); | |
prvAddTaskToReadyList( pxUnblockedTCB ); | |
} | |
else | |
{ | |
/* The delayed and ready lists cannot be accessed, so hold this task | |
pending until the scheduler is resumed. */ | |
vListInsertEnd( &( xPendingReadyList ), &( pxUnblockedTCB->xEventListItem ) ); | |
} | |
if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority ) | |
{ | |
/* Return true if the task removed from the event list has a higher | |
priority than the calling task. This allows the calling task to know if | |
it should force a context switch now. */ | |
xReturn = pdTRUE; | |
/* Mark that a yield is pending in case the user is not using the | |
"xHigherPriorityTaskWoken" parameter to an ISR safe FreeRTOS function. */ | |
xYieldPending = pdTRUE; | |
} | |
else | |
{ | |
xReturn = pdFALSE; | |
} | |
return xReturn; | |
} | |
/*-----------------------------------------------------------*/ | |
BaseType_t xTaskRemoveFromUnorderedEventList( ListItem_t * pxEventListItem, const TickType_t xItemValue ) | |
{ | |
TCB_t *pxUnblockedTCB; | |
BaseType_t xReturn; | |
/* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by | |
the event flags implementation. */ | |
configASSERT( uxSchedulerSuspended != pdFALSE ); | |
/* Store the new item value in the event list. */ | |
listSET_LIST_ITEM_VALUE( pxEventListItem, xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE ); | |
/* Remove the event list form the event flag. Interrupts do not access | |
event flags. */ | |
pxUnblockedTCB = ( TCB_t * ) listGET_LIST_ITEM_OWNER( pxEventListItem ); | |
configASSERT( pxUnblockedTCB ); | |
( void ) uxListRemove( pxEventListItem ); | |
/* Remove the task from the delayed list and add it to the ready list. The | |
scheduler is suspended so interrupts will not be accessing the ready | |
lists. */ | |
( void ) uxListRemove( &( pxUnblockedTCB->xGenericListItem ) ); | |
prvAddTaskToReadyList( pxUnblockedTCB ); | |
if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority ) | |
{ | |
/* Return true if the task removed from the event list has | |
a higher priority than the calling task. This allows | |
the calling task to know if it should force a context | |
switch now. */ | |
xReturn = pdTRUE; | |
/* Mark that a yield is pending in case the user is not using the | |
"xHigherPriorityTaskWoken" parameter to an ISR safe FreeRTOS function. */ | |
xYieldPending = pdTRUE; | |
} | |
else | |
{ | |
xReturn = pdFALSE; | |
} | |
return xReturn; | |
} | |
/*-----------------------------------------------------------*/ | |
void vTaskSetTimeOutState( TimeOut_t * const pxTimeOut ) | |
{ | |
configASSERT( pxTimeOut ); | |
pxTimeOut->xOverflowCount = xNumOfOverflows; | |
pxTimeOut->xTimeOnEntering = xTickCount; | |
} | |
/*-----------------------------------------------------------*/ | |
BaseType_t xTaskCheckForTimeOut( TimeOut_t * const pxTimeOut, TickType_t * const pxTicksToWait ) | |
{ | |
BaseType_t xReturn; | |
configASSERT( pxTimeOut ); | |
configASSERT( pxTicksToWait ); | |
taskENTER_CRITICAL(); | |
{ | |
/* Minor optimisation. The tick count cannot change in this block. */ | |
const TickType_t xConstTickCount = xTickCount; | |
#if ( INCLUDE_vTaskSuspend == 1 ) | |
/* If INCLUDE_vTaskSuspend is set to 1 and the block time specified is | |
the maximum block time then the task should block indefinitely, and | |
therefore never time out. */ | |
if( *pxTicksToWait == portMAX_DELAY ) | |
{ | |
xReturn = pdFALSE; | |
} | |
else /* We are not blocking indefinitely, perform the checks below. */ | |
#endif | |
if( ( xNumOfOverflows != pxTimeOut->xOverflowCount ) && ( xConstTickCount >= pxTimeOut->xTimeOnEntering ) ) /*lint !e525 Indentation preferred as is to make code within pre-processor directives clearer. */ | |
{ | |
/* The tick count is greater than the time at which vTaskSetTimeout() | |
was called, but has also overflowed since vTaskSetTimeOut() was called. | |
It must have wrapped all the way around and gone past us again. This | |
passed since vTaskSetTimeout() was called. */ | |
xReturn = pdTRUE; | |
} | |
else if( ( xConstTickCount - pxTimeOut->xTimeOnEntering ) < *pxTicksToWait ) | |
{ | |
/* Not a genuine timeout. Adjust parameters for time remaining. */ | |
*pxTicksToWait -= ( xConstTickCount - pxTimeOut->xTimeOnEntering ); | |
vTaskSetTimeOutState( pxTimeOut ); | |
xReturn = pdFALSE; | |
} | |
else | |
{ | |
xReturn = pdTRUE; | |
} | |
} | |
taskEXIT_CRITICAL(); | |
return xReturn; | |
} | |
/*-----------------------------------------------------------*/ | |
void vTaskMissedYield( void ) | |
{ | |
xYieldPending = pdTRUE; | |
} | |
/*-----------------------------------------------------------*/ | |
#if ( configUSE_TRACE_FACILITY == 1 ) | |
UBaseType_t uxTaskGetTaskNumber( TaskHandle_t xTask ) | |
{ | |
UBaseType_t uxReturn; | |
TCB_t *pxTCB; | |
if( xTask != NULL ) | |
{ | |
pxTCB = ( TCB_t * ) xTask; | |
uxReturn = pxTCB->uxTaskNumber; | |
} | |
else | |
{ | |
uxReturn = 0U; | |
} | |
return uxReturn; | |
} | |
#endif /* configUSE_TRACE_FACILITY */ | |
/*-----------------------------------------------------------*/ | |
#if ( configUSE_TRACE_FACILITY == 1 ) | |
void vTaskSetTaskNumber( TaskHandle_t xTask, const UBaseType_t uxHandle ) | |
{ | |
TCB_t *pxTCB; | |
if( xTask != NULL ) | |
{ | |
pxTCB = ( TCB_t * ) xTask; | |
pxTCB->uxTaskNumber = uxHandle; | |
} | |
} | |
#endif /* configUSE_TRACE_FACILITY */ | |
/* | |
* ----------------------------------------------------------- | |
* The Idle task. | |
* ---------------------------------------------------------- | |
* | |
* The portTASK_FUNCTION() macro is used to allow port/compiler specific | |
* language extensions. The equivalent prototype for this function is: | |
* | |
* void prvIdleTask( void *pvParameters ); | |
* | |
*/ | |
static portTASK_FUNCTION( prvIdleTask, pvParameters ) | |
{ | |
/* Stop warnings. */ | |
( void ) pvParameters; | |
for( ;; ) | |
{ | |
/* See if any tasks have been deleted. */ | |
prvCheckTasksWaitingTermination(); | |
#if ( configUSE_PREEMPTION == 0 ) | |
{ | |
/* If we are not using preemption we keep forcing a task switch to | |
see if any other task has become available. If we are using | |
preemption we don't need to do this as any task becoming available | |
will automatically get the processor anyway. */ | |
taskYIELD(); | |
} | |
#endif /* configUSE_PREEMPTION */ | |
#if ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) | |
{ | |
/* When using preemption tasks of equal priority will be | |
timesliced. If a task that is sharing the idle priority is ready | |
to run then the idle task should yield before the end of the | |
timeslice. | |
A critical region is not required here as we are just reading from | |
the list, and an occasional incorrect value will not matter. If | |
the ready list at the idle priority contains more than one task | |
then a task other than the idle task is ready to execute. */ | |
if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > ( UBaseType_t ) 1 ) | |
{ | |
taskYIELD(); | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
} | |
#endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) */ | |
#if ( configUSE_IDLE_HOOK == 1 ) | |
{ | |
extern void vApplicationIdleHook( void ); | |
/* Call the user defined function from within the idle task. This | |
allows the application designer to add background functionality | |
without the overhead of a separate task. | |
NOTE: vApplicationIdleHook() MUST NOT, UNDER ANY CIRCUMSTANCES, | |
CALL A FUNCTION THAT MIGHT BLOCK. */ | |
vApplicationIdleHook(); | |
} | |
#endif /* configUSE_IDLE_HOOK */ | |
/* This conditional compilation should use inequality to 0, not equality | |
to 1. This is to ensure portSUPPRESS_TICKS_AND_SLEEP() is called when | |
user defined low power mode implementations require | |
configUSE_TICKLESS_IDLE to be set to a value other than 1. */ | |
#if ( configUSE_TICKLESS_IDLE != 0 ) | |
{ | |
TickType_t xExpectedIdleTime; | |
/* It is not desirable to suspend then resume the scheduler on | |
each iteration of the idle task. Therefore, a preliminary | |
test of the expected idle time is performed without the | |
scheduler suspended. The result here is not necessarily | |
valid. */ | |
xExpectedIdleTime = prvGetExpectedIdleTime(); | |
if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP ) | |
{ | |
vTaskSuspendAll(); | |
{ | |
/* Now the scheduler is suspended, the expected idle | |
time can be sampled again, and this time its value can | |
be used. */ | |
configASSERT( xNextTaskUnblockTime >= xTickCount ); | |
xExpectedIdleTime = prvGetExpectedIdleTime(); | |
if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP ) | |
{ | |
traceLOW_POWER_IDLE_BEGIN(); | |
portSUPPRESS_TICKS_AND_SLEEP( xExpectedIdleTime ); | |
traceLOW_POWER_IDLE_END(); | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
} | |
( void ) xTaskResumeAll(); | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
} | |
#endif /* configUSE_TICKLESS_IDLE */ | |
} | |
} | |
/*-----------------------------------------------------------*/ | |
#if configUSE_TICKLESS_IDLE != 0 | |
eSleepModeStatus eTaskConfirmSleepModeStatus( void ) | |
{ | |
eSleepModeStatus eReturn = eStandardSleep; | |
if( listCURRENT_LIST_LENGTH( &xPendingReadyList ) != 0 ) | |
{ | |
/* A task was made ready while the scheduler was suspended. */ | |
eReturn = eAbortSleep; | |
} | |
else if( xYieldPending != pdFALSE ) | |
{ | |
/* A yield was pended while the scheduler was suspended. */ | |
eReturn = eAbortSleep; | |
} | |
else | |
{ | |
#if configUSE_TIMERS == 0 | |
{ | |
/* The idle task exists in addition to the application tasks. */ | |
const UBaseType_t uxNonApplicationTasks = 1; | |
/* If timers are not being used and all the tasks are in the | |
suspended list (which might mean they have an infinite block | |
time rather than actually being suspended) then it is safe to | |
turn all clocks off and just wait for external interrupts. */ | |
if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == ( uxCurrentNumberOfTasks - uxNonApplicationTasks ) ) | |
{ | |
eReturn = eNoTasksWaitingTimeout; | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
} | |
#endif /* configUSE_TIMERS */ | |
} | |
return eReturn; | |
} | |
#endif /* configUSE_TICKLESS_IDLE */ | |
/*-----------------------------------------------------------*/ | |
static void prvInitialiseTCBVariables( TCB_t * const pxTCB, const char * const pcName, UBaseType_t uxPriority, const MemoryRegion_t * const xRegions, const uint16_t usStackDepth ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */ | |
{ | |
UBaseType_t x; | |
/* Store the task name in the TCB. */ | |
for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ ) | |
{ | |
pxTCB->pcTaskName[ x ] = pcName[ x ]; | |
/* Don't copy all configMAX_TASK_NAME_LEN if the string is shorter than | |
configMAX_TASK_NAME_LEN characters just in case the memory after the | |
string is not accessible (extremely unlikely). */ | |
if( pcName[ x ] == 0x00 ) | |
{ | |
break; | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
} | |
/* Ensure the name string is terminated in the case that the string length | |
was greater or equal to configMAX_TASK_NAME_LEN. */ | |
pxTCB->pcTaskName[ configMAX_TASK_NAME_LEN - 1 ] = '\0'; | |
/* This is used as an array index so must ensure it's not too large. First | |
remove the privilege bit if one is present. */ | |
if( uxPriority >= ( UBaseType_t ) configMAX_PRIORITIES ) | |
{ | |
uxPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U; | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
pxTCB->uxPriority = uxPriority; | |
#if ( configUSE_MUTEXES == 1 ) | |
{ | |
pxTCB->uxBasePriority = uxPriority; | |
} | |
#endif /* configUSE_MUTEXES */ | |
vListInitialiseItem( &( pxTCB->xGenericListItem ) ); | |
vListInitialiseItem( &( pxTCB->xEventListItem ) ); | |
/* Set the pxTCB as a link back from the ListItem_t. This is so we can get | |
back to the containing TCB from a generic item in a list. */ | |
listSET_LIST_ITEM_OWNER( &( pxTCB->xGenericListItem ), pxTCB ); | |
/* Event lists are always in priority order. */ | |
listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */ | |
listSET_LIST_ITEM_OWNER( &( pxTCB->xEventListItem ), pxTCB ); | |
#if ( portCRITICAL_NESTING_IN_TCB == 1 ) | |
{ | |
pxTCB->uxCriticalNesting = ( UBaseType_t ) 0U; | |
} | |
#endif /* portCRITICAL_NESTING_IN_TCB */ | |
#if ( configUSE_APPLICATION_TASK_TAG == 1 ) | |
{ | |
pxTCB->pxTaskTag = NULL; | |
} | |
#endif /* configUSE_APPLICATION_TASK_TAG */ | |
#if ( configGENERATE_RUN_TIME_STATS == 1 ) | |
{ | |
pxTCB->ulRunTimeCounter = 0UL; | |
} | |
#endif /* configGENERATE_RUN_TIME_STATS */ | |
#if ( portUSING_MPU_WRAPPERS == 1 ) | |
{ | |
vPortStoreTaskMPUSettings( &( pxTCB->xMPUSettings ), xRegions, pxTCB->pxStack, usStackDepth ); | |
} | |
#else /* portUSING_MPU_WRAPPERS */ | |
{ | |
( void ) xRegions; | |
( void ) usStackDepth; | |
} | |
#endif /* portUSING_MPU_WRAPPERS */ | |
#if ( configUSE_NEWLIB_REENTRANT == 1 ) | |
{ | |
/* Initialise this task's Newlib reent structure. */ | |
_REENT_INIT_PTR( ( &( pxTCB->xNewLib_reent ) ) ); | |
} | |
#endif /* configUSE_NEWLIB_REENTRANT */ | |
} | |
/*-----------------------------------------------------------*/ | |
#if ( portUSING_MPU_WRAPPERS == 1 ) | |
void vTaskAllocateMPURegions( TaskHandle_t xTaskToModify, const MemoryRegion_t * const xRegions ) | |
{ | |
TCB_t *pxTCB; | |
/* If null is passed in here then we are deleting ourselves. */ | |
pxTCB = prvGetTCBFromHandle( xTaskToModify ); | |
vPortStoreTaskMPUSettings( &( pxTCB->xMPUSettings ), xRegions, NULL, 0 ); | |
} | |
#endif /* portUSING_MPU_WRAPPERS */ | |
/*-----------------------------------------------------------*/ | |
static void prvInitialiseTaskLists( void ) | |
{ | |
UBaseType_t uxPriority; | |
for( uxPriority = ( UBaseType_t ) 0U; uxPriority < ( UBaseType_t ) configMAX_PRIORITIES; uxPriority++ ) | |
{ | |
vListInitialise( &( pxReadyTasksLists[ uxPriority ] ) ); | |
} | |
vListInitialise( &xDelayedTaskList1 ); | |
vListInitialise( &xDelayedTaskList2 ); | |
vListInitialise( &xPendingReadyList ); | |
#if ( INCLUDE_vTaskDelete == 1 ) | |
{ | |
vListInitialise( &xTasksWaitingTermination ); | |
} | |
#endif /* INCLUDE_vTaskDelete */ | |
#if ( INCLUDE_vTaskSuspend == 1 ) | |
{ | |
vListInitialise( &xSuspendedTaskList ); | |
} | |
#endif /* INCLUDE_vTaskSuspend */ | |
/* Start with pxDelayedTaskList using list1 and the pxOverflowDelayedTaskList | |
using list2. */ | |
pxDelayedTaskList = &xDelayedTaskList1; | |
pxOverflowDelayedTaskList = &xDelayedTaskList2; | |
} | |
/*-----------------------------------------------------------*/ | |
static void prvCheckTasksWaitingTermination( void ) | |
{ | |
#if ( INCLUDE_vTaskDelete == 1 ) | |
{ | |
BaseType_t xListIsEmpty; | |
/* ucTasksDeleted is used to prevent vTaskSuspendAll() being called | |
too often in the idle task. */ | |
while( uxTasksDeleted > ( UBaseType_t ) 0U ) | |
{ | |
vTaskSuspendAll(); | |
{ | |
xListIsEmpty = listLIST_IS_EMPTY( &xTasksWaitingTermination ); | |
} | |
( void ) xTaskResumeAll(); | |
if( xListIsEmpty == pdFALSE ) | |
{ | |
TCB_t *pxTCB; | |
taskENTER_CRITICAL(); | |
{ | |
pxTCB = ( TCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( ( &xTasksWaitingTermination ) ); | |
( void ) uxListRemove( &( pxTCB->xGenericListItem ) ); | |
--uxCurrentNumberOfTasks; | |
--uxTasksDeleted; | |
} | |
taskEXIT_CRITICAL(); | |
prvDeleteTCB( pxTCB ); | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
} | |
} | |
#endif /* vTaskDelete */ | |
} | |
/*-----------------------------------------------------------*/ | |
static void prvAddCurrentTaskToDelayedList( const TickType_t xTimeToWake ) | |
{ | |
/* The list item will be inserted in wake time order. */ | |
listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xGenericListItem ), xTimeToWake ); | |
if( xTimeToWake < xTickCount ) | |
{ | |
/* Wake time has overflowed. Place this item in the overflow list. */ | |
vListInsert( pxOverflowDelayedTaskList, &( pxCurrentTCB->xGenericListItem ) ); | |
} | |
else | |
{ | |
/* The wake time has not overflowed, so the current block list is used. */ | |
vListInsert( pxDelayedTaskList, &( pxCurrentTCB->xGenericListItem ) ); | |
/* If the task entering the blocked state was placed at the head of the | |
list of blocked tasks then xNextTaskUnblockTime needs to be updated | |
too. */ | |
if( xTimeToWake < xNextTaskUnblockTime ) | |
{ | |
xNextTaskUnblockTime = xTimeToWake; | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
} | |
} | |
/*-----------------------------------------------------------*/ | |
static TCB_t *prvAllocateTCBAndStack( const uint16_t usStackDepth, StackType_t * const puxStackBuffer ) | |
{ | |
TCB_t *pxNewTCB; | |
pxNewTCB = ( tskTCB * ) poolAllocateBuffer( (static_pool_t*)&sTCBsPool ); | |
if( pxNewTCB != NULL ) | |
{ | |
/* Allocate space for the stack used by the task being created. | |
The base of the stack memory stored in the TCB so the task can | |
be deleted later if required. */ | |
pxNewTCB->pxStack = ( StackType_t * ) pvPortMallocAligned( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ), puxStackBuffer ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */ | |
if( pxNewTCB->pxStack == NULL ) | |
{ | |
/* Could not allocate the stack. Delete the allocated TCB. */ | |
poolFreeBuffer( (static_pool_t*)&sTCBsPool, pxNewTCB ); | |
pxNewTCB = NULL; | |
} | |
else | |
{ | |
/* Avoid dependency on memset() if it is not required. */ | |
#if( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) ) | |
{ | |
/* Just to help debugging. */ | |
( void ) memset( pxNewTCB->pxStack, ( int ) tskSTACK_FILL_BYTE, ( size_t ) usStackDepth * sizeof( StackType_t ) ); | |
} | |
#endif /* ( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) || ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) ) ) */ | |
} | |
} | |
return pxNewTCB; | |
} | |
/*-----------------------------------------------------------*/ | |
#if ( configUSE_TRACE_FACILITY == 1 ) | |
static UBaseType_t prvListTaskWithinSingleList( TaskStatus_t *pxTaskStatusArray, List_t *pxList, eTaskState eState ) | |
{ | |
volatile TCB_t *pxNextTCB, *pxFirstTCB; | |
UBaseType_t uxTask = 0; | |
if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 ) | |
{ | |
listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList ); | |
/* Populate an TaskStatus_t structure within the | |
pxTaskStatusArray array for each task that is referenced from | |
pxList. See the definition of TaskStatus_t in task.h for the | |
meaning of each TaskStatus_t structure member. */ | |
do | |
{ | |
listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList ); | |
pxTaskStatusArray[ uxTask ].xHandle = ( TaskHandle_t ) pxNextTCB; | |
pxTaskStatusArray[ uxTask ].pcTaskName = ( const char * ) &( pxNextTCB->pcTaskName [ 0 ] ); | |
pxTaskStatusArray[ uxTask ].xTaskNumber = pxNextTCB->uxTCBNumber; | |
pxTaskStatusArray[ uxTask ].eCurrentState = eState; | |
pxTaskStatusArray[ uxTask ].uxCurrentPriority = pxNextTCB->uxPriority; | |
#if ( INCLUDE_vTaskSuspend == 1 ) | |
{ | |
/* If the task is in the suspended list then there is a chance | |
it is actually just blocked indefinitely - so really it should | |
be reported as being in the Blocked state. */ | |
if( eState == eSuspended ) | |
{ | |
if( listLIST_ITEM_CONTAINER( &( pxNextTCB->xEventListItem ) ) != NULL ) | |
{ | |
pxTaskStatusArray[ uxTask ].eCurrentState = eBlocked; | |
} | |
} | |
} | |
#endif /* INCLUDE_vTaskSuspend */ | |
#if ( configUSE_MUTEXES == 1 ) | |
{ | |
pxTaskStatusArray[ uxTask ].uxBasePriority = pxNextTCB->uxBasePriority; | |
} | |
#else | |
{ | |
pxTaskStatusArray[ uxTask ].uxBasePriority = 0; | |
} | |
#endif | |
#if ( configGENERATE_RUN_TIME_STATS == 1 ) | |
{ | |
pxTaskStatusArray[ uxTask ].ulRunTimeCounter = pxNextTCB->ulRunTimeCounter; | |
} | |
#else | |
{ | |
pxTaskStatusArray[ uxTask ].ulRunTimeCounter = 0; | |
} | |
#endif | |
#if ( portSTACK_GROWTH > 0 ) | |
{ | |
pxTaskStatusArray[ uxTask ].usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxNextTCB->pxEndOfStack ); | |
} | |
#else | |
{ | |
pxTaskStatusArray[ uxTask ].usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxNextTCB->pxStack ); | |
} | |
#endif | |
uxTask++; | |
} while( pxNextTCB != pxFirstTCB ); | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
return uxTask; | |
} | |
#endif /* configUSE_TRACE_FACILITY */ | |
/*-----------------------------------------------------------*/ | |
#if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) ) | |
static uint16_t prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte ) | |
{ | |
uint32_t ulCount = 0U; | |
while( *pucStackByte == tskSTACK_FILL_BYTE ) | |
{ | |
pucStackByte -= portSTACK_GROWTH; | |
ulCount++; | |
} | |
ulCount /= ( uint32_t ) sizeof( StackType_t ); | |
return ( uint16_t ) ulCount; | |
} | |
#endif /* ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) ) */ | |
/*-----------------------------------------------------------*/ | |
#if ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) | |
UBaseType_t uxTaskGetStackHighWaterMark( TaskHandle_t xTask ) | |
{ | |
TCB_t *pxTCB; | |
uint8_t *pucEndOfStack; | |
UBaseType_t uxReturn; | |
pxTCB = prvGetTCBFromHandle( xTask ); | |
#if portSTACK_GROWTH < 0 | |
{ | |
pucEndOfStack = ( uint8_t * ) pxTCB->pxStack; | |
} | |
#else | |
{ | |
pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack; | |
} | |
#endif | |
uxReturn = ( UBaseType_t ) prvTaskCheckFreeStackSpace( pucEndOfStack ); | |
return uxReturn; | |
} | |
#endif /* INCLUDE_uxTaskGetStackHighWaterMark */ | |
/*-----------------------------------------------------------*/ | |
#if ( INCLUDE_vTaskDelete == 1 ) | |
static void prvDeleteTCB( TCB_t *pxTCB ) | |
{ | |
/* This call is required specifically for the TriCore port. It must be | |
above the vPortFree() calls. The call is also used by ports/demos that | |
want to allocate and clean RAM statically. */ | |
portCLEAN_UP_TCB( pxTCB ); | |
/* Free up the memory allocated by the scheduler for the task. It is up | |
to the task to free any memory allocated at the application level. */ | |
#if ( configUSE_NEWLIB_REENTRANT == 1 ) | |
{ | |
_reclaim_reent( &( pxTCB->xNewLib_reent ) ); | |
} | |
#endif /* configUSE_NEWLIB_REENTRANT */ | |
poolFreeBuffer( (static_pool_t*)&sTCBsPool, pxTCB ); | |
} | |
#endif /* INCLUDE_vTaskDelete */ | |
/*-----------------------------------------------------------*/ | |
static void prvResetNextTaskUnblockTime( void ) | |
{ | |
TCB_t *pxTCB; | |
if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE ) | |
{ | |
/* The new current delayed list is empty. Set | |
xNextTaskUnblockTime to the maximum possible value so it is | |
extremely unlikely that the | |
if( xTickCount >= xNextTaskUnblockTime ) test will pass until | |
there is an item in the delayed list. */ | |
xNextTaskUnblockTime = portMAX_DELAY; | |
} | |
else | |
{ | |
/* The new current delayed list is not empty, get the value of | |
the item at the head of the delayed list. This is the time at | |
which the task at the head of the delayed list should be removed | |
from the Blocked state. */ | |
( pxTCB ) = ( TCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( pxDelayedTaskList ); | |
xNextTaskUnblockTime = listGET_LIST_ITEM_VALUE( &( ( pxTCB )->xGenericListItem ) ); | |
} | |
} | |
/*-----------------------------------------------------------*/ | |
#if ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) ) | |
TaskHandle_t xTaskGetCurrentTaskHandle( void ) | |
{ | |
TaskHandle_t xReturn; | |
/* A critical section is not required as this is not called from | |
an interrupt and the current TCB will always be the same for any | |
individual execution thread. */ | |
xReturn = pxCurrentTCB; | |
return xReturn; | |
} | |
#endif /* ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) ) */ | |
/*-----------------------------------------------------------*/ | |
#if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) | |
BaseType_t xTaskGetSchedulerState( void ) | |
{ | |
BaseType_t xReturn; | |
if( xSchedulerRunning == pdFALSE ) | |
{ | |
xReturn = taskSCHEDULER_NOT_STARTED; | |
} | |
else | |
{ | |
if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE ) | |
{ | |
xReturn = taskSCHEDULER_RUNNING; | |
} | |
else | |
{ | |
xReturn = taskSCHEDULER_SUSPENDED; | |
} | |
} | |
return xReturn; | |
} | |
#endif /* ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) */ | |
/*-----------------------------------------------------------*/ | |
#if ( configUSE_MUTEXES == 1 ) | |
void vTaskPriorityInherit( TaskHandle_t const pxMutexHolder ) | |
{ | |
TCB_t * const pxTCB = ( TCB_t * ) pxMutexHolder; | |
/* If the mutex was given back by an interrupt while the queue was | |
locked then the mutex holder might now be NULL. */ | |
if( pxMutexHolder != NULL ) | |
{ | |
if( pxTCB->uxPriority < pxCurrentTCB->uxPriority ) | |
{ | |
/* Adjust the mutex holder state to account for its new | |
priority. Only reset the event list item value if the value is | |
not being used for anything else. */ | |
if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL ) | |
{ | |
listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */ | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
/* If the task being modified is in the ready state it will need to | |
be moved into a new list. */ | |
if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxTCB->uxPriority ] ), &( pxTCB->xGenericListItem ) ) != pdFALSE ) | |
{ | |
if( uxListRemove( &( pxTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 ) | |
{ | |
taskRESET_READY_PRIORITY( pxTCB->uxPriority ); | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
/* Inherit the priority before being moved into the new list. */ | |
pxTCB->uxPriority = pxCurrentTCB->uxPriority; | |
prvAddTaskToReadyList( pxTCB ); | |
} | |
else | |
{ | |
/* Just inherit the priority. */ | |
pxTCB->uxPriority = pxCurrentTCB->uxPriority; | |
} | |
traceTASK_PRIORITY_INHERIT( pxTCB, pxCurrentTCB->uxPriority ); | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
} | |
else | |
{ | |
mtCOVERAGE_TEST_MARKER(); | |
} | |
} | |
#endif /* configUSE_MUTEXES */ | |
/*-----------------------------------------------------------*/ | |
#if ( configUSE_MUTEXES == 1 ) | |
void vTaskPriorityDisinherit( TaskHandle_t const pxMutexHolder ) | |
{ | |
TCB_t * const pxTCB = ( TCB_t * ) pxMutexHolder; | |
if( pxMutexHolder != NULL ) |