blob: 64f863ba8cfa04ce8890846783ae5ca61f206bc0 [file] [log] [blame]
#!/usr/bin/env python
#
# Copyright (c) 2016, The OpenThread Authors.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# 3. Neither the name of the copyright holder nor the
# names of its contributors may be used to endorse or promote products
# derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
import io
import random
import struct
import unittest
import ipaddress
import common
import net_crypto
import mle
master_key = bytearray([0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff])
def convert_aux_sec_hdr_to_bytearray(aux_sec_hdr):
data = bytearray([aux_sec_hdr.security_level | ((aux_sec_hdr.key_id_mode & 0x03) << 3)])
data += struct.pack("<L", aux_sec_hdr.frame_counter)
data += aux_sec_hdr.key_id
return data
def any_eui64():
return bytearray([random.getrandbits(8) for _ in range(8)])
def any_security_level():
return random.getrandbits(3)
def any_key_id_mode():
"""
Only key id mode 2.
"""
return 2
def any_key_id(key_id_mode):
if key_id_mode == 2:
length = 5
return bytearray([random.getrandbits(8) for _ in range(length)])
def any_auxiliary_security_header():
key_id_mode = any_key_id_mode()
key_id = any_key_id(key_id_mode)
return net_crypto.AuxiliarySecurityHeader(key_id_mode, any_security_level(), any_frame_counter(), key_id)
def any_frame_counter():
return random.getrandbits(32)
def any_ip_address():
ip_address_bytes = bytearray([random.getrandbits(8) for _ in range(16)])
return ipaddress.ip_address(bytes(ip_address_bytes))
def any_data(length=None):
length = length if length is not None else random.randint(0, 128)
return bytearray([random.getrandbits(8) for _ in range(length)])
def any_master_key():
return bytearray([random.getrandbits(8) for _ in range(16)])
class TestCryptoEngine(unittest.TestCase):
def test_should_decrypt_bytearray_to_mle_message_when_decrypt_method_is_called(self):
# GIVEN
message_info = common.MessageInfo()
message_info.source_mac_address = common.MacAddress.from_eui64(
bytearray([0x00, 0x35, 0xcc, 0x94, 0xd7, 0x7a, 0x07, 0xe8]))
message_info.source_ipv6 = "fe80::235:cc94:d77a:07e8"
message_info.destination_ipv6 = "ff02::2"
message_info.aux_sec_hdr = net_crypto.AuxiliarySecurityHeader(key_id_mode=2,
security_level=5,
frame_counter=262165,
key_id=bytearray([0x00, 0x00, 0x00, 0x00, 0x01]))
message_info.aux_sec_hdr_bytes = convert_aux_sec_hdr_to_bytearray(message_info.aux_sec_hdr)
data = bytearray([0x9a, 0x5a, 0x9a, 0x5b, 0xba, 0x25, 0x9c, 0x5e,
0x58, 0xa2, 0x7e, 0x75, 0x74, 0xef, 0x79, 0xbc,
0x4f, 0xa3, 0xf9, 0xae, 0xa8, 0x34, 0xf6, 0xf2,
0x37, 0x21, 0x93, 0x60])
mic = bytearray([0xe1, 0xb5, 0xa2, 0x53])
net_crypto_engine = net_crypto.CryptoEngine(net_crypto.MleCryptoMaterialCreator(master_key))
# WHEN
mle_msg = net_crypto_engine.decrypt(data, mic, message_info)
# THEN
expected_mle_msg = bytearray([0x04, 0x00, 0x02, 0x00, 0x00, 0x09, 0x0b, 0x8f,
0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x00,
0x01, 0xf1, 0x0b, 0x08, 0x65, 0x5e, 0x0f, 0x83,
0x40, 0xc7, 0x83, 0x31])
self.assertEqual(expected_mle_msg, mle_msg)
def test_should_encrypt_mle_message_to_bytearray_when_encrypt_method_is_called(self):
# GIVEN
message_info = common.MessageInfo()
message_info.source_mac_address = common.MacAddress.from_eui64(
bytearray([0x00, 0x35, 0xcc, 0x94, 0xd7, 0x7a, 0x07, 0xe8]))
message_info.source_ipv6 = "fe80::235:cc94:d77a:07e8"
message_info.destination_ipv6 = "ff02::2"
message_info.aux_sec_hdr = net_crypto.AuxiliarySecurityHeader(key_id_mode=2,
security_level=5,
frame_counter=262165,
key_id=bytearray([0x00, 0x00, 0x00, 0x00, 0x01]))
message_info.aux_sec_hdr_bytes = convert_aux_sec_hdr_to_bytearray(message_info.aux_sec_hdr)
mle_msg = bytearray([0x04, 0x00, 0x02, 0x00, 0x00, 0x09, 0x0b, 0x8f,
0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x00,
0x01, 0xf1, 0x0b, 0x08, 0x65, 0x5e, 0x0f, 0x83,
0x40, 0xc7, 0x83, 0x31])
net_crypto_engine = net_crypto.CryptoEngine(net_crypto.MleCryptoMaterialCreator(master_key))
# WHEN
encrypted_data, mic = net_crypto_engine.encrypt(mle_msg, message_info)
# THEN
expected_encrypted_data = bytearray([0x9a, 0x5a, 0x9a, 0x5b, 0xba, 0x25, 0x9c, 0x5e,
0x58, 0xa2, 0x7e, 0x75, 0x74, 0xef, 0x79, 0xbc,
0x4f, 0xa3, 0xf9, 0xae, 0xa8, 0x34, 0xf6, 0xf2,
0x37, 0x21, 0x93, 0x60, 0xe1, 0xb5, 0xa2, 0x53])
self.assertEqual(expected_encrypted_data, encrypted_data + mic)
def test_should_encrypt_and_decrypt_random_data_content_when_proper_methods_are_called(self):
# GIVEN
data = any_data()
master_key = any_master_key()
key_id_mode = 2
security_level = 5
message_info = common.MessageInfo()
message_info.source_mac_address = common.MacAddress.from_eui64(any_eui64())
message_info.source_ipv6 = any_ip_address()
message_info.destination_ipv6 = any_ip_address()
message_info.aux_sec_hdr = net_crypto.AuxiliarySecurityHeader(key_id_mode=key_id_mode,
security_level=security_level,
frame_counter=any_frame_counter(),
key_id=any_key_id(key_id_mode))
message_info.aux_sec_hdr_bytes = convert_aux_sec_hdr_to_bytearray(message_info.aux_sec_hdr)
net_crypto_engine = net_crypto.CryptoEngine(net_crypto.MleCryptoMaterialCreator(master_key))
# WHEN
enc_data, mic = net_crypto_engine.encrypt(data, message_info)
dec_data = net_crypto_engine.decrypt(enc_data, mic, message_info)
# THEN
self.assertEqual(data, dec_data)
class TestCryptoMaterialCreator(unittest.TestCase):
""" Key generaion was described in Thread specification.
Read more: Thread 1.1.0 Specification Candidate Final - 7.1.4 Key Generation
Test vectors was taken from thread specification.
"""
def test_should_generate_mle_and_mac_key_when_generate_keys_method_is_called_with_sequence_counter_equal_0(self):
"""
7.1.4.1 Test Vector 1
"""
# GIVEN
sequence_counter = 0
creator = net_crypto.CryptoMaterialCreator(master_key)
# WHEN
mle_key, mac_key = creator._generate_keys(sequence_counter)
# THEN
self.assertEqual(mle_key, bytearray([0x54, 0x45, 0xf4, 0x15, 0x8f, 0xd7, 0x59, 0x12,
0x17, 0x58, 0x09, 0xf8, 0xb5, 0x7a, 0x66, 0xa4]))
self.assertEqual(mac_key, bytearray([0xde, 0x89, 0xc5, 0x3a, 0xf3, 0x82, 0xb4, 0x21,
0xe0, 0xfd, 0xe5, 0xa9, 0xba, 0xe3, 0xbe, 0xf0]))
def test_should_generate_mle_and_mac_key_when_generate_keys_method_is_called_with_sequence_counter_equal_1(self):
"""
7.1.4.2 Test Vector 2
"""
# GIVEN
sequence_counter = 1
creator = net_crypto.CryptoMaterialCreator(master_key)
# WHEN
mle_key, mac_key = creator._generate_keys(sequence_counter)
# THEN
self.assertEqual(mle_key, bytearray([0x8f, 0x4c, 0xd1, 0xa2, 0x7d, 0x95, 0xc0, 0x7d,
0x12, 0xdb, 0x89, 0x74, 0xbd, 0x61, 0x5c, 0x13]))
self.assertEqual(mac_key, bytearray([0x9b, 0xe0, 0xd1, 0xaf, 0x7b, 0xd8, 0x73, 0x50,
0xde, 0xab, 0xcd, 0xd0, 0x7f, 0xeb, 0xb9, 0xd5]))
def test_should_generate_mle_and_mac_key_when_generate_keys_method_is_called_with_sequence_counter_equal_2(self):
"""
7.1.4.3 Test Vector 3
"""
# GIVEN
sequence_counter = 2
creator = net_crypto.CryptoMaterialCreator(master_key)
# WHEN
mle_key, mac_key = creator._generate_keys(sequence_counter)
# THEN
self.assertEqual(mle_key, bytearray([0x01, 0x6e, 0x2a, 0xb8, 0xec, 0x88, 0x87, 0x96,
0x87, 0xa7, 0x2e, 0x0a, 0x35, 0x7e, 0xcf, 0x2a]))
self.assertEqual(mac_key, bytearray([0x56, 0x41, 0x09, 0xe9, 0xd2, 0xaa, 0xd7, 0xf7,
0x23, 0xec, 0x3b, 0x96, 0x11, 0x0e, 0xef, 0xa3]))
class TestMleCryptoMaterialCreator(unittest.TestCase):
def test_should_create_nonce_when_create_nonce_method_is_called(self):
# GIVEN
source_eui64 = any_eui64()
frame_counter = any_frame_counter()
security_level = any_security_level()
creator = net_crypto.MleCryptoMaterialCreator(master_key)
# WHEN
nonce = creator._create_nonce(source_eui64, frame_counter, security_level)
# THEN
nonce_bytes = io.BytesIO(nonce)
self.assertEqual(source_eui64, nonce_bytes.read(8))
self.assertEqual(struct.pack(">L", frame_counter), nonce_bytes.read(4))
self.assertEqual(security_level, ord(nonce_bytes.read(1)))
def test_should_create_authenticated_data_when_create_authenticated_data_method_is_called(self):
"""
Only Key id mode 2.
Length of the Auxiliary Security Header is constantly equal 10.
"""
# GIVEN
source_address = any_ip_address()
destination_address = any_ip_address()
auxiliary_security_header_bytes = convert_aux_sec_hdr_to_bytearray(any_auxiliary_security_header())
creator = net_crypto.MleCryptoMaterialCreator(master_key)
# WHEN
authenticated_data = creator._create_authenticated_data(
source_address, destination_address, auxiliary_security_header_bytes)
# THEN
authenticated_data_bytes = io.BytesIO(authenticated_data)
self.assertEqual(source_address.packed, authenticated_data_bytes.read(16))
self.assertEqual(destination_address.packed, authenticated_data_bytes.read(16))
self.assertEqual(auxiliary_security_header_bytes, authenticated_data_bytes.read(10))
def test_should_create_key_and_nonce_and_authenticated_data_when_create_key_and_nonce_and_authenticated_data_is_called(self):
# GIVEN
message_info = common.MessageInfo()
message_info.source_mac_address = common.MacAddress.from_eui64(any_eui64())
message_info.source_ipv6 = any_ip_address()
message_info.destination_ipv6 = any_ip_address()
message_info.aux_sec_hdr = any_auxiliary_security_header()
message_info.aux_sec_hdr_bytes = convert_aux_sec_hdr_to_bytearray(message_info.aux_sec_hdr)
creator = net_crypto.MleCryptoMaterialCreator(master_key)
# WHEN
key, nonce, auth_data = creator.create_key_and_nonce_and_authenticated_data(message_info)
# THEN
self.assertEqual(message_info.source_mac_address.mac_address +
struct.pack(">LB",
message_info.aux_sec_hdr.frame_counter,
message_info.aux_sec_hdr.security_level), nonce)
self.assertEqual(message_info.source_ipv6.packed +
message_info.destination_ipv6.packed +
message_info.aux_sec_hdr_bytes, auth_data)
class TestAuxiliarySecurityHeader(unittest.TestCase):
def test_should_return_key_id_mode_value_when_key_id_mode_property_is_called(self):
# GIVEN
key_id_mode = any_key_id_mode()
aux_sec_hdr_obj = net_crypto.AuxiliarySecurityHeader(
key_id_mode, any_security_level(), any_frame_counter(), any_key_id(key_id_mode))
# WHEN
actual_key_id_mode = aux_sec_hdr_obj.key_id_mode
# THEN
self.assertEqual(key_id_mode, actual_key_id_mode)
def test_should_return_security_level_value_when_security_level_property_is_called(self):
# GIVEN
security_level = any_security_level()
key_id_mode = any_key_id_mode()
aux_sec_hdr_obj = net_crypto.AuxiliarySecurityHeader(
key_id_mode, security_level, any_frame_counter(), any_key_id(key_id_mode))
# WHEN
actual_security_level = aux_sec_hdr_obj.security_level
# THEN
self.assertEqual(security_level, actual_security_level)
def test_should_return_frame_counter_value_when_frame_counter_property_is_called(self):
# GIVEN
frame_counter = any_frame_counter()
key_id_mode = any_key_id_mode()
aux_sec_hdr_obj = net_crypto.AuxiliarySecurityHeader(
key_id_mode, any_security_level(), frame_counter, any_key_id(key_id_mode))
# WHEN
actual_frame_counter = aux_sec_hdr_obj.frame_counter
# THEN
self.assertEqual(frame_counter, actual_frame_counter)
def test_should_return_key_id_value_when_key_id_property_is_called(self):
# GIVEN
key_id_mode = any_key_id_mode()
key_id = any_key_id(key_id_mode)
aux_sec_hdr_obj = net_crypto.AuxiliarySecurityHeader(
key_id_mode, any_security_level(), any_frame_counter(), key_id)
# WHEN
actual_key_id = aux_sec_hdr_obj.key_id
# THEN
self.assertEqual(key_id, actual_key_id)
def test_should_return_sequence_counter_value_when_sequence_counter_property_is_called(self):
# GIVEN
key_id_mode = 2
key_id = any_key_id(key_id_mode)
aux_sec_hdr_obj = net_crypto.AuxiliarySecurityHeader(
key_id_mode, any_security_level(), any_frame_counter(), key_id)
# WHEN
actual_sequence_counter = aux_sec_hdr_obj.sequence_counter
# THEN
self.assertEqual(struct.unpack(">I", key_id[:4])[0], actual_sequence_counter)
class TestAuxiliarySecurityHeaderFactory(unittest.TestCase):
def test_should_create_AuxiliarySecurityHeader_from_bytearray_when_parse_method_is_called(self):
# GIVEN
key_id_mode = any_key_id_mode()
sec_lvl = any_security_level()
frame_counter = any_frame_counter()
key_id = any_key_id(key_id_mode)
factory = net_crypto.AuxiliarySecurityHeaderFactory()
data = bytearray([sec_lvl | key_id_mode << 3]) + struct.pack("<I", frame_counter) + key_id
# WHEN
aux_sec_hdr = factory.parse(io.BytesIO(data), common.MessageInfo())
# THEN
self.assertTrue(isinstance(aux_sec_hdr, net_crypto.AuxiliarySecurityHeader))
self.assertEqual(key_id_mode, aux_sec_hdr.key_id_mode)
self.assertEqual(sec_lvl, aux_sec_hdr.security_level)
self.assertEqual(frame_counter, aux_sec_hdr.frame_counter)
if __name__ == "__main__":
unittest.main()