/* | |
FreeRTOS V8.0.1 - Copyright (C) 2014 Real Time Engineers Ltd. | |
All rights reserved | |
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION. | |
*************************************************************************** | |
* * | |
* FreeRTOS provides completely free yet professionally developed, * | |
* robust, strictly quality controlled, supported, and cross * | |
* platform software that has become a de facto standard. * | |
* * | |
* Help yourself get started quickly and support the FreeRTOS * | |
* project by purchasing a FreeRTOS tutorial book, reference * | |
* manual, or both from: http://www.FreeRTOS.org/Documentation * | |
* * | |
* Thank you! * | |
* * | |
*************************************************************************** | |
This file is part of the FreeRTOS distribution. | |
FreeRTOS is free software; you can redistribute it and/or modify it under | |
the terms of the GNU General Public License (version 2) as published by the | |
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception. | |
>>! NOTE: The modification to the GPL is included to allow you to !<< | |
>>! distribute a combined work that includes FreeRTOS without being !<< | |
>>! obliged to provide the source code for proprietary components !<< | |
>>! outside of the FreeRTOS kernel. !<< | |
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY | |
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | |
FOR A PARTICULAR PURPOSE. Full license text is available from the following | |
link: http://www.freertos.org/a00114.html | |
1 tab == 4 spaces! | |
*************************************************************************** | |
* * | |
* Having a problem? Start by reading the FAQ "My application does * | |
* not run, what could be wrong?" * | |
* * | |
* http://www.FreeRTOS.org/FAQHelp.html * | |
* * | |
*************************************************************************** | |
http://www.FreeRTOS.org - Documentation, books, training, latest versions, | |
license and Real Time Engineers Ltd. contact details. | |
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products, | |
including FreeRTOS+Trace - an indispensable productivity tool, a DOS | |
compatible FAT file system, and our tiny thread aware UDP/IP stack. | |
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High | |
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS | |
licenses offer ticketed support, indemnification and middleware. | |
http://www.SafeRTOS.com - High Integrity Systems also provide a safety | |
engineered and independently SIL3 certified version for use in safety and | |
mission critical applications that require provable dependability. | |
1 tab == 4 spaces! | |
*/ | |
/* | |
* main-blinky.c is included when the "Blinky" build configuration is used. | |
* main-full.c is included when the "Full" build configuration is used. | |
* | |
* main-blinky.c (this file) defines a very simple demo that creates two tasks, | |
* one queue, and one timer. It also demonstrates how Cortex-M3 interrupts can | |
* interact with FreeRTOS tasks/timers. | |
* | |
* This simple demo project runs 'stand alone' (without the rest of the tower | |
* system) on the TWR-K60N512 tower module, which is populated with a K60N512 | |
* Cortex-M4 microcontroller. | |
* | |
* The idle hook function: | |
* The idle hook function demonstrates how to query the amount of FreeRTOS heap | |
* space that is remaining (see vApplicationIdleHook() defined in this file). | |
* | |
* The main() Function: | |
* main() creates one software timer, one queue, and two tasks. It then starts | |
* the scheduler. | |
* | |
* The Queue Send Task: | |
* The queue send task is implemented by the prvQueueSendTask() function in | |
* this file. prvQueueSendTask() sits in a loop that causes it to repeatedly | |
* block for 200 milliseconds, before sending the value 100 to the queue that | |
* was created within main(). Once the value is sent, the task loops back | |
* around to block for another 200 milliseconds. | |
* | |
* The Queue Receive Task: | |
* The queue receive task is implemented by the prvQueueReceiveTask() function | |
* in this file. prvQueueReceiveTask() sits in a loop that causes it to | |
* repeatedly attempt to read data from the queue that was created within | |
* main(). When data is received, the task checks the value of the data, and | |
* if the value equals the expected 100, toggles the blue LED. The 'block | |
* time' parameter passed to the queue receive function specifies that the task | |
* should be held in the Blocked state indefinitely to wait for data to be | |
* available on the queue. The queue receive task will only leave the Blocked | |
* state when the queue send task writes to the queue. As the queue send task | |
* writes to the queue every 200 milliseconds, the queue receive task leaves the | |
* Blocked state every 200 milliseconds, and therefore toggles the blue LED | |
* every 200 milliseconds. | |
* | |
* The LED Software Timer and the Button Interrupt: | |
* The user button SW2 is configured to generate an interrupt each time it is | |
* pressed. The interrupt service routine switches the green LED on, and | |
* resets the LED software timer. The LED timer has a 5000 millisecond (5 | |
* second) period, and uses a callback function that is defined to just turn the | |
* LED off again. Therefore, pressing the user button will turn the LED on, and | |
* the LED will remain on until a full five seconds pass without the button | |
* being pressed. | |
*/ | |
/* Kernel includes. */ | |
#include "FreeRTOS.h" | |
#include "task.h" | |
#include "queue.h" | |
#include "timers.h" | |
/* Freescale includes. */ | |
#include "common.h" | |
/* Priorities at which the tasks are created. */ | |
#define mainQUEUE_RECEIVE_TASK_PRIORITY ( tskIDLE_PRIORITY + 2 ) | |
#define mainQUEUE_SEND_TASK_PRIORITY ( tskIDLE_PRIORITY + 1 ) | |
/* The rate at which data is sent to the queue, specified in milliseconds, and | |
converted to ticks using the portTICK_PERIOD_MS constant. */ | |
#define mainQUEUE_SEND_FREQUENCY_MS ( 200 / portTICK_PERIOD_MS ) | |
/* The LED will remain on until the button has not been pushed for a full | |
5000ms. */ | |
#define mainBUTTON_LED_TIMER_PERIOD_MS ( 5000UL / portTICK_PERIOD_MS ) | |
/* The number of items the queue can hold. This is 1 as the receive task | |
will remove items as they are added, meaning the send task should always find | |
the queue empty. */ | |
#define mainQUEUE_LENGTH ( 1 ) | |
/* The LED toggle by the queue receive task (blue). */ | |
#define mainTASK_CONTROLLED_LED ( 1UL << 10UL ) | |
/* The LED turned on by the button interrupt, and turned off by the LED timer | |
(green). */ | |
#define mainTIMER_CONTROLLED_LED ( 1UL << 29UL ) | |
/* The vector used by the GPIO port E. Button SW2 is configured to generate | |
an interrupt on this port. */ | |
#define mainGPIO_E_VECTOR ( 91 ) | |
/* A block time of zero simply means "don't block". */ | |
#define mainDONT_BLOCK ( 0UL ) | |
/*-----------------------------------------------------------*/ | |
/* | |
* Setup the NVIC, LED outputs, and button inputs. | |
*/ | |
static void prvSetupHardware( void ); | |
/* | |
* The tasks as described in the comments at the top of this file. | |
*/ | |
static void prvQueueReceiveTask( void *pvParameters ); | |
static void prvQueueSendTask( void *pvParameters ); | |
/* | |
* The LED timer callback function. This does nothing but switch off the | |
* LED defined by the mainTIMER_CONTROLLED_LED constant. | |
*/ | |
static void prvButtonLEDTimerCallback( TimerHandle_t xTimer ); | |
/*-----------------------------------------------------------*/ | |
/* The queue used by both tasks. */ | |
static QueueHandle_t xQueue = NULL; | |
/* The LED software timer. This uses prvButtonLEDTimerCallback() as its callback | |
function. */ | |
static TimerHandle_t xButtonLEDTimer = NULL; | |
/*-----------------------------------------------------------*/ | |
void main( void ) | |
{ | |
/* Configure the NVIC, LED outputs and button inputs. */ | |
prvSetupHardware(); | |
/* Create the queue. */ | |
xQueue = xQueueCreate( mainQUEUE_LENGTH, sizeof( unsigned long ) ); | |
if( xQueue != NULL ) | |
{ | |
/* Start the two tasks as described in the comments at the top of this | |
file. */ | |
xTaskCreate( prvQueueReceiveTask, "Rx", configMINIMAL_STACK_SIZE, NULL, mainQUEUE_RECEIVE_TASK_PRIORITY, NULL ); | |
xTaskCreate( prvQueueSendTask, "TX", configMINIMAL_STACK_SIZE, NULL, mainQUEUE_SEND_TASK_PRIORITY, NULL ); | |
/* Create the software timer that is responsible for turning off the LED | |
if the button is not pushed within 5000ms, as described at the top of | |
this file. */ | |
xButtonLEDTimer = xTimerCreate( "ButtonLEDTimer", /* A text name, purely to help debugging. */ | |
mainBUTTON_LED_TIMER_PERIOD_MS, /* The timer period, in this case 5000ms (5s). */ | |
pdFALSE, /* This is a one shot timer, so xAutoReload is set to pdFALSE. */ | |
( void * ) 0, /* The ID is not used, so can be set to anything. */ | |
prvButtonLEDTimerCallback /* The callback function that switches the LED off. */ | |
); | |
/* Start the tasks and timer running. */ | |
vTaskStartScheduler(); | |
} | |
/* If all is well, the scheduler will now be running, and the following line | |
will never be reached. If the following line does execute, then there was | |
insufficient FreeRTOS heap memory available for the idle and/or timer tasks | |
to be created. See the memory management section on the FreeRTOS web site | |
for more details. */ | |
for( ;; ); | |
} | |
/*-----------------------------------------------------------*/ | |
static void prvButtonLEDTimerCallback( TimerHandle_t xTimer ) | |
{ | |
/* The timer has expired - so no button pushes have occurred in the last | |
five seconds - turn the LED off. */ | |
GPIOA_PSOR = mainTIMER_CONTROLLED_LED; | |
} | |
/*-----------------------------------------------------------*/ | |
/* The ISR executed when the user button is pushed. */ | |
void vPort_E_ISRHandler( void ) | |
{ | |
portBASE_TYPE xHigherPriorityTaskWoken = pdFALSE; | |
/* The button was pushed, so ensure the LED is on before resetting the | |
LED timer. The LED timer will turn the LED off if the button is not | |
pushed within 5000ms. */ | |
GPIOA_PCOR = mainTIMER_CONTROLLED_LED; | |
/* This interrupt safe FreeRTOS function can be called from this interrupt | |
because the interrupt priority is below the | |
configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY setting in FreeRTOSConfig.h. */ | |
xTimerResetFromISR( xButtonLEDTimer, &xHigherPriorityTaskWoken ); | |
/* Clear the interrupt before leaving. */ | |
PORTE_ISFR = 0xFFFFFFFFUL; | |
/* If calling xTimerResetFromISR() caused a task (in this case the timer | |
service/daemon task) to unblock, and the unblocked task has a priority | |
higher than or equal to the task that was interrupted, then | |
xHigherPriorityTaskWoken will now be set to pdTRUE, and calling | |
portEND_SWITCHING_ISR() will ensure the unblocked task runs next. */ | |
portEND_SWITCHING_ISR( xHigherPriorityTaskWoken ); | |
} | |
/*-----------------------------------------------------------*/ | |
static void prvQueueSendTask( void *pvParameters ) | |
{ | |
TickType_t xNextWakeTime; | |
const unsigned long ulValueToSend = 100UL; | |
/* Initialise xNextWakeTime - this only needs to be done once. */ | |
xNextWakeTime = xTaskGetTickCount(); | |
for( ;; ) | |
{ | |
/* Place this task in the blocked state until it is time to run again. | |
The block time is specified in ticks, the constant used converts ticks | |
to ms. While in the Blocked state this task will not consume any CPU | |
time. */ | |
vTaskDelayUntil( &xNextWakeTime, mainQUEUE_SEND_FREQUENCY_MS ); | |
/* Send to the queue - causing the queue receive task to unblock and | |
toggle an LED. 0 is used as the block time so the sending operation | |
will not block - it shouldn't need to block as the queue should always | |
be empty at this point in the code. */ | |
xQueueSend( xQueue, &ulValueToSend, mainDONT_BLOCK ); | |
} | |
} | |
/*-----------------------------------------------------------*/ | |
static void prvQueueReceiveTask( void *pvParameters ) | |
{ | |
unsigned long ulReceivedValue; | |
for( ;; ) | |
{ | |
/* Wait until something arrives in the queue - this task will block | |
indefinitely provided INCLUDE_vTaskSuspend is set to 1 in | |
FreeRTOSConfig.h. */ | |
xQueueReceive( xQueue, &ulReceivedValue, portMAX_DELAY ); | |
/* To get here something must have been received from the queue, but | |
is it the expected value? If it is, toggle the LED. */ | |
if( ulReceivedValue == 100UL ) | |
{ | |
GPIOA_PTOR = mainTASK_CONTROLLED_LED; | |
} | |
} | |
} | |
/*-----------------------------------------------------------*/ | |
static void prvSetupHardware( void ) | |
{ | |
/* Enable the interrupt on SW1. */ | |
PORTE_PCR26 = PORT_PCR_MUX( 1 ) | PORT_PCR_IRQC( 0xA ) | PORT_PCR_PE_MASK | PORT_PCR_PS_MASK; | |
enable_irq( mainGPIO_E_VECTOR ); | |
/* The interrupt calls an interrupt safe API function - so its priority must | |
be equal to or lower than configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY. */ | |
set_irq_priority( mainGPIO_E_VECTOR, configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY ); | |
/* Set PTA10, PTA11, PTA28, and PTA29 (connected to LED's) for GPIO | |
functionality. */ | |
PORTA_PCR10 = ( 0 | PORT_PCR_MUX( 1 ) ); | |
PORTA_PCR11 = ( 0 | PORT_PCR_MUX( 1 ) ); | |
PORTA_PCR28 = ( 0 | PORT_PCR_MUX( 1 ) ); | |
PORTA_PCR29 = ( 0 | PORT_PCR_MUX( 1 ) ); | |
/* Change PTA10, PTA29 to outputs. */ | |
GPIOA_PDDR=GPIO_PDDR_PDD( mainTASK_CONTROLLED_LED | mainTIMER_CONTROLLED_LED ); | |
/* Start with LEDs off. */ | |
GPIOA_PTOR = ~0U; | |
} | |
/*-----------------------------------------------------------*/ | |
void vApplicationMallocFailedHook( void ) | |
{ | |
/* Called if a call to pvPortMalloc() fails because there is insufficient | |
free memory available in the FreeRTOS heap. pvPortMalloc() is called | |
internally by FreeRTOS API functions that create tasks, queues, software | |
timers, and semaphores. The size of the FreeRTOS heap is set by the | |
configTOTAL_HEAP_SIZE configuration constant in FreeRTOSConfig.h. */ | |
taskDISABLE_INTERRUPTS(); | |
for( ;; ); | |
} | |
/*-----------------------------------------------------------*/ | |
void vApplicationStackOverflowHook( TaskHandle_t pxTask, char *pcTaskName ) | |
{ | |
( void ) pcTaskName; | |
( void ) pxTask; | |
/* Run time stack overflow checking is performed if | |
configCHECK_FOR_STACK_OVERFLOW is defined to 1 or 2. This hook | |
function is called if a stack overflow is detected. */ | |
taskDISABLE_INTERRUPTS(); | |
for( ;; ); | |
} | |
/*-----------------------------------------------------------*/ | |
void vApplicationIdleHook( void ) | |
{ | |
volatile size_t xFreeHeapSpace; | |
/* This function is called on each cycle of the idle task. In this case it | |
does nothing useful, other than report the amount of FreeRTOS heap that | |
remains unallocated. */ | |
xFreeHeapSpace = xPortGetFreeHeapSize(); | |
if( xFreeHeapSpace > 100 ) | |
{ | |
/* By now, the kernel has allocated everything it is going to, so | |
if there is a lot of heap remaining unallocated then | |
the value of configTOTAL_HEAP_SIZE in FreeRTOSConfig.h can be | |
reduced accordingly. */ | |
} | |
} | |
/*-----------------------------------------------------------*/ | |
/* The Blinky build configuration does not include Ethernet functionality, | |
however, the Full and Blinky build configurations share a vectors.h header file. | |
Therefore, dummy Ethernet interrupt handers need to be defined to keep the | |
linker happy. */ | |
void vEMAC_TxISRHandler( void ) {} | |
void vEMAC_RxISRHandler( void ){} | |
void vEMAC_ErrorISRHandler( void ) {} | |
/* The Blinky build configuration does not include run time stats gathering, | |
however, the Full and Blinky build configurations share a FreeRTOSConfig.h | |
file. Therefore, dummy run time stats functions need to be defined to keep the | |
linker happy. */ | |
void vMainConfigureTimerForRunTimeStats( void ) {} | |
unsigned long ulMainGetRunTimeCounterValue( void ) { return 0UL; } | |
/* A tick hook is used by the "Full" build configuration. The Full and blinky | |
build configurations share a FreeRTOSConfig.h header file, so this simple build | |
configuration also has to define a tick hook - even though it does not actually | |
use it for anything. */ | |
void vApplicationTickHook( void ) {} | |