blob: e531399b79ec43d5c9cdef058b7aa4623ec05ef0 [file] [log] [blame]
/*
* Copyright (c) 2016, The OpenThread Authors.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the copyright holder nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/**
* @file
* This file implements the OpenThread platform abstraction for radio communication.
*
*/
#include <openthread/config.h>
// NRF tools use #define PACKAGE - for other purposes
// ie: the physical package the chip comes in
// This conflicts with the GNU Autoconf "PACAKGE" define
#undef PACKAGE
#include <assert.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <string.h>
#include <common/code_utils.hpp>
#include <platform-config.h>
#include <openthread/platform/logging.h>
#include <openthread/platform/radio.h>
#include <openthread/platform/diag.h>
#include <device/nrf.h>
#include <nrf_drv_radio802154.h>
#include <openthread-core-config.h>
#include <openthread/config.h>
#include <openthread/types.h>
#define SHORT_ADDRESS_SIZE 2
#define EXTENDED_ADDRESS_SIZE 8
#define PENDING_BIT 0x10
enum
{
NRF52840_RECEIVE_SENSITIVITY = -100, // dBm
};
static bool sDisabled;
static otRadioFrame sReceivedFrames[RADIO_RX_BUFFERS];
static otRadioFrame sTransmitFrame;
#if defined ( __GNUC__ )
static uint8_t sTransmitPsdu[OT_RADIO_FRAME_MAX_SIZE + 1]
__attribute__((section("nrf_radio_buffer.sTransmiPsdu")));
#elif defined ( __ICCARM__ )
#pragma location="NRF_RADIO_BUFFER"
static uint8_t sTransmitPsdu[OT_RADIO_FRAME_MAX_SIZE + 1];
#endif
static otRadioFrame sAckFrame;
static uint32_t sEnergyDetectionTime;
static uint8_t sEnergyDetectionChannel;
static int8_t sEnergyDetected;
typedef enum
{
kPendingEventSleep, // Requested to enter Sleep state.
kPendingEventFrameTransmitted, // Transmitted frame and received ACK (if requested).
kPendingEventChannelAccessFailure, // Failed to transmit frame (channel busy).
kPendingEventEnergyDetectionStart, // Requested to start Energy Detection procedure.
kPendingEventEnergyDetected, // Energy Detection finished.
} RadioPendingEvents;
static uint32_t sPendingEvents;
static void dataInit(void)
{
sDisabled = true;
sTransmitFrame.mPsdu = sTransmitPsdu + 1;
for (uint32_t i = 0; i < RADIO_RX_BUFFERS; i++)
{
sReceivedFrames[i].mPsdu = NULL;
}
memset(&sAckFrame, 0, sizeof(sAckFrame));
}
static void convertShortAddress(uint8_t *aTo, uint16_t aFrom)
{
aTo[0] = (uint8_t) aFrom;
aTo[1] = (uint8_t)(aFrom >> 8);
}
static inline bool isPendingEventSet(RadioPendingEvents aEvent)
{
return sPendingEvents & (1UL << aEvent);
}
static void setPendingEvent(RadioPendingEvents aEvent)
{
volatile uint32_t pendingEvents;
uint32_t bitToSet = 1UL << aEvent;
do
{
pendingEvents = __LDREXW((unsigned long volatile *)&sPendingEvents);
pendingEvents |= bitToSet;
}
while (__STREXW(pendingEvents, (unsigned long volatile *)&sPendingEvents));
}
static void resetPendingEvent(RadioPendingEvents aEvent)
{
volatile uint32_t pendingEvents;
uint32_t bitsToRemain = ~(1UL << aEvent);
do
{
pendingEvents = __LDREXW((unsigned long volatile *)&sPendingEvents);
pendingEvents &= bitsToRemain;
}
while (__STREXW(pendingEvents, (unsigned long volatile *)&sPendingEvents));
}
static inline void clearPendingEvents(void)
{
// Clear pending events that could cause race in the MAC layer.
volatile uint32_t pendingEvents;
uint32_t bitsToRemain = ~(0UL);
bitsToRemain &= ~(1UL << kPendingEventFrameTransmitted);
bitsToRemain &= ~(1UL << kPendingEventChannelAccessFailure);
bitsToRemain &= ~(1UL << kPendingEventSleep);
do
{
pendingEvents = __LDREXW((unsigned long volatile *)&sPendingEvents);
pendingEvents &= bitsToRemain;
}
while (__STREXW(pendingEvents, (unsigned long volatile *)&sPendingEvents));
}
void otPlatRadioGetIeeeEui64(otInstance *aInstance, uint8_t *aIeeeEui64)
{
(void) aInstance;
uint64_t factoryAddress = (uint64_t)NRF_FICR->DEVICEID[0] << 32;
factoryAddress |= NRF_FICR->DEVICEID[1];
memcpy(aIeeeEui64, &factoryAddress, sizeof(factoryAddress));
}
void otPlatRadioSetPanId(otInstance *aInstance, uint16_t aPanId)
{
(void) aInstance;
uint8_t address[SHORT_ADDRESS_SIZE];
convertShortAddress(address, aPanId);
nrf_drv_radio802154_pan_id_set(address);
}
void otPlatRadioSetExtendedAddress(otInstance *aInstance, uint8_t *aExtendedAddress)
{
(void) aInstance;
nrf_drv_radio802154_extended_address_set(aExtendedAddress);
}
void otPlatRadioSetShortAddress(otInstance *aInstance, uint16_t aShortAddress)
{
(void) aInstance;
uint8_t address[SHORT_ADDRESS_SIZE];
convertShortAddress(address, aShortAddress);
nrf_drv_radio802154_short_address_set(address);
}
void nrf5RadioInit(void)
{
dataInit();
nrf_drv_radio802154_init();
}
void nrf5RadioDeinit(void)
{
nrf_drv_radio802154_deinit();
}
otRadioState otPlatRadioGetState(otInstance *aInstance)
{
(void) aInstance;
if (sDisabled)
{
return OT_RADIO_STATE_DISABLED;
}
switch (nrf_drv_radio802154_state_get())
{
case NRF_DRV_RADIO802154_STATE_SLEEP:
return OT_RADIO_STATE_SLEEP;
case NRF_DRV_RADIO802154_STATE_RECEIVE:
case NRF_DRV_RADIO802154_STATE_ENERGY_DETECTION:
return OT_RADIO_STATE_RECEIVE;
case NRF_DRV_RADIO802154_STATE_TRANSMIT:
return OT_RADIO_STATE_TRANSMIT;
default:
assert(false); // Make sure driver returned valid state.
}
return OT_RADIO_STATE_RECEIVE; // It is the default state. Return it in case of unknown.
}
otError otPlatRadioEnable(otInstance *aInstance)
{
(void) aInstance;
otError error;
if (sDisabled)
{
sDisabled = false;
error = OT_ERROR_NONE;
}
else
{
error = OT_ERROR_INVALID_STATE;
}
return error;
}
otError otPlatRadioDisable(otInstance *aInstance)
{
(void) aInstance;
otError error;
if (!sDisabled)
{
sDisabled = true;
error = OT_ERROR_NONE;
}
else
{
error = OT_ERROR_INVALID_STATE;
}
return error;
}
bool otPlatRadioIsEnabled(otInstance *aInstance)
{
(void) aInstance;
return !sDisabled;
}
otError otPlatRadioSleep(otInstance *aInstance)
{
(void) aInstance;
if (nrf_drv_radio802154_sleep())
{
clearPendingEvents();
}
else
{
clearPendingEvents();
setPendingEvent(kPendingEventSleep);
}
return OT_ERROR_NONE;
}
otError otPlatRadioReceive(otInstance *aInstance, uint8_t aChannel)
{
(void) aInstance;
nrf_drv_radio802154_receive(aChannel);
clearPendingEvents();
return OT_ERROR_NONE;
}
otError otPlatRadioTransmit(otInstance *aInstance, otRadioFrame *aFrame)
{
(void) aInstance;
aFrame->mPsdu[-1] = aFrame->mLength;
if (nrf_drv_radio802154_transmit(&aFrame->mPsdu[-1], aFrame->mChannel, aFrame->mPower, true))
{
clearPendingEvents();
}
else
{
clearPendingEvents();
setPendingEvent(kPendingEventChannelAccessFailure);
}
return OT_ERROR_NONE;
}
otRadioFrame *otPlatRadioGetTransmitBuffer(otInstance *aInstance)
{
(void) aInstance;
return &sTransmitFrame;
}
int8_t otPlatRadioGetRssi(otInstance *aInstance)
{
(void) aInstance;
return nrf_drv_radio802154_rssi_last_get();
}
otRadioCaps otPlatRadioGetCaps(otInstance *aInstance)
{
(void) aInstance;
return OT_RADIO_CAPS_ENERGY_SCAN;
}
bool otPlatRadioGetPromiscuous(otInstance *aInstance)
{
(void) aInstance;
return nrf_drv_radio802154_promiscuous_get();
}
void otPlatRadioSetPromiscuous(otInstance *aInstance, bool aEnable)
{
(void) aInstance;
nrf_drv_radio802154_promiscuous_set(aEnable);
}
void otPlatRadioEnableSrcMatch(otInstance *aInstance, bool aEnable)
{
(void) aInstance;
nrf_drv_radio802154_auto_pending_bit_set(aEnable);
}
otError otPlatRadioAddSrcMatchShortEntry(otInstance *aInstance, const uint16_t aShortAddress)
{
(void) aInstance;
otError error;
uint8_t shortAddress[SHORT_ADDRESS_SIZE];
convertShortAddress(shortAddress, aShortAddress);
if (nrf_drv_radio802154_pending_bit_for_addr_set(shortAddress, false))
{
error = OT_ERROR_NONE;
}
else
{
error = OT_ERROR_NO_BUFS;
}
return error;
}
otError otPlatRadioAddSrcMatchExtEntry(otInstance *aInstance, const uint8_t *aExtAddress)
{
(void) aInstance;
otError error;
if (nrf_drv_radio802154_pending_bit_for_addr_set(aExtAddress, true))
{
error = OT_ERROR_NONE;
}
else
{
error = OT_ERROR_NO_BUFS;
}
return error;
}
otError otPlatRadioClearSrcMatchShortEntry(otInstance *aInstance, const uint16_t aShortAddress)
{
(void) aInstance;
otError error;
uint8_t shortAddress[SHORT_ADDRESS_SIZE];
convertShortAddress(shortAddress, aShortAddress);
if (nrf_drv_radio802154_pending_bit_for_addr_clear(shortAddress, false))
{
error = OT_ERROR_NONE;
}
else
{
error = OT_ERROR_NO_ADDRESS;
}
return error;
}
otError otPlatRadioClearSrcMatchExtEntry(otInstance *aInstance, const uint8_t *aExtAddress)
{
(void) aInstance;
otError error;
if (nrf_drv_radio802154_pending_bit_for_addr_clear(aExtAddress, true))
{
error = OT_ERROR_NONE;
}
else
{
error = OT_ERROR_NO_ADDRESS;
}
return error;
}
void otPlatRadioClearSrcMatchShortEntries(otInstance *aInstance)
{
(void) aInstance;
nrf_drv_radio802154_pending_bit_for_addr_reset(false);
}
void otPlatRadioClearSrcMatchExtEntries(otInstance *aInstance)
{
(void) aInstance;
nrf_drv_radio802154_pending_bit_for_addr_reset(true);
}
otError otPlatRadioEnergyScan(otInstance *aInstance, uint8_t aScanChannel, uint16_t aScanDuration)
{
(void) aInstance;
sEnergyDetectionTime = (uint32_t) aScanDuration * 1000UL;
sEnergyDetectionChannel = aScanChannel;
clearPendingEvents();
if (nrf_drv_radio802154_energy_detection(aScanChannel, sEnergyDetectionTime))
{
resetPendingEvent(kPendingEventEnergyDetectionStart);
}
else
{
setPendingEvent(kPendingEventEnergyDetectionStart);
}
return OT_ERROR_NONE;
}
void otPlatRadioSetDefaultTxPower(otInstance *aInstance, int8_t aPower)
{
(void)aInstance;
nrf_drv_radio802154_ack_tx_power_set(aPower);
}
void nrf5RadioProcess(otInstance *aInstance)
{
for (uint32_t i = 0; i < RADIO_RX_BUFFERS; i++)
{
if (sReceivedFrames[i].mPsdu != NULL)
{
#if OPENTHREAD_ENABLE_DIAG
if (otPlatDiagModeGet())
{
otPlatDiagRadioReceiveDone(aInstance, &sReceivedFrames[i], OT_ERROR_NONE);
}
else
#endif
{
otPlatRadioReceiveDone(aInstance, &sReceivedFrames[i], OT_ERROR_NONE);
}
uint8_t *bufferAddress = &sReceivedFrames[i].mPsdu[-1];
sReceivedFrames[i].mPsdu = NULL;
nrf_drv_radio802154_buffer_free(bufferAddress);
}
}
if (isPendingEventSet(kPendingEventFrameTransmitted))
{
#if OPENTHREAD_ENABLE_DIAG
if (otPlatDiagModeGet())
{
otPlatDiagRadioTransmitDone(aInstance, &sTransmitFrame, OT_ERROR_NONE);
}
else
#endif
{
otRadioFrame *ackPtr = (sAckFrame.mPsdu == NULL) ? NULL : &sAckFrame;
otPlatRadioTxDone(aInstance, &sTransmitFrame, ackPtr, OT_ERROR_NONE);
}
if (sAckFrame.mPsdu != NULL)
{
nrf_drv_radio802154_buffer_free(sAckFrame.mPsdu - 1);
sAckFrame.mPsdu = NULL;
}
resetPendingEvent(kPendingEventFrameTransmitted);
}
if (isPendingEventSet(kPendingEventChannelAccessFailure))
{
#if OPENTHREAD_ENABLE_DIAG
if (otPlatDiagModeGet())
{
otPlatDiagRadioTransmitDone(aInstance, &sTransmitFrame, OT_ERROR_CHANNEL_ACCESS_FAILURE);
}
else
#endif
{
otPlatRadioTxDone(aInstance, &sTransmitFrame, NULL, OT_ERROR_CHANNEL_ACCESS_FAILURE);
}
resetPendingEvent(kPendingEventChannelAccessFailure);
}
if (isPendingEventSet(kPendingEventEnergyDetected))
{
otPlatRadioEnergyScanDone(aInstance, sEnergyDetected);
resetPendingEvent(kPendingEventEnergyDetected);
}
if (isPendingEventSet(kPendingEventSleep))
{
if (nrf_drv_radio802154_sleep())
{
resetPendingEvent(kPendingEventSleep);
}
}
if (isPendingEventSet(kPendingEventEnergyDetectionStart))
{
if (nrf_drv_radio802154_energy_detection(sEnergyDetectionChannel, sEnergyDetectionTime))
{
resetPendingEvent(kPendingEventEnergyDetectionStart);
}
}
}
void nrf_drv_radio802154_received(uint8_t *p_data, int8_t power, int8_t lqi)
{
otRadioFrame *receivedFrame = NULL;
for (uint32_t i = 0; i < RADIO_RX_BUFFERS; i++)
{
if (sReceivedFrames[i].mPsdu == NULL)
{
receivedFrame = &sReceivedFrames[i];
break;
}
}
assert(receivedFrame != NULL);
memset(receivedFrame, 0, sizeof(*receivedFrame));
receivedFrame->mPsdu = &p_data[1];
receivedFrame->mLength = p_data[0];
receivedFrame->mPower = power;
receivedFrame->mLqi = lqi;
receivedFrame->mChannel = nrf_drv_radio802154_channel_get();
}
void nrf_drv_radio802154_transmitted(uint8_t *aAckPsdu, int8_t aPower, int8_t aLqi)
{
if (aAckPsdu == NULL)
{
sAckFrame.mPsdu = NULL;
}
else
{
sAckFrame.mPsdu = &aAckPsdu[1];
sAckFrame.mLength = aAckPsdu[0];
sAckFrame.mPower = aPower;
sAckFrame.mLqi = aLqi;
sAckFrame.mChannel = nrf_drv_radio802154_channel_get();
}
setPendingEvent(kPendingEventFrameTransmitted);
}
void nrf_drv_radio802154_busy_channel(void)
{
setPendingEvent(kPendingEventChannelAccessFailure);
}
void nrf_drv_radio802154_energy_detected(int8_t result)
{
// TODO: Correct RSSI calculation after lab tests.
sEnergyDetected = 94 - result;
setPendingEvent(kPendingEventEnergyDetected);
}
int8_t otPlatRadioGetReceiveSensitivity(otInstance *aInstance)
{
(void)aInstance;
return NRF52840_RECEIVE_SENSITIVITY;
}