blob: 4a76e2a830ed499bdd4d461b01eec836a01823f4 [file] [log] [blame]
// miniz_tester.cpp
// Note: This module is not intended to make a good example, or be used for anything other than testing.
// It's something quick I put together last year to help regression test miniz/tinfl under Linux/Win32/Mac. It's derived from LZHAM's test module.
#ifdef _MSC_VER
#pragma warning (disable:4127) // warning C4127: conditional expression is constant
#endif
#if defined(__GNUC__)
// Ensure we get the 64-bit variants of the CRT's file I/O calls
#ifndef _FILE_OFFSET_BITS
#define _FILE_OFFSET_BITS 64
#endif
#ifndef _LARGEFILE64_SOURCE
#define _LARGEFILE64_SOURCE 1
#endif
#endif
#define MINIZ_HEADER_FILE_ONLY
#include "miniz.c"
#include <stdlib.h>
#include <stdio.h>
#include <assert.h>
#include <memory.h>
#include <stdarg.h>
#include <malloc.h>
#include <vector>
#include <string>
#include <limits.h>
#include <sys/stat.h>
#include "timer.h"
#define my_max(a,b) (((a) > (b)) ? (a) : (b))
#define my_min(a,b) (((a) < (b)) ? (a) : (b))
typedef unsigned char uint8;
typedef unsigned short uint16;
typedef unsigned int uint;
#define TDEFL_PRINT_OUTPUT_PROGRESS
#if defined(WIN32)
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#define FILE_STAT_STRUCT _stat
#define FILE_STAT _stat
#else
#include <unistd.h>
#define Sleep(ms) usleep(ms*1000)
#define _aligned_malloc(size, alignment) memalign(alignment, size)
#define _aligned_free free
#define fopen fopen64
#define _fseeki64 fseeko64
#define _ftelli64 ftello64
#define _stricmp strcasecmp
#define FILE_STAT_STRUCT stat64
#define FILE_STAT stat64
#endif
#ifdef WIN32
#define QUAD_INT_FMT "%I64u"
#else
#define QUAD_INT_FMT "%llu"
#endif
#ifdef _DEBUG
const bool g_is_debug = true;
#else
const bool g_is_debug = false;
#endif
typedef unsigned char uint8;
typedef unsigned int uint;
typedef unsigned int uint32;
typedef unsigned long long uint64;
typedef long long int64;
#define TDEFLTEST_COMP_INPUT_BUFFER_SIZE 1024*1024*2
#define TDEFLTEST_COMP_OUTPUT_BUFFER_SIZE 1024*1024*2
#define TDEFLTEST_DECOMP_INPUT_BUFFER_SIZE 1024*1024*2
static float s_max_small_comp_ratio, s_max_large_comp_ratio;
struct comp_options
{
comp_options() :
m_level(7),
m_unbuffered_decompression(false),
m_verify_compressed_data(false),
m_randomize_params(false),
m_randomize_buffer_sizes(false),
m_z_strat(Z_DEFAULT_STRATEGY),
m_random_z_flushing(false),
m_write_zlib_header(true),
m_archive_test(false),
m_write_archives(false)
{
}
void print()
{
printf("Level: %u\n", m_level);
printf("Write zlib header: %u\n", (uint)m_write_zlib_header);
printf("Unbuffered decompression: %u\n", (uint)m_unbuffered_decompression);
printf("Verify compressed data: %u\n", (uint)m_verify_compressed_data);
printf("Randomize parameters: %u\n", m_randomize_params);
printf("Randomize buffer sizes: %u\n", m_randomize_buffer_sizes);
printf("Deflate strategy: %u\n", m_z_strat);
printf("Random Z stream flushing: %u\n", m_random_z_flushing);
printf("Archive test: %u\n", m_archive_test);
printf("Write archives: %u\n", m_write_archives);
}
uint m_level;
bool m_unbuffered_decompression;
bool m_verify_compressed_data;
bool m_randomize_params;
bool m_randomize_buffer_sizes;
uint m_z_strat;
bool m_random_z_flushing;
bool m_write_zlib_header;
bool m_archive_test;
bool m_write_archives;
};
#define RND_SHR3(x) (x ^= (x << 17), x ^= (x >> 13), x ^= (x << 5))
#if 0
static void random_fill(uint8 *pDst, size_t len, uint32 x)
{
x ^= (x << 16);
if (!x) x++;
while (len)
{
RND_SHR3(x); uint64 l0 = x & 0xFFF;
RND_SHR3(x); uint64 l1 = x & 0xFFF;
RND_SHR3(x); uint64 l2 = x & 0xFFF;
RND_SHR3(x); uint c = x;
uint l = (uint)(((l0*l1*l2)/(16769025ULL) * 32) / 4095);
l = (uint)my_max(1,my_min(l, len));
len -= l;
while (l--)
{
*pDst++ = (uint8)c;
}
if (((int)x < 0) && len)
{
*pDst++ = 0;
len--;
}
}
}
#endif
static void print_usage()
{
printf("Usage: [options] [mode] inpath/infile [outfile]\n");
printf("\n");
printf("Modes:\n");
printf("c - Compress \"infile\" to \"outfile\"\n");
printf("d - Decompress \"infile\" to \"outfile\"\n");
printf("a - Recursively compress all files under \"inpath\"\n");
printf("r - Archive decompression test\n");
printf("\n");
printf("Options:\n");
printf("-m[0-10] - Compression level: 0=fastest (Huffman only), 9=best (10=uber)\n");
printf("-u - Use unbuffered decompression on files that can fit into memory.\n");
printf(" Unbuffered decompression is faster, but may have more I/O overhead.\n");
printf("-v - Immediately decompress compressed file after compression for verification.\n");
printf("-z - Do not write zlib header\n");
printf("-r - Randomize parameters during recursive testing\n");
printf("-b - Randomize input/output buffer sizes\n");
printf("-h - Use random z_flushing\n");
printf("-x# - Set rand() seed to value\n");
printf("-t# - Set z_strategy to value [0-4]\n");
printf("-a - Create single-file archives instead of files during testing\n");
printf("-w - Test archive cloning\n");
}
static void print_error(const char *pMsg, ...)
{
char buf[1024];
va_list args;
va_start(args, pMsg);
vsnprintf(buf, sizeof(buf), pMsg, args);
va_end(args);
buf[sizeof(buf) - 1] = '\0';
fprintf(stderr, "Error: %s", buf);
}
static FILE* open_file_with_retries(const char *pFilename, const char* pMode)
{
const uint cNumRetries = 8;
for (uint i = 0; i < cNumRetries; i++)
{
FILE* pFile = fopen(pFilename, pMode);
if (pFile)
return pFile;
Sleep(250);
}
return NULL;
}
static bool ensure_file_exists_and_is_readable(const char *pFilename)
{
FILE *p = fopen(pFilename, "rb");
if (!p)
return false;
_fseeki64(p, 0, SEEK_END);
uint64 src_file_size = _ftelli64(p);
_fseeki64(p, 0, SEEK_SET);
if (src_file_size)
{
char buf[1];
if (fread(buf, 1, 1, p) != 1)
{
fclose(p);
return false;
}
}
fclose(p);
return true;
}
static bool ensure_file_is_writable(const char *pFilename)
{
const int cNumRetries = 8;
for (int i = 0; i < cNumRetries; i++)
{
FILE *pFile = fopen(pFilename, "wb");
if (pFile)
{
fclose(pFile);
return true;
}
Sleep(250);
}
return false;
}
static int simple_test1(const comp_options &options)
{
(void)options;
size_t cmp_len = 0;
const char *p = "This is a test.This is a test.This is a test.1234567This is a test.This is a test.123456";
size_t uncomp_len = strlen(p);
void *pComp_data = tdefl_compress_mem_to_heap(p, uncomp_len, &cmp_len, TDEFL_WRITE_ZLIB_HEADER);
if (!pComp_data)
{
free(pComp_data);
print_error("Compression test failed!\n");
return EXIT_FAILURE;
}
printf("Uncompressed size: %u\nCompressed size: %u\n", (uint)uncomp_len, (uint)cmp_len);
size_t decomp_len = 0;
void *pDecomp_data = tinfl_decompress_mem_to_heap(pComp_data, cmp_len, &decomp_len, TINFL_FLAG_PARSE_ZLIB_HEADER);
if ((!pDecomp_data) || (decomp_len != uncomp_len) || (memcmp(pDecomp_data, p, uncomp_len)))
{
free(pComp_data);
free(pDecomp_data);
print_error("Compression test failed!\n");
return EXIT_FAILURE;
}
printf("Low-level API compression test succeeded.\n");
free(pComp_data);
free(pDecomp_data);
return EXIT_SUCCESS;
}
static int simple_test2(const comp_options &options)
{
(void)options;
uint8 cmp_buf[1024], decomp_buf[1024];
uLong cmp_len = sizeof(cmp_buf);
const char *p = "This is a test.This is a test.This is a test.1234567This is a test.This is a test.123456";
uLong uncomp_len = (uLong)strlen(p);
int status = compress(cmp_buf, &cmp_len, (const uint8*)p, uncomp_len);
if (status != Z_OK)
{
print_error("Compression test failed!\n");
return EXIT_FAILURE;
}
printf("Uncompressed size: %u\nCompressed size: %u\n", (uint)uncomp_len, (uint)cmp_len);
if (cmp_len > compressBound(uncomp_len))
{
print_error("compressBound() returned bogus result\n");
return EXIT_FAILURE;
}
uLong decomp_len = sizeof(decomp_buf);
status = uncompress(decomp_buf, &decomp_len, cmp_buf, cmp_len);;
if ((status != Z_OK) || (decomp_len != uncomp_len) || (memcmp(decomp_buf, p, uncomp_len)))
{
print_error("Compression test failed!\n");
return EXIT_FAILURE;
}
printf("zlib API compression test succeeded.\n");
return EXIT_SUCCESS;
}
static bool compress_file_zlib(const char* pSrc_filename, const char *pDst_filename, const comp_options &options)
{
printf("Testing: Streaming zlib compression\n");
FILE *pInFile = fopen(pSrc_filename, "rb");
if (!pInFile)
{
print_error("Unable to read file: %s\n", pSrc_filename);
return false;
}
FILE *pOutFile = fopen(pDst_filename, "wb");
if (!pOutFile)
{
print_error("Unable to create file: %s\n", pDst_filename);
return false;
}
_fseeki64(pInFile, 0, SEEK_END);
uint64 src_file_size = _ftelli64(pInFile);
_fseeki64(pInFile, 0, SEEK_SET);
fputc('D', pOutFile); fputc('E', pOutFile); fputc('F', pOutFile); fputc('0', pOutFile);
fputc(options.m_write_zlib_header, pOutFile);
for (uint i = 0; i < 8; i++)
fputc(static_cast<int>((src_file_size >> (i * 8)) & 0xFF), pOutFile);
uint cInBufSize = TDEFLTEST_COMP_INPUT_BUFFER_SIZE;
uint cOutBufSize = TDEFLTEST_COMP_OUTPUT_BUFFER_SIZE;
if (options.m_randomize_buffer_sizes)
{
cInBufSize = 1 + (rand() % 4096);
cOutBufSize = 1 + (rand() % 4096);
}
printf("Input buffer size: %u, Output buffer size: %u\n", cInBufSize, cOutBufSize);
uint8 *in_file_buf = static_cast<uint8*>(_aligned_malloc(cInBufSize, 16));
uint8 *out_file_buf = static_cast<uint8*>(_aligned_malloc(cOutBufSize, 16));
if ((!in_file_buf) || (!out_file_buf))
{
print_error("Out of memory!\n");
_aligned_free(in_file_buf);
_aligned_free(out_file_buf);
fclose(pInFile);
fclose(pOutFile);
return false;
}
uint64 src_bytes_left = src_file_size;
uint in_file_buf_size = 0;
uint in_file_buf_ofs = 0;
uint64 total_output_bytes = 0;
timer_ticks start_time = timer::get_ticks();
z_stream zstream;
memset(&zstream, 0, sizeof(zstream));
timer_ticks init_start_time = timer::get_ticks();
int status = deflateInit2(&zstream, options.m_level, Z_DEFLATED, options.m_write_zlib_header ? Z_DEFAULT_WINDOW_BITS : -Z_DEFAULT_WINDOW_BITS, 9, options.m_z_strat);
timer_ticks total_init_time = timer::get_ticks() - init_start_time;
if (status != Z_OK)
{
print_error("Failed initializing compressor!\n");
_aligned_free(in_file_buf);
_aligned_free(out_file_buf);
fclose(pInFile);
fclose(pOutFile);
return false;
}
printf("deflateInit2() took %3.3fms\n", timer::ticks_to_secs(total_init_time)*1000.0f);
uint32 x = my_max(1, (uint32)(src_file_size ^ (src_file_size >> 32)));
for ( ; ; )
{
if (src_file_size)
{
double total_elapsed_time = timer::ticks_to_secs(timer::get_ticks() - start_time);
double total_bytes_processed = static_cast<double>(src_file_size - src_bytes_left);
double comp_rate = (total_elapsed_time > 0.0f) ? total_bytes_processed / total_elapsed_time : 0.0f;
#ifdef TDEFL_PRINT_OUTPUT_PROGRESS
for (int i = 0; i < 15; i++)
printf("\b\b\b\b");
printf("Progress: %3.1f%%, Bytes Remaining: %3.1fMB, %3.3fMB/sec", (1.0f - (static_cast<float>(src_bytes_left) / src_file_size)) * 100.0f, src_bytes_left / 1048576.0f, comp_rate / (1024.0f * 1024.0f));
printf(" \b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b");
#endif
}
if (in_file_buf_ofs == in_file_buf_size)
{
in_file_buf_size = static_cast<uint>(my_min(cInBufSize, src_bytes_left));
if (fread(in_file_buf, 1, in_file_buf_size, pInFile) != in_file_buf_size)
{
printf("\n");
print_error("Failure reading from source file!\n");
_aligned_free(in_file_buf);
_aligned_free(out_file_buf);
fclose(pInFile);
fclose(pOutFile);
deflateEnd(&zstream);
return false;
}
src_bytes_left -= in_file_buf_size;
in_file_buf_ofs = 0;
}
zstream.next_in = &in_file_buf[in_file_buf_ofs];
zstream.avail_in = in_file_buf_size - in_file_buf_ofs;
zstream.next_out = out_file_buf;
zstream.avail_out = cOutBufSize;
int flush = !src_bytes_left ? Z_FINISH : Z_NO_FLUSH;
if ((flush == Z_NO_FLUSH) && (options.m_random_z_flushing))
{
RND_SHR3(x);
if ((x & 15) == 0)
{
RND_SHR3(x);
flush = (x & 31) ? Z_SYNC_FLUSH : Z_FULL_FLUSH;
}
}
status = deflate(&zstream, flush);
uint num_in_bytes = (in_file_buf_size - in_file_buf_ofs) - zstream.avail_in;
uint num_out_bytes = cOutBufSize - zstream.avail_out;
if (num_in_bytes)
{
in_file_buf_ofs += (uint)num_in_bytes;
assert(in_file_buf_ofs <= in_file_buf_size);
}
if (num_out_bytes)
{
if (fwrite(out_file_buf, 1, static_cast<uint>(num_out_bytes), pOutFile) != num_out_bytes)
{
printf("\n");
print_error("Failure writing to destination file!\n");
_aligned_free(in_file_buf);
_aligned_free(out_file_buf);
fclose(pInFile);
fclose(pOutFile);
deflateEnd(&zstream);
return false;
}
total_output_bytes += num_out_bytes;
}
if (status != Z_OK)
break;
}
#ifdef TDEFL_PRINT_OUTPUT_PROGRESS
for (int i = 0; i < 15; i++)
{
printf("\b\b\b\b \b\b\b\b");
}
#endif
src_bytes_left += (in_file_buf_size - in_file_buf_ofs);
uint32 adler32 = zstream.adler;
deflateEnd(&zstream);
timer_ticks end_time = timer::get_ticks();
double total_time = timer::ticks_to_secs(my_max(1, end_time - start_time));
uint64 cmp_file_size = _ftelli64(pOutFile);
_aligned_free(in_file_buf);
in_file_buf = NULL;
_aligned_free(out_file_buf);
out_file_buf = NULL;
fclose(pInFile);
pInFile = NULL;
fclose(pOutFile);
pOutFile = NULL;
if (status != Z_STREAM_END)
{
print_error("Compression failed with status %i\n", status);
return false;
}
if (src_bytes_left)
{
print_error("Compressor failed to consume entire input file!\n");
return false;
}
printf("Success\n");
printf("Input file size: " QUAD_INT_FMT ", Compressed file size: " QUAD_INT_FMT ", Ratio: %3.2f%%\n", src_file_size, cmp_file_size, src_file_size ? ((1.0f - (static_cast<float>(cmp_file_size) / src_file_size)) * 100.0f) : 0.0f);
printf("Compression time: %3.6f\nConsumption rate: %9.1f bytes/sec, Emission rate: %9.1f bytes/sec\n", total_time, src_file_size / total_time, cmp_file_size / total_time);
printf("Input file adler32: 0x%08X\n", adler32);
if (src_file_size)
{
if (src_file_size >= 256)
s_max_large_comp_ratio = my_max(s_max_large_comp_ratio, cmp_file_size / (float)src_file_size);
else
s_max_small_comp_ratio = my_max(s_max_small_comp_ratio, cmp_file_size / (float)src_file_size);
}
//printf("Max small comp ratio: %f, Max large comp ratio: %f\n", s_max_small_comp_ratio, s_max_large_comp_ratio);
return true;
}
static bool decompress_file_zlib(const char* pSrc_filename, const char *pDst_filename, comp_options options)
{
FILE *pInFile = fopen(pSrc_filename, "rb");
if (!pInFile)
{
print_error("Unable to read file: %s\n", pSrc_filename);
return false;
}
_fseeki64(pInFile, 0, SEEK_END);
uint64 src_file_size = _ftelli64(pInFile);
_fseeki64(pInFile, 0, SEEK_SET);
if (src_file_size < (5+9))
{
print_error("Compressed file is too small!\n");
fclose(pInFile);
return false;
}
int h0 = fgetc(pInFile);
int h1 = fgetc(pInFile);
int h2 = fgetc(pInFile);
int h3 = fgetc(pInFile);
int zlib_header = fgetc(pInFile);
if ((h0 != 'D') | (h1 != 'E') || (h2 != 'F') || (h3 != '0'))
{
print_error("Unrecognized/invalid header in file: %s\n", pSrc_filename);
fclose(pInFile);
return false;
}
FILE *pOutFile = fopen(pDst_filename, "wb");
if (!pOutFile)
{
print_error("Unable to create file: %s\n", pDst_filename);
fclose(pInFile);
return false;
}
uint64 orig_file_size = 0;
for (uint i = 0; i < 8; i++)
orig_file_size |= (static_cast<uint64>(fgetc(pInFile)) << (i * 8));
int total_header_bytes = ftell(pInFile);
// Avoid running out of memory on large files when using unbuffered decompression.
if ((options.m_unbuffered_decompression) && (orig_file_size > 768*1024*1024))
{
printf("Output file is too large for unbuffered decompression - switching to streaming decompression.\n");
options.m_unbuffered_decompression = false;
}
if (options.m_unbuffered_decompression)
printf("Testing: Unbuffered decompression\n");
else
printf("Testing: Streaming decompression\n");
uint cInBufSize = options.m_unbuffered_decompression ? static_cast<uint>(src_file_size) : TDEFLTEST_DECOMP_INPUT_BUFFER_SIZE;
uint out_buf_size = options.m_unbuffered_decompression ? static_cast<uint>(orig_file_size) : TINFL_LZ_DICT_SIZE;
if ((options.m_randomize_buffer_sizes) && (!options.m_unbuffered_decompression))
{
cInBufSize = 1 + (rand() % 4096);
}
printf("Input buffer size: %u, Output buffer size: %u\n", cInBufSize, out_buf_size);
uint8 *in_file_buf = static_cast<uint8*>(_aligned_malloc(cInBufSize, 16));
uint8 *out_file_buf = static_cast<uint8*>(_aligned_malloc(out_buf_size, 16));
if ((!in_file_buf) || (!out_file_buf))
{
print_error("Failed allocating output buffer!\n");
_aligned_free(in_file_buf);
fclose(pInFile);
fclose(pOutFile);
return false;
}
uint64 src_bytes_left = src_file_size - total_header_bytes;
uint64 dst_bytes_left = orig_file_size;
uint in_file_buf_size = 0;
uint in_file_buf_ofs = 0;
uint out_file_buf_ofs = 0;
timer_ticks start_time = timer::get_ticks();
double decomp_only_time = 0;
z_stream zstream;
memset(&zstream, 0, sizeof(zstream));
timer_ticks init_start_time = timer::get_ticks();
int status = zlib_header ? inflateInit(&zstream) : inflateInit2(&zstream, -Z_DEFAULT_WINDOW_BITS);
timer_ticks total_init_time = timer::get_ticks() - init_start_time;
if (status != Z_OK)
{
print_error("Failed initializing decompressor!\n");
_aligned_free(in_file_buf);
_aligned_free(out_file_buf);
fclose(pInFile);
fclose(pOutFile);
return false;
}
printf("inflateInit() took %3.3fms\n", timer::ticks_to_secs(total_init_time)*1000.0f);
for ( ; ; )
{
if (in_file_buf_ofs == in_file_buf_size)
{
in_file_buf_size = static_cast<uint>(my_min(cInBufSize, src_bytes_left));
if (fread(in_file_buf, 1, in_file_buf_size, pInFile) != in_file_buf_size)
{
print_error("Failure reading from source file!\n");
_aligned_free(in_file_buf);
_aligned_free(out_file_buf);
deflateEnd(&zstream);
fclose(pInFile);
fclose(pOutFile);
return false;
}
src_bytes_left -= in_file_buf_size;
in_file_buf_ofs = 0;
}
uint num_in_bytes = (in_file_buf_size - in_file_buf_ofs);
uint num_out_bytes = (out_buf_size - out_file_buf_ofs);
zstream.next_in = in_file_buf + in_file_buf_ofs;
zstream.avail_in = num_in_bytes;
zstream.next_out = out_file_buf + out_file_buf_ofs;
zstream.avail_out = num_out_bytes;
{
timer decomp_only_timer;
decomp_only_timer.start();
status = inflate(&zstream, options.m_unbuffered_decompression ? Z_FINISH : Z_SYNC_FLUSH);
decomp_only_time += decomp_only_timer.get_elapsed_secs();
}
num_in_bytes -= zstream.avail_in;
num_out_bytes -= zstream.avail_out;
if (num_in_bytes)
{
in_file_buf_ofs += (uint)num_in_bytes;
assert(in_file_buf_ofs <= in_file_buf_size);
}
out_file_buf_ofs += (uint)num_out_bytes;
if ((out_file_buf_ofs == out_buf_size) || (status == Z_STREAM_END))
{
if (fwrite(out_file_buf, 1, static_cast<uint>(out_file_buf_ofs), pOutFile) != out_file_buf_ofs)
{
print_error("Failure writing to destination file!\n");
_aligned_free(in_file_buf);
_aligned_free(out_file_buf);
inflateEnd(&zstream);
fclose(pInFile);
fclose(pOutFile);
return false;
}
out_file_buf_ofs = 0;
}
if (num_out_bytes > dst_bytes_left)
{
print_error("Decompressor wrote too many bytes to destination file!\n");
_aligned_free(in_file_buf);
_aligned_free(out_file_buf);
inflateEnd(&zstream);
fclose(pInFile);
fclose(pOutFile);
return false;
}
dst_bytes_left -= num_out_bytes;
if (status != Z_OK)
break;
}
_aligned_free(in_file_buf);
in_file_buf = NULL;
_aligned_free(out_file_buf);
out_file_buf = NULL;
src_bytes_left += (in_file_buf_size - in_file_buf_ofs);
uint32 adler32 = zstream.adler;
inflateEnd(&zstream);
timer_ticks end_time = timer::get_ticks();
double total_time = timer::ticks_to_secs(my_max(1, end_time - start_time));
fclose(pInFile);
pInFile = NULL;
fclose(pOutFile);
pOutFile = NULL;
if (status != Z_STREAM_END)
{
print_error("Decompression FAILED with status %i\n", status);
return false;
}
if ((src_file_size < UINT_MAX) && (orig_file_size < UINT_MAX))
{
if ((((size_t)zstream.total_in + total_header_bytes) != src_file_size) || (zstream.total_out != orig_file_size))
{
print_error("Decompression FAILED to consume all input or write all expected output!\n");
return false;
}
}
if (dst_bytes_left)
{
print_error("Decompressor FAILED to output the entire output file!\n");
return false;
}
if (src_bytes_left)
{
print_error("Decompressor FAILED to read " QUAD_INT_FMT " bytes from input buffer\n", src_bytes_left);
}
printf("Success\n");
printf("Source file size: " QUAD_INT_FMT ", Decompressed file size: " QUAD_INT_FMT "\n", src_file_size, orig_file_size);
if (zlib_header) printf("Decompressed adler32: 0x%08X\n", adler32);
printf("Overall decompression time (decompression init+I/O+decompression): %3.6f\n Consumption rate: %9.1f bytes/sec, Decompression rate: %9.1f bytes/sec\n", total_time, src_file_size / total_time, orig_file_size / total_time);
printf("Decompression only time (not counting decompression init or I/O): %3.6f\n Consumption rate: %9.1f bytes/sec, Decompression rate: %9.1f bytes/sec\n", decomp_only_time, src_file_size / decomp_only_time, orig_file_size / decomp_only_time);
return true;
}
static bool compare_files(const char *pFilename1, const char* pFilename2)
{
FILE* pFile1 = open_file_with_retries(pFilename1, "rb");
if (!pFile1)
{
print_error("Failed opening file: %s\n", pFilename1);
return false;
}
FILE* pFile2 = open_file_with_retries(pFilename2, "rb");
if (!pFile2)
{
print_error("Failed opening file: %s\n", pFilename2);
fclose(pFile1);
return false;
}
_fseeki64(pFile1, 0, SEEK_END);
int64 fileSize1 = _ftelli64(pFile1);
_fseeki64(pFile1, 0, SEEK_SET);
_fseeki64(pFile2, 0, SEEK_END);
int64 fileSize2 = _ftelli64(pFile2);
_fseeki64(pFile2, 0, SEEK_SET);
if (fileSize1 != fileSize2)
{
print_error("Files to compare are not the same size: %I64i vs. %I64i.\n", fileSize1, fileSize2);
fclose(pFile1);
fclose(pFile2);
return false;
}
const uint cBufSize = 1024 * 1024;
std::vector<uint8> buf1(cBufSize);
std::vector<uint8> buf2(cBufSize);
int64 bytes_remaining = fileSize1;
while (bytes_remaining)
{
const uint bytes_to_read = static_cast<uint>(my_min(cBufSize, bytes_remaining));
if (fread(&buf1.front(), bytes_to_read, 1, pFile1) != 1)
{
print_error("Failed reading from file: %s\n", pFilename1);
fclose(pFile1);
fclose(pFile2);
return false;
}
if (fread(&buf2.front(), bytes_to_read, 1, pFile2) != 1)
{
print_error("Failed reading from file: %s\n", pFilename2);
fclose(pFile1);
fclose(pFile2);
return false;
}
if (memcmp(&buf1.front(), &buf2.front(), bytes_to_read) != 0)
{
print_error("File data comparison failed!\n");
fclose(pFile1);
fclose(pFile2);
return false;
}
bytes_remaining -= bytes_to_read;
}
fclose(pFile1);
fclose(pFile2);
return true;
}
static bool zip_create(const char *pZip_filename, const char *pSrc_filename)
{
mz_zip_archive zip;
memset(&zip, 0, sizeof(zip));
if ((rand() % 100) >= 10)
zip.m_file_offset_alignment = 1 << (rand() & 15);
if (!mz_zip_writer_init_file(&zip, pZip_filename, 65537))
{
print_error("Failed creating zip archive \"%s\" (1)!\n", pZip_filename);
return false;
}
mz_bool success = MZ_TRUE;
const char *pStr = "This is a test!This is a test!This is a test!\n";
size_t comp_size;
void *pComp_data = tdefl_compress_mem_to_heap(pStr, strlen(pStr), &comp_size, 256);
success &= mz_zip_writer_add_mem_ex(&zip, "precomp.txt", pComp_data, comp_size, "Comment", (uint16)strlen("Comment"), MZ_ZIP_FLAG_COMPRESSED_DATA, strlen(pStr), mz_crc32(MZ_CRC32_INIT, (const uint8 *)pStr, strlen(pStr)));
success &= mz_zip_writer_add_mem(&zip, "cool/", NULL, 0, 0);
success &= mz_zip_writer_add_mem(&zip, "1.txt", pStr, strlen(pStr), 9);
int n = rand() & 4095;
for (int i = 0; i < n; i++)
{
char name[256], buf[256], comment[256];
sprintf(name, "t%u.txt", i);
sprintf(buf, "%u\n", i*5377);
sprintf(comment, "comment: %u\n", i);
success &= mz_zip_writer_add_mem_ex(&zip, name, buf, strlen(buf), comment, (uint16)strlen(comment), i % 10, 0, 0);
}
const char *pTestComment = "test comment";
success &= mz_zip_writer_add_file(&zip, "test.bin", pSrc_filename, pTestComment, (uint16)strlen(pTestComment), 9);
if (ensure_file_exists_and_is_readable("changelog.txt"))
success &= mz_zip_writer_add_file(&zip, "changelog.txt", "changelog.txt", "This is a comment", (uint16)strlen("This is a comment"), 9);
if (!success)
{
mz_zip_writer_end(&zip);
remove(pZip_filename);
print_error("Failed creating zip archive \"%s\" (2)!\n", pZip_filename);
return false;
}
if (!mz_zip_writer_finalize_archive(&zip))
{
mz_zip_writer_end(&zip);
remove(pZip_filename);
print_error("Failed creating zip archive \"%s\" (3)!\n", pZip_filename);
return false;
}
mz_zip_writer_end(&zip);
struct FILE_STAT_STRUCT stat_buf;
FILE_STAT(pZip_filename, &stat_buf);
uint64 actual_file_size = stat_buf.st_size;
if (zip.m_archive_size != actual_file_size)
{
print_error("Archive's actual size and zip archive object's size differ for file \"%s\"!\n", pZip_filename);
return false;
}
printf("Created zip file \"%s\", file size: " QUAD_INT_FMT "\n", pZip_filename, zip.m_archive_size);
return true;
}
static size_t zip_write_callback(void *pOpaque, uint64 ofs, const void *pBuf, size_t n)
{
(void)pOpaque, (void)ofs, (void)pBuf, (void)n;
return n;
}
static bool zip_extract(const char *pZip_filename, const char *pDst_filename)
{
mz_zip_archive zip;
memset(&zip, 0, sizeof(zip));
if (!mz_zip_reader_init_file(&zip, pZip_filename, 0))
{
print_error("Failed opening zip archive \"%s\"!\n", pZip_filename);
return false;
}
int file_index = mz_zip_reader_locate_file(&zip, "test.bin", "test Comment", 0);
int alt_file_index = mz_zip_reader_locate_file(&zip, "test.bin", "test Comment e", 0);
if ((file_index < 0) || (alt_file_index >= 0))
{
print_error("Archive \"%s\" is missing test.bin file!\n", pZip_filename);
mz_zip_reader_end(&zip);
return false;
}
alt_file_index = mz_zip_reader_locate_file(&zip, "test.bin", NULL, 0);
if (alt_file_index != file_index)
{
print_error("mz_zip_reader_locate_file() failed!\n", pZip_filename);
mz_zip_reader_end(&zip);
return false;
}
if (!mz_zip_reader_extract_to_file(&zip, file_index, pDst_filename, 0))
{
print_error("Failed extracting test.bin from archive \"%s\"!\n", pZip_filename);
mz_zip_reader_end(&zip);
return false;
}
for (uint i = 0; i < mz_zip_reader_get_num_files(&zip); i++)
{
mz_zip_archive_file_stat stat;
if (!mz_zip_reader_file_stat(&zip, i, &stat))
{
print_error("Failed testing archive \"%s\"!\n", pZip_filename);
mz_zip_reader_end(&zip);
return false;
}
//printf("\"%s\" %I64u %I64u\n", stat.m_filename, stat.m_comp_size, stat.m_uncomp_size);
size_t size = 0;
mz_bool status = mz_zip_reader_extract_to_callback(&zip, i, zip_write_callback, NULL, 0);
if (!status)
{
print_error("Failed testing archive \"%s\"!\n", pZip_filename);
mz_zip_reader_end(&zip);
return false;
}
void *p = mz_zip_reader_extract_to_heap(&zip, i, &size, 0);
if (!p)
{
print_error("Failed testing archive \"%s\"!\n", pZip_filename);
mz_zip_reader_end(&zip);
return false;
}
free(p);
}
printf("Verified %u files\n", mz_zip_reader_get_num_files(&zip));
mz_zip_reader_end(&zip);
printf("Extracted file \"%s\"\n", pDst_filename);
return true;
}
typedef std::vector< std::string > string_array;
#if defined(WIN32)
static bool find_files(std::string pathname, const std::string &filename, string_array &files, bool recursive, int depth = 0)
{
if (!pathname.empty())
{
char c = pathname[pathname.size() - 1];
if ((c != ':') && (c != '\\') && (c != '/'))
pathname += "\\";
}
WIN32_FIND_DATAA find_data;
HANDLE findHandle = FindFirstFileA((pathname + filename).c_str(), &find_data);
if (findHandle == INVALID_HANDLE_VALUE)
{
HRESULT hres = GetLastError();
if ((!depth) && (hres != NO_ERROR) && (hres != ERROR_FILE_NOT_FOUND))
return false;
}
else
{
do
{
const bool is_directory = (find_data.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) != 0;
const bool is_system = (find_data.dwFileAttributes & FILE_ATTRIBUTE_SYSTEM) != 0;
const bool is_hidden = false;//(find_data.dwFileAttributes & FILE_ATTRIBUTE_HIDDEN) != 0;
std::string filename(find_data.cFileName);
if ((!is_directory) && (!is_system) && (!is_hidden))
files.push_back(pathname + filename);
} while (FindNextFileA(findHandle, &find_data));
FindClose(findHandle);
}
if (recursive)
{
string_array paths;
HANDLE findHandle = FindFirstFileA((pathname + "*").c_str(), &find_data);
if (findHandle != INVALID_HANDLE_VALUE)
{
do
{
const bool is_directory = (find_data.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) != 0;
const bool is_system = (find_data.dwFileAttributes & FILE_ATTRIBUTE_SYSTEM) != 0;
const bool is_hidden = false;//(find_data.dwFileAttributes & FILE_ATTRIBUTE_HIDDEN) != 0;
std::string filename(find_data.cFileName);
if ((is_directory) && (!is_hidden) && (!is_system))
paths.push_back(filename);
} while (FindNextFileA(findHandle, &find_data));
FindClose(findHandle);
for (uint i = 0; i < paths.size(); i++)
{
const std::string &path = paths[i];
if (path[0] == '.')
continue;
if (!find_files(pathname + path, filename, files, true, depth + 1))
return false;
}
}
}
return true;
}
#else
#include <dirent.h>
#include <fnmatch.h>
static bool find_files(std::string pathname, const std::string &pattern, string_array &files, bool recursive, int depth = 0)
{
if (!pathname.empty())
{
char c = pathname[pathname.size() - 1];
if ((c != ':') && (c != '\\') && (c != '/'))
pathname += "/";
}
DIR *dp = opendir(pathname.c_str());
if (!dp)
return depth ? true : false;
string_array paths;
for ( ; ; )
{
struct dirent *ep = readdir(dp);
if (!ep)
break;
const bool is_directory = (ep->d_type & DT_DIR) != 0;
const bool is_file = (ep->d_type & DT_REG) != 0;
if (ep->d_name[0] == '.')
continue;
std::string filename(ep->d_name);
if (is_directory)
{
if (recursive)
paths.push_back(filename);
}
else if (is_file)
{
if (0 == fnmatch(pattern.c_str(), filename.c_str(), 0))
files.push_back(pathname + filename);
}
}
closedir(dp);
dp = NULL;
if (recursive)
{
for (uint i = 0; i < paths.size(); i++)
{
const std::string &path = paths[i];
if (!find_files(pathname + path, pattern, files, true, depth + 1))
return false;
}
}
return true;
}
#endif
static bool test_recursive(const char *pPath, comp_options options)
{
string_array files;
if (!find_files(pPath, "*", files, true))
{
print_error("Failed finding files under path \"%s\"!\n", pPath);
return false;
}
uint total_files_compressed = 0;
uint64 total_source_size = 0;
uint64 total_comp_size = 0;
#ifdef WIN32
MEMORYSTATUS initial_mem_status;
GlobalMemoryStatus(&initial_mem_status);
#endif
timer_ticks start_tick_count = timer::get_ticks();
const int first_file_index = 0;
uint unique_id = static_cast<uint>(timer::get_init_ticks());
char cmp_file[256], decomp_file[256];
sprintf(cmp_file, "__comp_temp_%u__.tmp", unique_id);
sprintf(decomp_file, "__decomp_temp_%u__.tmp", unique_id);
for (uint file_index = first_file_index; file_index < files.size(); file_index++)
{
const std::string &src_file = files[file_index];
printf("***** [%u of %u] Compressing file \"%s\" to \"%s\"\n", 1 + file_index, (uint)files.size(), src_file.c_str(), cmp_file);
if ((strstr(src_file.c_str(), "__comp_temp") != NULL) || (strstr(src_file.c_str(), "__decomp_temp") != NULL))
{
printf("Skipping temporary file \"%s\"\n", src_file.c_str());
continue;
}
FILE *pFile = fopen(src_file.c_str(), "rb");
if (!pFile)
{
printf("Skipping unreadable file \"%s\"\n", src_file.c_str());
continue;
}
_fseeki64(pFile, 0, SEEK_END);
int64 src_file_size = _ftelli64(pFile);
if (src_file_size)
{
_fseeki64(pFile, 0, SEEK_SET);
if (fgetc(pFile) == EOF)
{
printf("Skipping unreadable file \"%s\"\n", src_file.c_str());
fclose(pFile);
continue;
}
}
fclose(pFile);
if (!ensure_file_is_writable(cmp_file))
{
print_error("Unable to create file \"%s\"!\n", cmp_file);
return false;
}
comp_options file_options(options);
if (options.m_randomize_params)
{
file_options.m_level = rand() % 11;
file_options.m_unbuffered_decompression = (rand() & 1) != 0;
file_options.m_z_strat = rand() % (Z_FIXED + 1);
file_options.m_write_zlib_header = (rand() & 1) != 0;
file_options.m_random_z_flushing = (rand() & 1) != 0;
file_options.print();
}
bool status;
if (file_options.m_archive_test)
{
if (src_file_size > 0xFFF00000)
{
printf("Skipping too big file \"%s\"\n", src_file.c_str());
continue;
}
printf("Creating test archive with file \"%s\", size " QUAD_INT_FMT "\n", src_file.c_str(), src_file_size);
status = zip_create(cmp_file, src_file.c_str());
}
else
status = compress_file_zlib(src_file.c_str(), cmp_file, file_options);
if (!status)
{
print_error("Failed compressing file \"%s\" to \"%s\"\n", src_file.c_str(), cmp_file);
return false;
}
if (file_options.m_verify_compressed_data)
{
printf("Decompressing file \"%s\" to \"%s\"\n", cmp_file, decomp_file);
if (!ensure_file_is_writable(decomp_file))
{
print_error("Unable to create file \"%s\"!\n", decomp_file);
return false;
}
if (file_options.m_archive_test)
status = zip_extract(cmp_file, decomp_file);
else
status = decompress_file_zlib(cmp_file, decomp_file, file_options);
if (!status)
{
print_error("Failed decompressing file \"%s\" to \"%s\"\n", src_file.c_str(), decomp_file);
return false;
}
printf("Comparing file \"%s\" to \"%s\"\n", decomp_file, src_file.c_str());
if (!compare_files(decomp_file, src_file.c_str()))
{
print_error("Failed comparing decompressed file data while compressing \"%s\" to \"%s\"\n", src_file.c_str(), cmp_file);
return false;
}
else
{
printf("Decompressed file compared OK to original file.\n");
}
}
int64 cmp_file_size = 0;
pFile = fopen(cmp_file, "rb");
if (pFile)
{
_fseeki64(pFile, 0, SEEK_END);
cmp_file_size = _ftelli64(pFile);
fclose(pFile);
}
total_files_compressed++;
total_source_size += src_file_size;
total_comp_size += cmp_file_size;
#ifdef WIN32
MEMORYSTATUS mem_status;
GlobalMemoryStatus(&mem_status);
const int64 bytes_allocated = initial_mem_status.dwAvailVirtual- mem_status.dwAvailVirtual;
printf("Memory allocated relative to first file: %I64i\n", bytes_allocated);
#endif
printf("\n");
}
timer_ticks end_tick_count = timer::get_ticks();
double total_elapsed_time = timer::ticks_to_secs(end_tick_count - start_tick_count);
printf("Test successful: %f secs\n", total_elapsed_time);
printf("Total files processed: %u\n", total_files_compressed);
printf("Total source size: " QUAD_INT_FMT "\n", total_source_size);
printf("Total compressed size: " QUAD_INT_FMT "\n", total_comp_size);
printf("Max small comp ratio: %f, Max large comp ratio: %f\n", s_max_small_comp_ratio, s_max_large_comp_ratio);
remove(cmp_file);
remove(decomp_file);
return true;
}
static size_t dummy_zip_file_write_callback(void *pOpaque, uint64 ofs, const void *pBuf, size_t n)
{
(void)ofs; (void)pBuf;
uint32 *pCRC = (uint32*)pOpaque;
*pCRC = mz_crc32(*pCRC, (const uint8*)pBuf, n);
return n;
}
static bool test_archives(const char *pPath, comp_options options)
{
(void)options;
string_array files;
if (!find_files(pPath, "*.zip", files, true))
{
print_error("Failed finding files under path \"%s\"!\n", pPath);
return false;
}
uint total_archives = 0;
uint64 total_bytes_processed = 0;
uint64 total_files_processed = 0;
uint total_errors = 0;
#ifdef WIN32
MEMORYSTATUS initial_mem_status;
GlobalMemoryStatus(&initial_mem_status);
#endif
const int first_file_index = 0;
uint unique_id = static_cast<uint>(timer::get_init_ticks());
char cmp_file[256], decomp_file[256];
sprintf(decomp_file, "__decomp_temp_%u__.tmp", unique_id);
string_array failed_archives;
for (uint file_index = first_file_index; file_index < files.size(); file_index++)
{
const std::string &src_file = files[file_index];
printf("***** [%u of %u] Testing archive file \"%s\"\n", 1 + file_index, (uint)files.size(), src_file.c_str());
if ((strstr(src_file.c_str(), "__comp_temp") != NULL) || (strstr(src_file.c_str(), "__decomp_temp") != NULL))
{
printf("Skipping temporary file \"%s\"\n", src_file.c_str());
continue;
}
FILE *pFile = fopen(src_file.c_str(), "rb");
if (!pFile)
{
printf("Skipping unreadable file \"%s\"\n", src_file.c_str());
continue;
}
_fseeki64(pFile, 0, SEEK_END);
int64 src_file_size = _ftelli64(pFile);
fclose(pFile);
(void)src_file_size;
sprintf(cmp_file, "__comp_temp_%u__.zip", file_index);
mz_zip_archive src_archive;
memset(&src_archive, 0, sizeof(src_archive));
if (!mz_zip_reader_init_file(&src_archive, src_file.c_str(), 0))
{
failed_archives.push_back(src_file);
print_error("Failed opening archive \"%s\"!\n", src_file.c_str());
total_errors++;
continue;
}
mz_zip_archive dst_archive;
memset(&dst_archive, 0, sizeof(dst_archive));
if (options.m_write_archives)
{
if (!ensure_file_is_writable(cmp_file))
{
print_error("Unable to create file \"%s\"!\n", cmp_file);
return false;
}
if (!mz_zip_writer_init_file(&dst_archive, cmp_file, 0))
{
print_error("Failed creating archive \"%s\"!\n", cmp_file);
total_errors++;
continue;
}
}
int i;
//for (i = 0; i < mz_zip_reader_get_num_files(&src_archive); i++)
for (i = mz_zip_reader_get_num_files(&src_archive) - 1; i >= 0; --i)
{
if (mz_zip_reader_is_file_encrypted(&src_archive, i))
continue;
mz_zip_archive_file_stat file_stat;
bool status = mz_zip_reader_file_stat(&src_archive, i, &file_stat) != 0;
int locate_file_index = mz_zip_reader_locate_file(&src_archive, file_stat.m_filename, NULL, 0);
if (locate_file_index != i)
{
mz_zip_archive_file_stat locate_file_stat;
mz_zip_reader_file_stat(&src_archive, locate_file_index, &locate_file_stat);
if (_stricmp(locate_file_stat.m_filename, file_stat.m_filename) != 0)
{
print_error("mz_zip_reader_locate_file() failed!\n");
return false;
}
else
{
printf("Warning: Duplicate filenames in archive!\n");
}
}
if ((file_stat.m_method) && (file_stat.m_method != MZ_DEFLATED))
continue;
if (status)
{
char name[260];
mz_zip_reader_get_filename(&src_archive, i, name, sizeof(name));
size_t extracted_size = 0;
void *p = mz_zip_reader_extract_file_to_heap(&src_archive, name, &extracted_size, 0);
if (!p)
status = false;
uint32 extracted_crc32 = MZ_CRC32_INIT;
if (!mz_zip_reader_extract_file_to_callback(&src_archive, name, dummy_zip_file_write_callback, &extracted_crc32, 0))
status = false;
if (mz_crc32(MZ_CRC32_INIT, (const uint8*)p, extracted_size) != extracted_crc32)
status = false;
free(p);
if (options.m_write_archives)
{
if ((status) && (!mz_zip_writer_add_from_zip_reader(&dst_archive, &src_archive, i)))
{
print_error("Failed adding new file to archive \"%s\"!\n", cmp_file);
status = false;
}
}
total_bytes_processed += file_stat.m_uncomp_size;
total_files_processed++;
}
if (!status)
break;
}
mz_zip_reader_end(&src_archive);
//if (i < mz_zip_reader_get_num_files(&src_archive))
if (i >= 0)
{
failed_archives.push_back(src_file);
print_error("Failed processing archive \"%s\"!\n", src_file.c_str());
total_errors++;
}
if (options.m_write_archives)
{
if (!mz_zip_writer_finalize_archive(&dst_archive) || !mz_zip_writer_end(&dst_archive))
{
failed_archives.push_back(src_file);
print_error("Failed finalizing archive \"%s\"!\n", cmp_file);
total_errors++;
}
}
total_archives++;
#ifdef WIN32
MEMORYSTATUS mem_status;
GlobalMemoryStatus(&mem_status);
const int64 bytes_allocated = initial_mem_status.dwAvailVirtual- mem_status.dwAvailVirtual;
printf("Memory allocated relative to first file: %I64i\n", bytes_allocated);
#endif
printf("\n");
}
printf("Total archives processed: %u\n", total_archives);
printf("Total errors: %u\n", total_errors);
printf("Total bytes processed: " QUAD_INT_FMT "\n", total_bytes_processed);
printf("Total archive files processed: " QUAD_INT_FMT "\n", total_files_processed);
printf("List of failed archives:\n");
for (uint i = 0; i < failed_archives.size(); ++i)
printf("%s\n", failed_archives[i].c_str());
remove(cmp_file);
remove(decomp_file);
return true;
}
int main_internal(string_array cmd_line)
{
comp_options options;
if (!cmd_line.size())
{
print_usage();
if (simple_test1(options) || simple_test2(options))
return EXIT_FAILURE;
return EXIT_SUCCESS;
}
enum op_mode_t
{
OP_MODE_INVALID = -1,
OP_MODE_COMPRESS = 0,
OP_MODE_DECOMPRESS = 1,
OP_MODE_ALL = 2,
OP_MODE_ARCHIVES = 3
};
op_mode_t op_mode = OP_MODE_INVALID;
for (int i = 0; i < (int)cmd_line.size(); i++)
{
const std::string &str = cmd_line[i];
if (str[0] == '-')
{
if (str.size() < 2)
{
print_error("Invalid option: %s\n", str.c_str());
return EXIT_FAILURE;
}
switch (tolower(str[1]))
{
case 'u':
{
options.m_unbuffered_decompression = true;
break;
}
case 'm':
{
int comp_level = atoi(str.c_str() + 2);
if ((comp_level < 0) || (comp_level > (int)10))
{
print_error("Invalid compression level: %s\n", str.c_str());
return EXIT_FAILURE;
}
options.m_level = comp_level;
break;
}
case 'v':
{
options.m_verify_compressed_data = true;
break;
}
case 'r':
{
options.m_randomize_params = true;
break;
}
case 'b':
{
options.m_randomize_buffer_sizes = true;
break;
}
case 'h':
{
options.m_random_z_flushing = true;
break;
}
case 'x':
{
int seed = atoi(str.c_str() + 2);
srand(seed);
printf("Using random seed: %i\n", seed);
break;
}
case 't':
{
options.m_z_strat = my_min(Z_FIXED, my_max(0, atoi(str.c_str() + 2)));
break;
}
case 'z':
{
options.m_write_zlib_header = false;
break;
}
case 'a':
{
options.m_archive_test = true;
break;
}
case 'w':
{
options.m_write_archives = true;
break;
}
default:
{
print_error("Invalid option: %s\n", str.c_str());
return EXIT_FAILURE;
}
}
cmd_line.erase(cmd_line.begin() + i);
i--;
continue;
}
if (str.size() != 1)
{
print_error("Invalid mode: %s\n", str.c_str());
return EXIT_FAILURE;
}
switch (tolower(str[0]))
{
case 'c':
{
op_mode = OP_MODE_COMPRESS;
break;
}
case 'd':
{
op_mode = OP_MODE_DECOMPRESS;
break;
}
case 'a':
{
op_mode = OP_MODE_ALL;
break;
}
case 'r':
{
op_mode = OP_MODE_ARCHIVES;
break;
}
default:
{
print_error("Invalid mode: %s\n", str.c_str());
return EXIT_FAILURE;
}
}
cmd_line.erase(cmd_line.begin() + i);
break;
}
if (op_mode == OP_MODE_INVALID)
{
print_error("No mode specified!\n");
print_usage();
return EXIT_FAILURE;
}
printf("Using options:\n");
options.print();
printf("\n");
int exit_status = EXIT_FAILURE;
switch (op_mode)
{
case OP_MODE_COMPRESS:
{
if (cmd_line.size() < 2)
{
print_error("Must specify input and output filenames!\n");
return EXIT_FAILURE;
}
else if (cmd_line.size() > 2)
{
print_error("Too many filenames!\n");
return EXIT_FAILURE;
}
const std::string &src_file = cmd_line[0];
const std::string &cmp_file = cmd_line[1];
bool comp_result = compress_file_zlib(src_file.c_str(), cmp_file.c_str(), options);
if (comp_result)
exit_status = EXIT_SUCCESS;
if ((comp_result) && (options.m_verify_compressed_data))
{
char decomp_file[256];
sprintf(decomp_file, "__decomp_temp_%u__.tmp", (uint)timer::get_ms());
if (!decompress_file_zlib(cmp_file.c_str(), decomp_file, options))
{
print_error("Failed decompressing file \"%s\" to \"%s\"\n", cmp_file.c_str(), decomp_file);
return EXIT_FAILURE;
}
printf("Comparing file \"%s\" to \"%s\"\n", decomp_file, src_file.c_str());
if (!compare_files(decomp_file, src_file.c_str()))
{
print_error("Failed comparing decompressed file data while compressing \"%s\" to \"%s\"\n", src_file.c_str(), cmp_file.c_str());
return EXIT_FAILURE;
}
else
{
printf("Decompressed file compared OK to original file.\n");
}
remove(decomp_file);
}
break;
}
case OP_MODE_DECOMPRESS:
{
if (cmd_line.size() < 2)
{
print_error("Must specify input and output filenames!\n");
return EXIT_FAILURE;
}
else if (cmd_line.size() > 2)
{
print_error("Too many filenames!\n");
return EXIT_FAILURE;
}
if (decompress_file_zlib(cmd_line[0].c_str(), cmd_line[1].c_str(), options))
exit_status = EXIT_SUCCESS;
break;
}
case OP_MODE_ALL:
{
if (!cmd_line.size())
{
print_error("No directory specified!\n");
return EXIT_FAILURE;
}
else if (cmd_line.size() != 1)
{
print_error("Too many filenames!\n");
return EXIT_FAILURE;
}
if (test_recursive(cmd_line[0].c_str(), options))
exit_status = EXIT_SUCCESS;
break;
}
case OP_MODE_ARCHIVES:
{
if (!cmd_line.size())
{
print_error("No directory specified!\n");
return EXIT_FAILURE;
}
else if (cmd_line.size() != 1)
{
print_error("Too many filenames!\n");
return EXIT_FAILURE;
}
if (test_archives(cmd_line[0].c_str(), options))
exit_status = EXIT_SUCCESS;
break;
}
default:
{
print_error("No mode specified!\n");
print_usage();
return EXIT_FAILURE;
}
}
return exit_status;
}
int main(int argc, char *argv[])
{
#if defined(_WIN64) || defined(__LP64__) || defined(_LP64)
printf("miniz.c x64 Command Line Test App - Compiled %s %s\n", __DATE__, __TIME__);
#else
printf("miniz.c x86 Command Line Test App - Compiled %s %s\n", __DATE__, __TIME__);
#endif
timer::get_ticks();
string_array cmd_line;
for (int i = 1; i < argc; i++)
cmd_line.push_back(std::string(argv[i]));
int exit_status = main_internal(cmd_line);
return exit_status;
}