blob: b3e2256ad95689a444aaba36d380b98f811ad682 [file] [log] [blame]
/*
* Copyright (c) 2015, Freescale Semiconductor, Inc.
* Copyright 2016-2017 NXP
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* o Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* o Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* o Neither the name of Freescale Semiconductor, Inc. nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "fsl_device_registers.h"
#include "fsl_xcvr.h"
#include "ifr_radio.h"
#include "fsl_common.h"
/*******************************************************************************
* Definitions
******************************************************************************/
#define IFR_RAM (0)
#if RADIO_IS_GEN_3P0
#define RDINDX (0x41U)
#define K3_BASE_INDEX (0x11U) /* Based for read index */
#else
#define RDRSRC (0x03U)
#define KW4x_512_BASE (0x20000U)
#define KW4x_256_BASE (0x10000U)
#endif /* RADIO_IS_GEN_3P0 */
#if RADIO_IS_GEN_2P1
#define FTFA (FTFE)
#endif /* RADIO_IS_GEN_2P1 */
/*******************************************************************************
* Prototypes
******************************************************************************/
uint32_t read_another_ifr_word(void);
uint32_t read_first_ifr_word(uint32_t read_addr);
#if RADIO_IS_GEN_3P0
uint64_t read_index_ifr(uint32_t read_addr);
#else
/*! *********************************************************************************
* @brief Reads a location in block 1 IFR for use by the radio.
*
* This function handles reading IFR data from flash memory for trim loading.
*
* @param read_addr the address in the IFR to be read.
*
* @details This function wraps both the Gen2 read_resource command and the Gen2.1 and Gen3 read_index
***********************************************************************************/
#if RADIO_IS_GEN_2P1
uint64_t read_resource_ifr(uint32_t read_addr);
#else
uint32_t read_resource_ifr(uint32_t read_addr);
#endif /* RADIO_IS_GEN_2P1 */
#endif /* RADIO_IS_GEN_3P0 */
void store_sw_trim(IFR_SW_TRIM_TBL_ENTRY_T * sw_trim_tbl, uint16_t num_entries, uint32_t addr, uint32_t data);
/*******************************************************************************
* Variables
******************************************************************************/
static uint32_t ifr_read_addr;
#if RADIO_IS_GEN_3P0
static uint64_t packed_data_long; /* Storage for 2 32 bit values to be read by read_index */
static uint8_t num_words_avail; /* Number of 32 bit words available in packed_data_long storage */
const uint32_t BLOCK_1_IFR[]=
{
/* Revised fallback table which should work with untrimmed parts */
0xABCDFFFEU, /* Version #FFFE indicates default trim values */
/* Trim table is empty for Gen3 by default */
/* No TRIM_STATUS in SW fallback array. */
0xFEED0E0FU /* End of File */
};
#else
#if RADIO_IS_GEN_2P0
const uint32_t BLOCK_1_IFR[]=
{
/* Revised fallback table which should work with untrimmed parts */
0xABCDFFFEU, /* Version #FFFE indicates default trim values */
0x4005912CU, /* RSIM_ANA_TRIM address */
0x784B0000U, /* RSIM_ANA_TRIM default value */
/* No TRIM_STATUS in SW fallback array. */
0xFEED0E0FU /* End of File */
};
#else
static uint64_t packed_data_long; /* Storage for 2 32 bit values to be read by read_index */
static uint8_t num_words_avail; /* Number of 32 bit words available in packed_data_long storage */
const uint32_t BLOCK_1_IFR[]=
{
/* Revised fallback table which should work with untrimmed parts */
0xABCDFFFEU, /* Version #FFFE indicates default trim values */
0x4005912CU, /* RSIM_ANA_TRIM address */
0x784B0000U, /* RSIM_ANA_TRIM default value */
/* No TRIM_STATUS in SW fallback array. */
0xFEED0E0FU /* End of File */
};
#endif /* RADIO_IS_GEN_2P0 */
#endif /* RADIO_IS_GEN_3P0 */
/*******************************************************************************
* Code
******************************************************************************/
/*! *********************************************************************************
* \brief Read command for reading the first 32bit word from IFR, encapsulates different
* flash IFR read mechanisms for multiple generations of SOC
*
* \param read_addr flash address
*
* \return 8 bytes of packed data containing radio trims only
*
***********************************************************************************/
uint32_t read_first_ifr_word(uint32_t read_addr)
{
ifr_read_addr = read_addr;
return read_another_ifr_word();
}
/*! *********************************************************************************
* \brief Read command for reading additional 32bit words from IFR. Encapsulates multiple IFR read mechanisms.
*
* \param read_addr flash address
*
* \return 8 bytes of packed data containing radio trims only
*
* \remarks PRE-CONDITIONS:
* The function read_first_ifr_word() must have been called so that the ifr_read_addr variable is setup prior to use.
*
***********************************************************************************/
uint32_t read_another_ifr_word(void)
{
uint32_t packed_data;
#if (RADIO_IS_GEN_3P0 || RADIO_IS_GEN_2P1)
/* Using some static storage and alternating reads to read_index_ifr to replace read_resource_ifr */
if (num_words_avail == 0)
{
#if RADIO_IS_GEN_3P0
packed_data_long = read_index_ifr(ifr_read_addr);
#else /* Use 64 bit return version of read_resource */
packed_data_long = read_resource_ifr(ifr_read_addr);
#endif /* RADIO_IS_GEN_3P0 */
num_words_avail = 2;
ifr_read_addr++; /* Read index addresses increment by 1 */
}
packed_data = (uint32_t)(packed_data_long & 0xFFFFFFFF);
packed_data_long = packed_data_long >> 32;
num_words_avail--;
#else
packed_data = read_resource_ifr(ifr_read_addr);
ifr_read_addr += 4; /* Read resource addresses increment by 4 */
#endif /* (RADIO_IS_GEN_3P0 || RADIO_IS_GEN_2P1) */
return packed_data;
}
#if RADIO_IS_GEN_3P0
/*! *********************************************************************************
* \brief Read command for reading from IFR using RDINDEX command
*
* \param read_addr flash address
*
* \return 8 bytes of packed data containing radio trims only
*
***********************************************************************************/
uint64_t read_index_ifr(uint32_t read_addr)
{
uint8_t rdindex = read_addr;
uint64_t read_data;
uint8_t i;
uint32_t primask;
while ((FTFE_FSTAT_CCIF_MASK & FTFE->FSTAT) == 0); /* Wait till CCIF=1 to make sure not interrupting a prior operation */
if ((FTFE->FSTAT & FTFE_FSTAT_ACCERR_MASK) == FTFE_FSTAT_ACCERR_MASK )
{
FTFE->FSTAT = (1 << FTFE_FSTAT_ACCERR_SHIFT); /* Write 1 to ACCEER to clear errors */
}
FTFE->FCCOB[0] = RDINDX;
FTFE->FCCOB[1] = rdindex;
primask = DisableGlobalIRQ();
FTFE->FSTAT = FTFE_FSTAT_CCIF_MASK;
while((FTFE_FSTAT_CCIF_MASK & FTFE->FSTAT) == 0); /* Wait till CCIF=1 */
EnableGlobalIRQ(primask);
/* Pack read data back into 64 bit type */
read_data = FTFE->FCCOB[11]; /* MSB goes in first, will be shifted left sequentially */
for (i = 10; i > 3; i--)
{
read_data = read_data << 8;
read_data |= FTFE->FCCOB[i];
}
return read_data;
}
#else
/*! *********************************************************************************
* \brief Read command for reading from IFR
*
* \param read_addr flash address
*
* \return packed data containing radio trims only
*
***********************************************************************************/
#if RADIO_IS_GEN_2P0
uint32_t read_resource_ifr(uint32_t read_addr)
{
uint32_t primask;
uint32_t packed_data;
uint8_t flash_addr23_16, flash_addr15_8, flash_addr7_0;
uint32_t read_data31_24, read_data23_16, read_data15_8, read_data7_0;
flash_addr23_16 = (uint8_t)((read_addr & 0xFF0000) >> 16);
flash_addr15_8 = (uint8_t)((read_addr & 0x00FF00) >> 8);
flash_addr7_0 = (uint8_t)(read_addr & 0xFF);
while ((FTFA_FSTAT_CCIF_MASK & FTFA->FSTAT) == 0); /* Wait till CCIF=1 */
if ((FTFA->FSTAT & FTFA_FSTAT_ACCERR_MASK) == FTFA_FSTAT_ACCERR_MASK )
{
FTFA->FSTAT = (1<<FTFA_FSTAT_ACCERR_SHIFT); /* Write 1 to ACCEER to clear errors */
}
FTFA->FCCOB0 = RDRSRC;
FTFA->FCCOB1 = flash_addr23_16;
FTFA->FCCOB2 = flash_addr15_8;
FTFA->FCCOB3 = flash_addr7_0;
FTFA->FCCOB8 = 0x00;
primask = DisableGlobalIRQ();
FTFA->FSTAT = FTFA_FSTAT_CCIF_MASK;
while ((FTFA_FSTAT_CCIF_MASK & FTFA->FSTAT) == 0); /* Wait till CCIF=1 */
EnableGlobalIRQ(primask);
/* Start reading */
read_data31_24 = FTFA->FCCOB4; /* FTFA->FCCOB[4] */
read_data23_16 = FTFA->FCCOB5; /* FTFA->FCCOB[5] */
read_data15_8 = FTFA->FCCOB6; /* FTFA->FCCOB[6] */
read_data7_0 = FTFA->FCCOB7; /* FTFA->FCCOB[7] */
packed_data = (read_data31_24 << 24) | (read_data23_16 << 16) | (read_data15_8 << 8) | (read_data7_0 << 0);
return packed_data;
}
#else
uint64_t read_resource_ifr(uint32_t read_addr)
{
uint32_t primask;
uint64_t packed_data;
uint8_t flash_addr23_16, flash_addr15_8, flash_addr7_0;
uint8_t read_data[8];
uint64_t temp_64;
uint8_t i;
flash_addr23_16 = (uint8_t)((read_addr & 0xFF0000) >> 16);
flash_addr15_8 = (uint8_t)((read_addr & 0x00FF00) >> 8);
flash_addr7_0 = (uint8_t)(read_addr & 0xFF);
while((FTFE_FSTAT_CCIF_MASK & FTFE->FSTAT) == 0); /* Wait till CCIF=1 */
if ((FTFE->FSTAT & FTFE_FSTAT_ACCERR_MASK) == FTFE_FSTAT_ACCERR_MASK )
{
FTFE->FSTAT = (1<<FTFE_FSTAT_ACCERR_SHIFT); /* Write 1 to ACCEER to clear errors */
}
FTFE->FCCOB0 = RDRSRC;
FTFE->FCCOB1 = flash_addr23_16;
FTFE->FCCOB2 = flash_addr15_8;
FTFE->FCCOB3 = flash_addr7_0;
FTFE->FCCOB4 = 0x00;
primask = DisableGlobalIRQ();
FTFE->FSTAT = FTFE_FSTAT_CCIF_MASK;
while ((FTFE_FSTAT_CCIF_MASK & FTFE->FSTAT) == 0); /* Wait till CCIF=1 */
EnableGlobalIRQ(primask);
/* Start reading */
read_data[7] = FTFE->FCCOB4;
read_data[6] = FTFE->FCCOB5;
read_data[5] = FTFE->FCCOB6;
read_data[4] = FTFE->FCCOB7;
read_data[3] = FTFE->FCCOB8;
read_data[2] = FTFE->FCCOB9;
read_data[1] = FTFE->FCCOBA;
read_data[0] = FTFE->FCCOBB;
packed_data = 0;
for (i = 0; i < 8; i++)
{
temp_64 = read_data[i];
packed_data |= temp_64 << (i * 8);
}
return packed_data;
}
#endif /* RADIO_IS_GEN_2P0 */
#endif /* RADIO_IS_GEN_3P0 */
/*! *********************************************************************************
* \brief Store a SW trim value in the table passed in from calling function.
*
* \param sw_trim_tbl pointer to the software trim table to hold SW trim values
* \param num_entries the number of entries in the SW trim table
* \param addr the software trim ID
* \param data the value of the software trim
*
***********************************************************************************/
void store_sw_trim(IFR_SW_TRIM_TBL_ENTRY_T * sw_trim_tbl, uint16_t num_entries, uint32_t addr, uint32_t data)
{
uint16_t i;
if (sw_trim_tbl != NULL)
{
for (i = 0; i < num_entries; i++)
{
if (addr == sw_trim_tbl[i].trim_id)
{
sw_trim_tbl[i].trim_value = data;
sw_trim_tbl[i].valid = 1;
break; /* Don't need to scan the array any further... */
}
}
}
}
/*! *********************************************************************************
* \brief Process block 1 IFR data.
*
* \param sw_trim_tbl pointer to the software trim table to hold SW trim values
* \param num_entries the number of entries in the SW trim table
*
* \remarks
* Uses a IFR v2 formatted default array if the IFR is blank or corrupted.
* Stores SW trim values to an array passed into this function.
*
***********************************************************************************/
void handle_ifr(IFR_SW_TRIM_TBL_ENTRY_T * sw_trim_tbl, uint16_t num_entries)
{
uint32_t dest_addr;
uint32_t read_addr;
uint32_t dest_data;
uint32_t packed_data;
uint32_t *ifr_ptr;
#if RADIO_IS_GEN_3P0
num_words_avail = 0; /* Prep for handling 64 bit words from flash */
#endif /* RADIO_IS_GEN_3P0 */
#if RADIO_IS_GEN_3P0
read_addr = K3_BASE_INDEX;
#else
#ifdef CPU_MKW41Z256VHT4
read_addr = KW4x_256_BASE;
#else
read_addr = KW4x_512_BASE;
#endif /* CPU_MKW41Z256VHT4 */
#endif /* RADIO_IS_GEN_3P0 */
/* Read first entry in IFR table */
packed_data = read_first_ifr_word(read_addr);
if ((packed_data&~IFR_VERSION_MASK) == IFR_VERSION_HDR)
{
/* Valid header was found, process real IFR data */
XCVR_MISC->OVERWRITE_VER = (packed_data & IFR_VERSION_MASK);
store_sw_trim(sw_trim_tbl, num_entries, 0xABCD, (packed_data & IFR_VERSION_MASK)); /* Place IFR version # in SW trim array*/
packed_data = read_another_ifr_word();
while (packed_data !=IFR_EOF_SYMBOL)
{
if (IS_A_SW_ID(packed_data)) /* SW Trim case (non_reg writes) */
{
dest_addr = packed_data;
packed_data = read_another_ifr_word();
dest_data = packed_data;
/* Place SW trim in array for driver SW to use */
store_sw_trim(sw_trim_tbl, num_entries, dest_addr, dest_data);
}
else
{
if (IS_VALID_REG_ADDR(packed_data)) /* Valid register write address */
{
dest_addr = packed_data;
packed_data = read_another_ifr_word();
dest_data = packed_data;
*(uint32_t *)(dest_addr) = dest_data;
}
else
{ /* Invalid address case */
}
}
packed_data=read_another_ifr_word();
}
}
else
{
/* Valid header is not present, use blind IFR trim table */
ifr_ptr = (void *)BLOCK_1_IFR;
packed_data = *ifr_ptr;
XCVR_MISC->OVERWRITE_VER = (packed_data & IFR_VERSION_MASK);
store_sw_trim(sw_trim_tbl, num_entries, 0xABCD, (packed_data & IFR_VERSION_MASK)); /* Place IFR version # in SW trim array */
ifr_ptr++;
packed_data= *ifr_ptr;
while (packed_data != IFR_EOF_SYMBOL)
{
if (IS_A_SW_ID(packed_data))
{
/* SW Trim case (non_reg writes) */
dest_addr = packed_data;
ifr_ptr++;
packed_data = *(ifr_ptr);
dest_data = packed_data;
/* Place SW trim in array for driver SW to use */
store_sw_trim(sw_trim_tbl, num_entries, dest_addr, dest_data);
}
else
{
dest_addr = packed_data;
ifr_ptr++;
packed_data = *ifr_ptr;
dest_data = packed_data;
/* Valid register write address */
if (IS_VALID_REG_ADDR(dest_addr))
{
*(uint32_t *)(dest_addr) = dest_data;
}
else
{
/* Invalid address case */
}
}
ifr_ptr++;
packed_data= *ifr_ptr;
}
}
}
#if RADIO_IS_GEN_3P0
#else
uint32_t handle_ifr_die_id(void)
{
uint32_t id_x, id_y;
uint32_t id;
id = read_resource_ifr(0x90);
id_x = id & 0x00FF0000;
id_y = id & 0x000000FF;
return (id_x | id_y);
}
uint32_t handle_ifr_die_kw_type(void)
{
uint32_t zb, ble;
zb = read_resource_ifr(0x80) & 0x8000;
ble= read_resource_ifr(0x88) & 0x100000;
return (zb | ble);
}
#endif /* RADIO_IS_GEN_3P0 */
/*! *********************************************************************************
* \brief Dumps block 1 IFR data to an array.
*
* \param dump_tbl pointer to the table to hold the dumped IFR values
* \param num_entries the number of entries to dump
*
* \remarks
* Starts at the first address in IFR and dumps sequential entries.
*
***********************************************************************************/
void dump_ifr(uint32_t * dump_tbl, uint8_t num_entries)
{
#if RADIO_IS_GEN_3P0
uint32_t ifr_address = 0x20000;
#else
uint32_t ifr_address = 0x20000;
#endif /* RADIO_IS_GEN_3P0 */
uint32_t * dump_ptr = dump_tbl;
uint8_t i;
*dump_ptr = read_first_ifr_word(ifr_address);
dump_ptr++;
for (i = 0; i < num_entries - 1; i++)
{
*dump_ptr = read_another_ifr_word();
dump_ptr++;
}
}