blob: 3110bf5afef673cc4aadca25c0df5ac8f46e7e4b [file] [log] [blame]
/*This file is prepared for Doxygen automatic documentation generation.*/
/*! \file *********************************************************************
*
* \brief USART driver for AVR32 UC3.
*
* This file contains basic functions for the AVR32 USART, with support for all
* modes, settings and clock speeds.
*
* - Compiler: IAR EWAVR32 and GNU GCC for AVR32
* - Supported devices: All AVR32 devices with a USART module can be used.
* - AppNote:
*
* \author Atmel Corporation: http://www.atmel.com \n
* Support and FAQ: http://support.atmel.no/
*
******************************************************************************/
/* Copyright (c) 2007, Atmel Corporation All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of ATMEL may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY AND
* SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "usart.h"
//------------------------------------------------------------------------------
/*! \name Private Functions
*/
//! @{
/*! \brief Checks if the USART is in multidrop mode.
*
* \param usart Base address of the USART instance.
*
* \return \c 1 if the USART is in multidrop mode, otherwise \c 0.
*/
#if __GNUC__
__attribute__((__always_inline__))
#endif
static __inline__ int usart_mode_is_multidrop(volatile avr32_usart_t *usart)
{
return ((usart->mr >> AVR32_USART_MR_PAR_OFFSET) & AVR32_USART_MR_PAR_MULTI) == AVR32_USART_MR_PAR_MULTI;
}
/*! \brief Calculates a clock divider (\e CD) that gets the USART as close to a
* wanted baudrate as possible.
*
* \todo manage the FP fractal part to avoid big errors
*
* Baudrate calculation:
* \f$ baudrate = \frac{Selected Clock}{16 \times CD} \f$ with 16x oversampling or
* \f$ baudrate = \frac{Selected Clock}{8 \times CD} \f$ with 8x oversampling or
* \f$ baudrate = \frac{Selected Clock}{CD} \f$ with SYNC bit set to allow high speed.
*
* \param usart Base address of the USART instance.
* \param baudrate Wanted baudrate.
* \param pba_hz USART module input clock frequency (PBA clock, Hz).
*
* \retval USART_SUCCESS Baudrate successfully initialized.
* \retval USART_INVALID_INPUT Wanted baudrate is impossible with given clock speed.
*/
static int usart_set_baudrate(volatile avr32_usart_t *usart, unsigned int baudrate, long pba_hz)
{
// Clock divider.
int cd;
// Baudrate calculation.
if (baudrate < pba_hz / 16)
{
// Use 16x oversampling, clear SYNC bit.
usart->mr &=~ (AVR32_USART_MR_OVER_MASK | AVR32_USART_MR_SYNC_MASK);
cd = (pba_hz + 8 * baudrate) / (16 * baudrate);
if ((cd >65535)) return USART_INVALID_INPUT;
}
else if (baudrate < pba_hz / 8)
{
// Use 8x oversampling.
usart->mr |= AVR32_USART_MR_OVER_MASK;
// clear SYNC bit
usart->mr &=~ AVR32_USART_MR_SYNC_MASK;
cd = (pba_hz + 4 * baudrate) / (8 * baudrate);
if ((cd < 1)||(cd >65535)) return USART_INVALID_INPUT;
}
else
{
// set SYNC to 1
usart->mr |= AVR32_USART_MR_SYNC_MASK;
// use PBA/BaudRate
cd = (pba_hz / baudrate);
}
usart->brgr = cd << AVR32_USART_BRGR_CD_OFFSET;
return USART_SUCCESS;
}
//! @}
//------------------------------------------------------------------------------
/*! \name Initialization Functions
*/
//! @{
void usart_reset(volatile avr32_usart_t *usart)
{
// Disable all USART interrupts.
// Interrupts needed should be set explicitly on every reset.
usart->idr = 0xFFFFFFFF;
// Reset mode and other registers that could cause unpredictable behavior after reset.
usart->mr = 0;
usart->rtor = 0;
usart->ttgr = 0;
// Shutdown TX and RX (will be re-enabled when setup has successfully completed),
// reset status bits and turn off DTR and RTS.
usart->cr = AVR32_USART_CR_RSTRX_MASK |
AVR32_USART_CR_RSTTX_MASK |
AVR32_USART_CR_RSTSTA_MASK |
AVR32_USART_CR_RSTIT_MASK |
AVR32_USART_CR_RSTNACK_MASK |
AVR32_USART_CR_DTRDIS_MASK |
AVR32_USART_CR_RTSDIS_MASK;
}
int usart_init_rs232(volatile avr32_usart_t *usart, const usart_options_t *opt, long pba_hz)
{
// Reset the USART and shutdown TX and RX.
usart_reset(usart);
// Check input values.
if (!opt) // Null pointer.
return USART_INVALID_INPUT;
if (opt->charlength < 5 || opt->charlength > 9 ||
opt->paritytype > 7 ||
opt->stopbits > 2 + 255 ||
opt->channelmode > 3)
return USART_INVALID_INPUT;
if (usart_set_baudrate(usart, opt->baudrate, pba_hz) == USART_INVALID_INPUT)
return USART_INVALID_INPUT;
if (opt->charlength == 9)
{
// Character length set to 9 bits. MODE9 dominates CHRL.
usart->mr |= AVR32_USART_MR_MODE9_MASK;
}
else
{
// CHRL gives the character length (- 5) when MODE9 = 0.
usart->mr |= (opt->charlength - 5) << AVR32_USART_MR_CHRL_OFFSET;
}
usart->mr |= (opt->channelmode << AVR32_USART_MR_CHMODE_OFFSET) |
(opt->paritytype << AVR32_USART_MR_PAR_OFFSET);
if (opt->stopbits > USART_2_STOPBITS)
{
// Set two stop bits
usart->mr |= AVR32_USART_MR_NBSTOP_2 << AVR32_USART_MR_NBSTOP_OFFSET;
// and a timeguard period gives the rest.
usart->ttgr = opt->stopbits - USART_2_STOPBITS;
}
else
// Insert 1, 1.5 or 2 stop bits.
usart->mr |= opt->stopbits << AVR32_USART_MR_NBSTOP_OFFSET;
// Setup complete; enable communication.
// Enable input and output.
usart->cr |= AVR32_USART_CR_TXEN_MASK |
AVR32_USART_CR_RXEN_MASK;
return USART_SUCCESS;
}
int usart_init_hw_handshaking(volatile avr32_usart_t *usart, const usart_options_t *opt, long pba_hz)
{
// First: Setup standard RS232.
if (usart_init_rs232(usart, opt, pba_hz) == USART_INVALID_INPUT)
return USART_INVALID_INPUT;
// Clear previous mode.
usart->mr &= ~AVR32_USART_MR_MODE_MASK;
// Hardware handshaking.
usart->mr |= USART_MODE_HW_HSH << AVR32_USART_MR_MODE_OFFSET;
return USART_SUCCESS;
}
int usart_init_IrDA(volatile avr32_usart_t *usart, const usart_options_t *opt,
long pba_hz, unsigned char irda_filter)
{
// First: Setup standard RS232.
if (usart_init_rs232(usart, opt, pba_hz) == USART_INVALID_INPUT)
return USART_INVALID_INPUT;
// Set IrDA counter.
usart->ifr = irda_filter;
// Activate "low-pass filtering" of input.
usart->mr |= AVR32_USART_MR_FILTER_MASK;
return USART_SUCCESS;
}
int usart_init_modem(volatile avr32_usart_t *usart, const usart_options_t *opt, long pba_hz)
{
// First: Setup standard RS232.
if (usart_init_rs232(usart, opt, pba_hz) == USART_INVALID_INPUT)
return USART_INVALID_INPUT;
// Clear previous mode.
usart->mr &= ~AVR32_USART_MR_MODE_MASK;
// Set modem mode.
usart->mr |= USART_MODE_MODEM << AVR32_USART_MR_MODE_OFFSET;
return USART_SUCCESS;
}
int usart_init_rs485(volatile avr32_usart_t *usart, const usart_options_t *opt, long pba_hz)
{
// First: Setup standard RS232.
if (usart_init_rs232(usart, opt, pba_hz) == USART_INVALID_INPUT)
return USART_INVALID_INPUT;
// Clear previous mode.
usart->mr &= ~AVR32_USART_MR_MODE_MASK;
// Set RS485 mode.
usart->mr |= USART_MODE_RS485 << AVR32_USART_MR_MODE_OFFSET;
return USART_SUCCESS;
}
int usart_init_iso7816(volatile avr32_usart_t *usart, const iso7816_options_t *opt, int t, long pba_hz)
{
// Reset the USART and shutdown TX and RX.
usart_reset(usart);
// Check input values.
if (!opt) // Null pointer.
return USART_INVALID_INPUT;
if (t == 0)
{
// Set USART mode to ISO7816, T=0.
// The T=0 protocol always uses 2 stop bits.
usart->mr = (USART_MODE_ISO7816_T0 << AVR32_USART_MR_MODE_OFFSET) |
(AVR32_USART_MR_NBSTOP_2 << AVR32_USART_MR_NBSTOP_OFFSET) |
(opt->bit_order << AVR32_USART_MR_MSBF_OFFSET); // Allow MSBF in T=0.
}
else if (t == 1)
{
// Only LSB first in the T=1 protocol.
// max_iterations field is only used in T=0 mode.
if (opt->bit_order != 0 ||
opt->max_iterations != 0)
return USART_INVALID_INPUT;
// Set USART mode to ISO7816, T=1.
// The T=1 protocol always uses 1 stop bit.
usart->mr = (USART_MODE_ISO7816_T1 << AVR32_USART_MR_MODE_OFFSET) |
(AVR32_USART_MR_NBSTOP_1 << AVR32_USART_MR_NBSTOP_OFFSET);
}
else
return USART_INVALID_INPUT;
if (usart_set_baudrate(usart, opt->iso7816_hz, pba_hz) == USART_INVALID_INPUT)
return USART_INVALID_INPUT;
// Set FIDI register: bit rate = selected clock/FI_DI_ratio/16.
usart->fidi = opt->fidi_ratio;
// Set ISO7816 spesific options in the MODE register.
usart->mr |= (opt->inhibit_nack << AVR32_USART_MR_INACK_OFFSET) |
(opt->dis_suc_nack << AVR32_USART_MR_DSNACK_OFFSET) |
(opt->max_iterations << AVR32_USART_MR_MAX_ITERATION_OFFSET) |
AVR32_USART_MR_CLKO_MASK; // Enable clock output.
// Setup complete; enable input.
// Leave TX disabled for now.
usart->cr |= AVR32_USART_CR_RXEN_MASK;
return USART_SUCCESS;
}
//! @}
//------------------------------------------------------------------------------
/*! \name Transmit/Receive Functions
*/
//! @{
int usart_send_address(volatile avr32_usart_t *usart, int address)
{
// Check if USART is in multidrop / RS485 mode.
if (!usart_mode_is_multidrop(usart)) return USART_MODE_FAULT;
// Prepare to send an address.
usart->cr |= AVR32_USART_CR_SENDA_MASK;
// Write the address to TX.
usart_bw_write_char(usart, address);
return USART_SUCCESS;
}
int usart_write_char(volatile avr32_usart_t *usart, int c)
{
if (usart->csr & AVR32_USART_CSR_TXRDY_MASK)
{
usart->thr = c;
return USART_SUCCESS;
}
else
return USART_TX_BUSY;
}
int usart_putchar(volatile avr32_usart_t *usart, int c)
{
int timeout = USART_DEFAULT_TIMEOUT;
if (c == '\n')
{
do
{
if (!timeout--) return USART_FAILURE;
} while (usart_write_char(usart, '\r') != USART_SUCCESS);
timeout = USART_DEFAULT_TIMEOUT;
}
do
{
if (!timeout--) return USART_FAILURE;
} while (usart_write_char(usart, c) != USART_SUCCESS);
return USART_SUCCESS;
}
int usart_read_char(volatile avr32_usart_t *usart, int *c)
{
// Check for errors: frame, parity and overrun. In RS485 mode, a parity error
// would mean that an address char has been received.
if (usart->csr & (AVR32_USART_CSR_OVRE_MASK |
AVR32_USART_CSR_FRAME_MASK |
AVR32_USART_CSR_PARE_MASK))
return USART_RX_ERROR;
// No error; if we really did receive a char, read it and return SUCCESS.
if (usart->csr & AVR32_USART_CSR_RXRDY_MASK)
{
*c = (unsigned short)usart->rhr;
return USART_SUCCESS;
}
else
return USART_RX_EMPTY;
}
int usart_getchar(volatile avr32_usart_t *usart)
{
int c, ret;
while ((ret = usart_read_char(usart, &c)) == USART_RX_EMPTY);
if (ret == USART_RX_ERROR)
return USART_FAILURE;
return c;
}
void usart_write_line(volatile avr32_usart_t *usart, const char *string)
{
while (*string != '\0')
usart_putchar(usart, *string++);
}
int usart_get_echo_line(volatile avr32_usart_t *usart)
{
int rx_char;
int retval = USART_SUCCESS;
while (1)
{
rx_char = usart_getchar(usart);
if (rx_char == USART_FAILURE)
{
usart_write_line(usart, "Error!!!\n");
break;
}
if (rx_char == '\x03')
{
retval = USART_FAILURE;
break;
}
usart_putchar(usart, rx_char);
if (rx_char == '\r')
{
usart_putchar(usart, '\n');
break;
}
}
return retval;
}
//! @}