| /* |
| * Copyright (c) 2015, Freescale Semiconductor, Inc. |
| * Copyright 2016-2017 NXP |
| * |
| * Redistribution and use in source and binary forms, with or without modification, |
| * are permitted provided that the following conditions are met: |
| * |
| * o Redistributions of source code must retain the above copyright notice, this list |
| * of conditions and the following disclaimer. |
| * |
| * o Redistributions in binary form must reproduce the above copyright notice, this |
| * list of conditions and the following disclaimer in the documentation and/or |
| * other materials provided with the distribution. |
| * |
| * o Neither the name of the copyright holder nor the names of its |
| * contributors may be used to endorse or promote products derived from this |
| * software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR |
| * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON |
| * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "fsl_dspi_edma.h" |
| |
| /*********************************************************************************************************************** |
| * Definitons |
| ***********************************************************************************************************************/ |
| |
| /*! |
| * @brief Structure definition for dspi_master_edma_private_handle_t. The structure is private. |
| */ |
| typedef struct _dspi_master_edma_private_handle |
| { |
| SPI_Type *base; /*!< DSPI peripheral base address. */ |
| dspi_master_edma_handle_t *handle; /*!< dspi_master_edma_handle_t handle */ |
| } dspi_master_edma_private_handle_t; |
| |
| /*! |
| * @brief Structure definition for dspi_slave_edma_private_handle_t. The structure is private. |
| */ |
| typedef struct _dspi_slave_edma_private_handle |
| { |
| SPI_Type *base; /*!< DSPI peripheral base address. */ |
| dspi_slave_edma_handle_t *handle; /*!< dspi_master_edma_handle_t handle */ |
| } dspi_slave_edma_private_handle_t; |
| |
| /*********************************************************************************************************************** |
| * Prototypes |
| ***********************************************************************************************************************/ |
| /*! |
| * @brief EDMA_DspiMasterCallback after the DSPI master transfer completed by using EDMA. |
| * This is not a public API. |
| */ |
| static void EDMA_DspiMasterCallback(edma_handle_t *edmaHandle, |
| void *g_dspiEdmaPrivateHandle, |
| bool transferDone, |
| uint32_t tcds); |
| |
| /*! |
| * @brief EDMA_DspiSlaveCallback after the DSPI slave transfer completed by using EDMA. |
| * This is not a public API. |
| */ |
| static void EDMA_DspiSlaveCallback(edma_handle_t *edmaHandle, |
| void *g_dspiEdmaPrivateHandle, |
| bool transferDone, |
| uint32_t tcds); |
| /*! |
| * @brief Get instance number for DSPI module. |
| * |
| * This is not a public API and it's extern from fsl_dspi.c. |
| * |
| * @param base DSPI peripheral base address |
| */ |
| extern uint32_t DSPI_GetInstance(SPI_Type *base); |
| |
| /*********************************************************************************************************************** |
| * Variables |
| ***********************************************************************************************************************/ |
| |
| /*! @brief Pointers to dspi edma handles for each instance. */ |
| static dspi_master_edma_private_handle_t s_dspiMasterEdmaPrivateHandle[FSL_FEATURE_SOC_DSPI_COUNT]; |
| static dspi_slave_edma_private_handle_t s_dspiSlaveEdmaPrivateHandle[FSL_FEATURE_SOC_DSPI_COUNT]; |
| |
| /*********************************************************************************************************************** |
| * Code |
| ***********************************************************************************************************************/ |
| |
| void DSPI_MasterTransferCreateHandleEDMA(SPI_Type *base, |
| dspi_master_edma_handle_t *handle, |
| dspi_master_edma_transfer_callback_t callback, |
| void *userData, |
| edma_handle_t *edmaRxRegToRxDataHandle, |
| edma_handle_t *edmaTxDataToIntermediaryHandle, |
| edma_handle_t *edmaIntermediaryToTxRegHandle) |
| { |
| assert(handle); |
| assert(edmaRxRegToRxDataHandle); |
| assert(edmaTxDataToIntermediaryHandle); |
| assert(edmaIntermediaryToTxRegHandle); |
| |
| /* Zero the handle. */ |
| memset(handle, 0, sizeof(*handle)); |
| |
| uint32_t instance = DSPI_GetInstance(base); |
| |
| s_dspiMasterEdmaPrivateHandle[instance].base = base; |
| s_dspiMasterEdmaPrivateHandle[instance].handle = handle; |
| |
| handle->callback = callback; |
| handle->userData = userData; |
| |
| handle->edmaRxRegToRxDataHandle = edmaRxRegToRxDataHandle; |
| handle->edmaTxDataToIntermediaryHandle = edmaTxDataToIntermediaryHandle; |
| handle->edmaIntermediaryToTxRegHandle = edmaIntermediaryToTxRegHandle; |
| } |
| |
| status_t DSPI_MasterTransferEDMA(SPI_Type *base, dspi_master_edma_handle_t *handle, dspi_transfer_t *transfer) |
| { |
| assert(handle); |
| assert(transfer); |
| |
| /* If the transfer count is zero, then return immediately.*/ |
| if (transfer->dataSize == 0) |
| { |
| return kStatus_InvalidArgument; |
| } |
| |
| /* If both send buffer and receive buffer is null */ |
| if ((!(transfer->txData)) && (!(transfer->rxData))) |
| { |
| return kStatus_InvalidArgument; |
| } |
| |
| /* Check that we're not busy.*/ |
| if (handle->state == kDSPI_Busy) |
| { |
| return kStatus_DSPI_Busy; |
| } |
| |
| handle->state = kDSPI_Busy; |
| |
| uint32_t instance = DSPI_GetInstance(base); |
| uint16_t wordToSend = 0; |
| uint8_t dummyData = DSPI_DUMMY_DATA; |
| uint8_t dataAlreadyFed = 0; |
| uint8_t dataFedMax = 2; |
| |
| uint32_t rxAddr = DSPI_GetRxRegisterAddress(base); |
| uint32_t txAddr = DSPI_MasterGetTxRegisterAddress(base); |
| |
| edma_tcd_t *softwareTCD = (edma_tcd_t *)((uint32_t)(&handle->dspiSoftwareTCD[1]) & (~0x1FU)); |
| |
| edma_transfer_config_t transferConfigA; |
| edma_transfer_config_t transferConfigB; |
| edma_transfer_config_t transferConfigC; |
| |
| handle->txBuffIfNull = ((uint32_t)DSPI_DUMMY_DATA << 8) | DSPI_DUMMY_DATA; |
| |
| dspi_command_data_config_t commandStruct; |
| DSPI_StopTransfer(base); |
| DSPI_FlushFifo(base, true, true); |
| DSPI_ClearStatusFlags(base, kDSPI_AllStatusFlag); |
| |
| commandStruct.whichPcs = |
| (dspi_which_pcs_t)(1U << ((transfer->configFlags & DSPI_MASTER_PCS_MASK) >> DSPI_MASTER_PCS_SHIFT)); |
| commandStruct.isEndOfQueue = false; |
| commandStruct.clearTransferCount = false; |
| commandStruct.whichCtar = |
| (dspi_ctar_selection_t)((transfer->configFlags & DSPI_MASTER_CTAR_MASK) >> DSPI_MASTER_CTAR_SHIFT); |
| commandStruct.isPcsContinuous = (bool)(transfer->configFlags & kDSPI_MasterPcsContinuous); |
| handle->command = DSPI_MasterGetFormattedCommand(&(commandStruct)); |
| |
| commandStruct.isEndOfQueue = true; |
| commandStruct.isPcsContinuous = (bool)(transfer->configFlags & kDSPI_MasterActiveAfterTransfer); |
| handle->lastCommand = DSPI_MasterGetFormattedCommand(&(commandStruct)); |
| |
| handle->bitsPerFrame = ((base->CTAR[commandStruct.whichCtar] & SPI_CTAR_FMSZ_MASK) >> SPI_CTAR_FMSZ_SHIFT) + 1; |
| |
| if ((base->MCR & SPI_MCR_DIS_RXF_MASK) || (base->MCR & SPI_MCR_DIS_TXF_MASK)) |
| { |
| handle->fifoSize = 1; |
| } |
| else |
| { |
| handle->fifoSize = FSL_FEATURE_DSPI_FIFO_SIZEn(base); |
| } |
| handle->txData = transfer->txData; |
| handle->rxData = transfer->rxData; |
| handle->remainingSendByteCount = transfer->dataSize; |
| handle->remainingReceiveByteCount = transfer->dataSize; |
| handle->totalByteCount = transfer->dataSize; |
| |
| /* If using a shared RX/TX DMA request, then this limits the amount of data we can transfer |
| * due to the linked channel. The max bytes is 511 if 8-bit/frame or 1022 if 16-bit/frame |
| */ |
| uint32_t limited_size = 0; |
| if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) |
| { |
| limited_size = 32767u; |
| } |
| else |
| { |
| limited_size = 511u; |
| } |
| |
| if (handle->bitsPerFrame > 8) |
| { |
| if (transfer->dataSize > (limited_size << 1u)) |
| { |
| handle->state = kDSPI_Idle; |
| return kStatus_DSPI_OutOfRange; |
| } |
| } |
| else |
| { |
| if (transfer->dataSize > limited_size) |
| { |
| handle->state = kDSPI_Idle; |
| return kStatus_DSPI_OutOfRange; |
| } |
| } |
| |
| /*The data size should be even if the bitsPerFrame is greater than 8 (that is 2 bytes per frame in dspi) */ |
| if ((handle->bitsPerFrame > 8) && (transfer->dataSize & 0x1)) |
| { |
| handle->state = kDSPI_Idle; |
| return kStatus_InvalidArgument; |
| } |
| |
| DSPI_DisableDMA(base, kDSPI_RxDmaEnable | kDSPI_TxDmaEnable); |
| |
| EDMA_SetCallback(handle->edmaRxRegToRxDataHandle, EDMA_DspiMasterCallback, |
| &s_dspiMasterEdmaPrivateHandle[instance]); |
| |
| /* |
| (1)For DSPI instances with shared RX/TX DMA requests: Rx DMA request -> channel_A -> channel_B-> channel_C. |
| channel_A minor link to channel_B , channel_B minor link to channel_C. |
| |
| Already pushed 1 or 2 data in SPI_PUSHR , then start the DMA tansfer. |
| channel_A:SPI_POPR to rxData, |
| channel_B:next txData to handle->command (low 16 bits), |
| channel_C:handle->command (32 bits) to SPI_PUSHR, and use the scatter/gather to transfer the last data |
| (handle->lastCommand to SPI_PUSHR). |
| |
| (2)For DSPI instances with separate RX and TX DMA requests: |
| Rx DMA request -> channel_A |
| Tx DMA request -> channel_C -> channel_B . |
| channel_C major link to channel_B. |
| So need prepare the first data in "intermediary" before the DMA |
| transfer and then channel_B is used to prepare the next data to "intermediary" |
| |
| channel_A:SPI_POPR to rxData, |
| channel_C: handle->command (32 bits) to SPI_PUSHR, |
| channel_B: next txData to handle->command (low 16 bits), and use the scatter/gather to prepare the last data |
| (handle->lastCommand to handle->Command). |
| */ |
| |
| /*If dspi has separate dma request , prepare the first data in "intermediary" . |
| else (dspi has shared dma request) , send first 2 data if there is fifo or send first 1 data if there is no fifo*/ |
| if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) |
| { |
| /* For DSPI instances with separate RX/TX DMA requests, we'll use the TX DMA request to |
| * trigger the TX DMA channel and RX DMA request to trigger the RX DMA channel |
| */ |
| |
| /*Prepare the firt data*/ |
| if (handle->bitsPerFrame > 8) |
| { |
| /* If it's the last word */ |
| if (handle->remainingSendByteCount <= 2) |
| { |
| if (handle->txData) |
| { |
| wordToSend = *(handle->txData); |
| ++handle->txData; /* increment to next data byte */ |
| wordToSend |= (unsigned)(*(handle->txData)) << 8U; |
| } |
| else |
| { |
| wordToSend = ((uint32_t)dummyData << 8) | dummyData; |
| } |
| handle->lastCommand = (handle->lastCommand & 0xffff0000U) | wordToSend; |
| handle->command = handle->lastCommand; |
| } |
| else /* For all words except the last word , frame > 8bits */ |
| { |
| if (handle->txData) |
| { |
| wordToSend = *(handle->txData); |
| ++handle->txData; /* increment to next data byte */ |
| wordToSend |= (unsigned)(*(handle->txData)) << 8U; |
| ++handle->txData; /* increment to next data byte */ |
| } |
| else |
| { |
| wordToSend = ((uint32_t)dummyData << 8) | dummyData; |
| } |
| handle->command = (handle->command & 0xffff0000U) | wordToSend; |
| } |
| } |
| else /* Optimized for bits/frame less than or equal to one byte. */ |
| { |
| if (handle->txData) |
| { |
| wordToSend = *(handle->txData); |
| ++handle->txData; /* increment to next data word*/ |
| } |
| else |
| { |
| wordToSend = dummyData; |
| } |
| |
| if (handle->remainingSendByteCount == 1) |
| { |
| handle->lastCommand = (handle->lastCommand & 0xffff0000U) | wordToSend; |
| handle->command = handle->lastCommand; |
| } |
| else |
| { |
| handle->command = (handle->command & 0xffff0000U) | wordToSend; |
| } |
| } |
| } |
| |
| else /*dspi has shared dma request*/ |
| |
| { |
| /* For DSPI instances with shared RX/TX DMA requests, we'll use the RX DMA request to |
| * trigger ongoing transfers and will link to the TX DMA channel from the RX DMA channel. |
| */ |
| |
| /* If bits/frame is greater than one byte */ |
| if (handle->bitsPerFrame > 8) |
| { |
| while (DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag) |
| { |
| if (handle->remainingSendByteCount <= 2) |
| { |
| if (handle->txData) |
| { |
| wordToSend = *(handle->txData); |
| ++handle->txData; |
| wordToSend |= (unsigned)(*(handle->txData)) << 8U; |
| } |
| else |
| { |
| wordToSend = ((uint32_t)dummyData << 8) | dummyData; |
| } |
| handle->remainingSendByteCount = 0; |
| base->PUSHR = (handle->lastCommand & 0xffff0000U) | wordToSend; |
| } |
| /* For all words except the last word */ |
| else |
| { |
| if (handle->txData) |
| { |
| wordToSend = *(handle->txData); |
| ++handle->txData; |
| wordToSend |= (unsigned)(*(handle->txData)) << 8U; |
| ++handle->txData; |
| } |
| else |
| { |
| wordToSend = ((uint32_t)dummyData << 8) | dummyData; |
| } |
| handle->remainingSendByteCount -= 2; |
| base->PUSHR = (handle->command & 0xffff0000U) | wordToSend; |
| } |
| |
| /* Try to clear the TFFF; if the TX FIFO is full this will clear */ |
| DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag); |
| |
| dataAlreadyFed += 2; |
| |
| /* exit loop if send count is zero, else update local variables for next loop */ |
| if ((handle->remainingSendByteCount == 0) || (dataAlreadyFed == (dataFedMax * 2))) |
| { |
| break; |
| } |
| } /* End of TX FIFO fill while loop */ |
| } |
| else /* Optimized for bits/frame less than or equal to one byte. */ |
| { |
| while (DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag) |
| { |
| if (handle->txData) |
| { |
| wordToSend = *(handle->txData); |
| ++handle->txData; |
| } |
| else |
| { |
| wordToSend = dummyData; |
| } |
| |
| if (handle->remainingSendByteCount == 1) |
| { |
| base->PUSHR = (handle->lastCommand & 0xffff0000U) | wordToSend; |
| } |
| else |
| { |
| base->PUSHR = (handle->command & 0xffff0000U) | wordToSend; |
| } |
| |
| /* Try to clear the TFFF; if the TX FIFO is full this will clear */ |
| DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag); |
| |
| --handle->remainingSendByteCount; |
| |
| dataAlreadyFed++; |
| |
| /* exit loop if send count is zero, else update local variables for next loop */ |
| if ((handle->remainingSendByteCount == 0) || (dataAlreadyFed == dataFedMax)) |
| { |
| break; |
| } |
| } /* End of TX FIFO fill while loop */ |
| } |
| } |
| |
| /***channel_A *** used for carry the data from Rx_Data_Register(POPR) to User_Receive_Buffer(rxData)*/ |
| EDMA_ResetChannel(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel); |
| |
| transferConfigA.srcAddr = (uint32_t)rxAddr; |
| transferConfigA.srcOffset = 0; |
| |
| if (handle->rxData) |
| { |
| transferConfigA.destAddr = (uint32_t) & (handle->rxData[0]); |
| transferConfigA.destOffset = 1; |
| } |
| else |
| { |
| transferConfigA.destAddr = (uint32_t) & (handle->rxBuffIfNull); |
| transferConfigA.destOffset = 0; |
| } |
| |
| transferConfigA.destTransferSize = kEDMA_TransferSize1Bytes; |
| |
| if (handle->bitsPerFrame <= 8) |
| { |
| transferConfigA.srcTransferSize = kEDMA_TransferSize1Bytes; |
| transferConfigA.minorLoopBytes = 1; |
| transferConfigA.majorLoopCounts = handle->remainingReceiveByteCount; |
| } |
| else |
| { |
| transferConfigA.srcTransferSize = kEDMA_TransferSize2Bytes; |
| transferConfigA.minorLoopBytes = 2; |
| transferConfigA.majorLoopCounts = handle->remainingReceiveByteCount / 2; |
| } |
| |
| /* Store the initially configured eDMA minor byte transfer count into the DSPI handle */ |
| handle->nbytes = transferConfigA.minorLoopBytes; |
| |
| EDMA_SetTransferConfig(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel, |
| &transferConfigA, NULL); |
| EDMA_EnableChannelInterrupts(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel, |
| kEDMA_MajorInterruptEnable); |
| |
| /***channel_B *** used for carry the data from User_Send_Buffer to "intermediary" because the SPIx_PUSHR should |
| write the 32bits at once time . Then use channel_C to carry the "intermediary" to SPIx_PUSHR. Note that the |
| SPIx_PUSHR upper 16 bits are the "command" and the low 16bits are data */ |
| |
| EDMA_ResetChannel(handle->edmaTxDataToIntermediaryHandle->base, handle->edmaTxDataToIntermediaryHandle->channel); |
| |
| /*Calculate the last data : handle->lastCommand*/ |
| if (((handle->remainingSendByteCount > 0) && (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))) || |
| ((((handle->remainingSendByteCount > 1) && (handle->bitsPerFrame <= 8)) || |
| ((handle->remainingSendByteCount > 2) && (handle->bitsPerFrame > 8))) && |
| (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)))) |
| { |
| if (handle->txData) |
| { |
| uint32_t bufferIndex = 0; |
| |
| if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) |
| { |
| if (handle->bitsPerFrame <= 8) |
| { |
| bufferIndex = handle->remainingSendByteCount - 1; |
| } |
| else |
| { |
| bufferIndex = handle->remainingSendByteCount - 2; |
| } |
| } |
| else |
| { |
| bufferIndex = handle->remainingSendByteCount; |
| } |
| |
| if (handle->bitsPerFrame <= 8) |
| { |
| handle->lastCommand = (handle->lastCommand & 0xffff0000U) | handle->txData[bufferIndex - 1]; |
| } |
| else |
| { |
| handle->lastCommand = (handle->lastCommand & 0xffff0000U) | |
| ((uint32_t)handle->txData[bufferIndex - 1] << 8) | |
| handle->txData[bufferIndex - 2]; |
| } |
| } |
| else |
| { |
| if (handle->bitsPerFrame <= 8) |
| { |
| wordToSend = dummyData; |
| } |
| else |
| { |
| wordToSend = ((uint32_t)dummyData << 8) | dummyData; |
| } |
| handle->lastCommand = (handle->lastCommand & 0xffff0000U) | wordToSend; |
| } |
| } |
| |
| /*For DSPI instances with separate RX and TX DMA requests: use the scatter/gather to prepare the last data |
| * (handle->lastCommand) to handle->Command*/ |
| if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) |
| { |
| transferConfigB.srcAddr = (uint32_t) & (handle->lastCommand); |
| transferConfigB.destAddr = (uint32_t) & (handle->command); |
| transferConfigB.srcTransferSize = kEDMA_TransferSize4Bytes; |
| transferConfigB.destTransferSize = kEDMA_TransferSize4Bytes; |
| transferConfigB.srcOffset = 0; |
| transferConfigB.destOffset = 0; |
| transferConfigB.minorLoopBytes = 4; |
| transferConfigB.majorLoopCounts = 1; |
| |
| EDMA_TcdReset(softwareTCD); |
| EDMA_TcdSetTransferConfig(softwareTCD, &transferConfigB, NULL); |
| } |
| |
| /*User_Send_Buffer(txData) to intermediary(handle->command)*/ |
| if (((((handle->remainingSendByteCount > 2) && (handle->bitsPerFrame <= 8)) || |
| ((handle->remainingSendByteCount > 4) && (handle->bitsPerFrame > 8))) && |
| (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))) || |
| (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))) |
| { |
| if (handle->txData) |
| { |
| transferConfigB.srcAddr = (uint32_t)(handle->txData); |
| transferConfigB.srcOffset = 1; |
| } |
| else |
| { |
| transferConfigB.srcAddr = (uint32_t)(&handle->txBuffIfNull); |
| transferConfigB.srcOffset = 0; |
| } |
| |
| transferConfigB.destAddr = (uint32_t)(&handle->command); |
| transferConfigB.destOffset = 0; |
| |
| transferConfigB.srcTransferSize = kEDMA_TransferSize1Bytes; |
| |
| if (handle->bitsPerFrame <= 8) |
| { |
| transferConfigB.destTransferSize = kEDMA_TransferSize1Bytes; |
| transferConfigB.minorLoopBytes = 1; |
| |
| if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) |
| { |
| transferConfigB.majorLoopCounts = handle->remainingSendByteCount - 2; |
| } |
| else |
| { |
| /*Only enable channel_B minorlink to channel_C , so need to add one count due to the last time is |
| majorlink , the majorlink would not trigger the channel_C*/ |
| transferConfigB.majorLoopCounts = handle->remainingSendByteCount + 1; |
| } |
| } |
| else |
| { |
| transferConfigB.destTransferSize = kEDMA_TransferSize2Bytes; |
| transferConfigB.minorLoopBytes = 2; |
| if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) |
| { |
| transferConfigB.majorLoopCounts = handle->remainingSendByteCount / 2 - 2; |
| } |
| else |
| { |
| /*Only enable channel_B minorlink to channel_C , so need to add one count due to the last time is |
| * majorlink*/ |
| transferConfigB.majorLoopCounts = handle->remainingSendByteCount / 2 + 1; |
| } |
| } |
| |
| if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) |
| { |
| EDMA_SetTransferConfig(handle->edmaTxDataToIntermediaryHandle->base, |
| handle->edmaTxDataToIntermediaryHandle->channel, &transferConfigB, softwareTCD); |
| EDMA_EnableAutoStopRequest(handle->edmaIntermediaryToTxRegHandle->base, |
| handle->edmaIntermediaryToTxRegHandle->channel, false); |
| } |
| else |
| { |
| EDMA_SetTransferConfig(handle->edmaTxDataToIntermediaryHandle->base, |
| handle->edmaTxDataToIntermediaryHandle->channel, &transferConfigB, NULL); |
| } |
| } |
| else |
| { |
| EDMA_SetTransferConfig(handle->edmaTxDataToIntermediaryHandle->base, |
| handle->edmaTxDataToIntermediaryHandle->channel, &transferConfigB, NULL); |
| } |
| |
| /***channel_C ***carry the "intermediary" to SPIx_PUSHR. used the edma Scatter Gather function on channel_C to |
| handle the last data */ |
| |
| EDMA_ResetChannel(handle->edmaIntermediaryToTxRegHandle->base, handle->edmaIntermediaryToTxRegHandle->channel); |
| |
| /*For DSPI instances with shared RX/TX DMA requests: use the scatter/gather to prepare the last data |
| * (handle->lastCommand) to SPI_PUSHR*/ |
| if (((1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) && (handle->remainingSendByteCount > 0))) |
| { |
| transferConfigC.srcAddr = (uint32_t) & (handle->lastCommand); |
| transferConfigC.destAddr = (uint32_t)txAddr; |
| transferConfigC.srcTransferSize = kEDMA_TransferSize4Bytes; |
| transferConfigC.destTransferSize = kEDMA_TransferSize4Bytes; |
| transferConfigC.srcOffset = 0; |
| transferConfigC.destOffset = 0; |
| transferConfigC.minorLoopBytes = 4; |
| transferConfigC.majorLoopCounts = 1; |
| |
| EDMA_TcdReset(softwareTCD); |
| EDMA_TcdSetTransferConfig(softwareTCD, &transferConfigC, NULL); |
| } |
| |
| if (((handle->remainingSendByteCount > 1) && (handle->bitsPerFrame <= 8)) || |
| ((handle->remainingSendByteCount > 2) && (handle->bitsPerFrame > 8)) || |
| (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))) |
| { |
| transferConfigC.srcAddr = (uint32_t)(&(handle->command)); |
| transferConfigC.destAddr = (uint32_t)txAddr; |
| |
| transferConfigC.srcTransferSize = kEDMA_TransferSize4Bytes; |
| transferConfigC.destTransferSize = kEDMA_TransferSize4Bytes; |
| transferConfigC.srcOffset = 0; |
| transferConfigC.destOffset = 0; |
| transferConfigC.minorLoopBytes = 4; |
| if (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) |
| { |
| if (handle->bitsPerFrame <= 8) |
| { |
| transferConfigC.majorLoopCounts = handle->remainingSendByteCount - 1; |
| } |
| else |
| { |
| transferConfigC.majorLoopCounts = handle->remainingSendByteCount / 2 - 1; |
| } |
| |
| EDMA_SetTransferConfig(handle->edmaIntermediaryToTxRegHandle->base, |
| handle->edmaIntermediaryToTxRegHandle->channel, &transferConfigC, softwareTCD); |
| } |
| else |
| { |
| transferConfigC.majorLoopCounts = 1; |
| |
| EDMA_SetTransferConfig(handle->edmaIntermediaryToTxRegHandle->base, |
| handle->edmaIntermediaryToTxRegHandle->channel, &transferConfigC, NULL); |
| } |
| |
| EDMA_EnableAutoStopRequest(handle->edmaIntermediaryToTxRegHandle->base, |
| handle->edmaIntermediaryToTxRegHandle->channel, false); |
| } |
| else |
| { |
| EDMA_SetTransferConfig(handle->edmaIntermediaryToTxRegHandle->base, |
| handle->edmaIntermediaryToTxRegHandle->channel, &transferConfigC, NULL); |
| } |
| |
| /*Start the EDMA channel_A , channel_B , channel_C transfer*/ |
| EDMA_StartTransfer(handle->edmaRxRegToRxDataHandle); |
| EDMA_StartTransfer(handle->edmaTxDataToIntermediaryHandle); |
| EDMA_StartTransfer(handle->edmaIntermediaryToTxRegHandle); |
| |
| /*Set channel priority*/ |
| uint8_t channelPriorityLow = handle->edmaRxRegToRxDataHandle->channel; |
| uint8_t channelPriorityMid = handle->edmaTxDataToIntermediaryHandle->channel; |
| uint8_t channelPriorityHigh = handle->edmaIntermediaryToTxRegHandle->channel; |
| uint8_t t = 0; |
| if (channelPriorityLow > channelPriorityMid) |
| { |
| t = channelPriorityLow; |
| channelPriorityLow = channelPriorityMid; |
| channelPriorityMid = t; |
| } |
| |
| if (channelPriorityLow > channelPriorityHigh) |
| { |
| t = channelPriorityLow; |
| channelPriorityLow = channelPriorityHigh; |
| channelPriorityHigh = t; |
| } |
| |
| if (channelPriorityMid > channelPriorityHigh) |
| { |
| t = channelPriorityMid; |
| channelPriorityMid = channelPriorityHigh; |
| channelPriorityHigh = t; |
| } |
| edma_channel_Preemption_config_t preemption_config_t; |
| preemption_config_t.enableChannelPreemption = true; |
| preemption_config_t.enablePreemptAbility = true; |
| preemption_config_t.channelPriority = channelPriorityLow; |
| |
| if (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) |
| { |
| EDMA_SetChannelPreemptionConfig(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel, |
| &preemption_config_t); |
| |
| preemption_config_t.channelPriority = channelPriorityMid; |
| EDMA_SetChannelPreemptionConfig(handle->edmaTxDataToIntermediaryHandle->base, |
| handle->edmaTxDataToIntermediaryHandle->channel, &preemption_config_t); |
| |
| preemption_config_t.channelPriority = channelPriorityHigh; |
| EDMA_SetChannelPreemptionConfig(handle->edmaIntermediaryToTxRegHandle->base, |
| handle->edmaIntermediaryToTxRegHandle->channel, &preemption_config_t); |
| } |
| else |
| { |
| EDMA_SetChannelPreemptionConfig(handle->edmaIntermediaryToTxRegHandle->base, |
| handle->edmaIntermediaryToTxRegHandle->channel, &preemption_config_t); |
| |
| preemption_config_t.channelPriority = channelPriorityMid; |
| EDMA_SetChannelPreemptionConfig(handle->edmaTxDataToIntermediaryHandle->base, |
| handle->edmaTxDataToIntermediaryHandle->channel, &preemption_config_t); |
| |
| preemption_config_t.channelPriority = channelPriorityHigh; |
| EDMA_SetChannelPreemptionConfig(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel, |
| &preemption_config_t); |
| } |
| |
| /*Set the channel link.*/ |
| if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) |
| { |
| /*if there is Tx DMA request , carry the 32bits data (handle->command) to PUSHR first , then link to channelB |
| to prepare the next 32bits data (txData to handle->command) */ |
| if (handle->remainingSendByteCount > 1) |
| { |
| EDMA_SetChannelLink(handle->edmaIntermediaryToTxRegHandle->base, |
| handle->edmaIntermediaryToTxRegHandle->channel, kEDMA_MajorLink, |
| handle->edmaTxDataToIntermediaryHandle->channel); |
| } |
| |
| DSPI_EnableDMA(base, kDSPI_RxDmaEnable | kDSPI_TxDmaEnable); |
| } |
| else |
| { |
| if (handle->remainingSendByteCount > 0) |
| { |
| EDMA_SetChannelLink(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel, |
| kEDMA_MinorLink, handle->edmaTxDataToIntermediaryHandle->channel); |
| |
| EDMA_SetChannelLink(handle->edmaTxDataToIntermediaryHandle->base, |
| handle->edmaTxDataToIntermediaryHandle->channel, kEDMA_MinorLink, |
| handle->edmaIntermediaryToTxRegHandle->channel); |
| } |
| |
| DSPI_EnableDMA(base, kDSPI_RxDmaEnable); |
| } |
| |
| DSPI_StartTransfer(base); |
| |
| return kStatus_Success; |
| } |
| |
| static void EDMA_DspiMasterCallback(edma_handle_t *edmaHandle, |
| void *g_dspiEdmaPrivateHandle, |
| bool transferDone, |
| uint32_t tcds) |
| { |
| assert(edmaHandle); |
| assert(g_dspiEdmaPrivateHandle); |
| |
| dspi_master_edma_private_handle_t *dspiEdmaPrivateHandle; |
| |
| dspiEdmaPrivateHandle = (dspi_master_edma_private_handle_t *)g_dspiEdmaPrivateHandle; |
| |
| DSPI_DisableDMA((dspiEdmaPrivateHandle->base), kDSPI_RxDmaEnable | kDSPI_TxDmaEnable); |
| |
| dspiEdmaPrivateHandle->handle->state = kDSPI_Idle; |
| |
| if (dspiEdmaPrivateHandle->handle->callback) |
| { |
| dspiEdmaPrivateHandle->handle->callback(dspiEdmaPrivateHandle->base, dspiEdmaPrivateHandle->handle, |
| kStatus_Success, dspiEdmaPrivateHandle->handle->userData); |
| } |
| } |
| |
| void DSPI_MasterTransferAbortEDMA(SPI_Type *base, dspi_master_edma_handle_t *handle) |
| { |
| assert(handle); |
| |
| DSPI_StopTransfer(base); |
| |
| DSPI_DisableDMA(base, kDSPI_RxDmaEnable | kDSPI_TxDmaEnable); |
| |
| EDMA_AbortTransfer(handle->edmaRxRegToRxDataHandle); |
| EDMA_AbortTransfer(handle->edmaTxDataToIntermediaryHandle); |
| EDMA_AbortTransfer(handle->edmaIntermediaryToTxRegHandle); |
| |
| handle->state = kDSPI_Idle; |
| } |
| |
| status_t DSPI_MasterTransferGetCountEDMA(SPI_Type *base, dspi_master_edma_handle_t *handle, size_t *count) |
| { |
| assert(handle); |
| |
| if (!count) |
| { |
| return kStatus_InvalidArgument; |
| } |
| |
| /* Catch when there is not an active transfer. */ |
| if (handle->state != kDSPI_Busy) |
| { |
| *count = 0; |
| return kStatus_NoTransferInProgress; |
| } |
| |
| size_t bytes; |
| |
| bytes = (uint32_t)handle->nbytes * EDMA_GetRemainingMajorLoopCount(handle->edmaRxRegToRxDataHandle->base, |
| handle->edmaRxRegToRxDataHandle->channel); |
| |
| *count = handle->totalByteCount - bytes; |
| |
| return kStatus_Success; |
| } |
| |
| void DSPI_SlaveTransferCreateHandleEDMA(SPI_Type *base, |
| dspi_slave_edma_handle_t *handle, |
| dspi_slave_edma_transfer_callback_t callback, |
| void *userData, |
| edma_handle_t *edmaRxRegToRxDataHandle, |
| edma_handle_t *edmaTxDataToTxRegHandle) |
| { |
| assert(handle); |
| assert(edmaRxRegToRxDataHandle); |
| assert(edmaTxDataToTxRegHandle); |
| |
| /* Zero the handle. */ |
| memset(handle, 0, sizeof(*handle)); |
| |
| uint32_t instance = DSPI_GetInstance(base); |
| |
| s_dspiSlaveEdmaPrivateHandle[instance].base = base; |
| s_dspiSlaveEdmaPrivateHandle[instance].handle = handle; |
| |
| handle->callback = callback; |
| handle->userData = userData; |
| |
| handle->edmaRxRegToRxDataHandle = edmaRxRegToRxDataHandle; |
| handle->edmaTxDataToTxRegHandle = edmaTxDataToTxRegHandle; |
| } |
| |
| status_t DSPI_SlaveTransferEDMA(SPI_Type *base, dspi_slave_edma_handle_t *handle, dspi_transfer_t *transfer) |
| { |
| assert(handle); |
| assert(transfer); |
| |
| /* If send/receive length is zero */ |
| if (transfer->dataSize == 0) |
| { |
| return kStatus_InvalidArgument; |
| } |
| |
| /* If both send buffer and receive buffer is null */ |
| if ((!(transfer->txData)) && (!(transfer->rxData))) |
| { |
| return kStatus_InvalidArgument; |
| } |
| |
| /* Check that we're not busy.*/ |
| if (handle->state == kDSPI_Busy) |
| { |
| return kStatus_DSPI_Busy; |
| } |
| |
| handle->state = kDSPI_Busy; |
| |
| uint32_t instance = DSPI_GetInstance(base); |
| uint8_t whichCtar = (transfer->configFlags & DSPI_SLAVE_CTAR_MASK) >> DSPI_SLAVE_CTAR_SHIFT; |
| handle->bitsPerFrame = |
| (((base->CTAR_SLAVE[whichCtar]) & SPI_CTAR_SLAVE_FMSZ_MASK) >> SPI_CTAR_SLAVE_FMSZ_SHIFT) + 1; |
| |
| /* If using a shared RX/TX DMA request, then this limits the amount of data we can transfer |
| * due to the linked channel. The max bytes is 511 if 8-bit/frame or 1022 if 16-bit/frame |
| */ |
| uint32_t limited_size = 0; |
| if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) |
| { |
| limited_size = 32767u; |
| } |
| else |
| { |
| limited_size = 511u; |
| } |
| |
| if (handle->bitsPerFrame > 8) |
| { |
| if (transfer->dataSize > (limited_size << 1u)) |
| { |
| handle->state = kDSPI_Idle; |
| return kStatus_DSPI_OutOfRange; |
| } |
| } |
| else |
| { |
| if (transfer->dataSize > limited_size) |
| { |
| handle->state = kDSPI_Idle; |
| return kStatus_DSPI_OutOfRange; |
| } |
| } |
| |
| /*The data size should be even if the bitsPerFrame is greater than 8 (that is 2 bytes per frame in dspi) */ |
| if ((handle->bitsPerFrame > 8) && (transfer->dataSize & 0x1)) |
| { |
| handle->state = kDSPI_Idle; |
| return kStatus_InvalidArgument; |
| } |
| |
| EDMA_SetCallback(handle->edmaRxRegToRxDataHandle, EDMA_DspiSlaveCallback, &s_dspiSlaveEdmaPrivateHandle[instance]); |
| |
| /* Store transfer information */ |
| handle->txData = transfer->txData; |
| handle->rxData = transfer->rxData; |
| handle->remainingSendByteCount = transfer->dataSize; |
| handle->remainingReceiveByteCount = transfer->dataSize; |
| handle->totalByteCount = transfer->dataSize; |
| |
| uint16_t wordToSend = 0; |
| uint8_t dummyData = DSPI_DUMMY_DATA; |
| uint8_t dataAlreadyFed = 0; |
| uint8_t dataFedMax = 2; |
| |
| uint32_t rxAddr = DSPI_GetRxRegisterAddress(base); |
| uint32_t txAddr = DSPI_SlaveGetTxRegisterAddress(base); |
| |
| edma_transfer_config_t transferConfigA; |
| edma_transfer_config_t transferConfigC; |
| |
| DSPI_StopTransfer(base); |
| |
| DSPI_FlushFifo(base, true, true); |
| DSPI_ClearStatusFlags(base, kDSPI_AllStatusFlag); |
| |
| DSPI_DisableDMA(base, kDSPI_RxDmaEnable | kDSPI_TxDmaEnable); |
| |
| DSPI_StartTransfer(base); |
| |
| /*if dspi has separate dma request , need not prepare data first . |
| else (dspi has shared dma request) , send first 2 data into fifo if there is fifo or send first 1 data to |
| slaveGetTxRegister if there is no fifo*/ |
| if (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) |
| { |
| /* For DSPI instances with shared RX/TX DMA requests, we'll use the RX DMA request to |
| * trigger ongoing transfers and will link to the TX DMA channel from the RX DMA channel. |
| */ |
| /* If bits/frame is greater than one byte */ |
| if (handle->bitsPerFrame > 8) |
| { |
| while (DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag) |
| { |
| if (handle->txData) |
| { |
| wordToSend = *(handle->txData); |
| ++handle->txData; /* Increment to next data byte */ |
| |
| wordToSend |= (unsigned)(*(handle->txData)) << 8U; |
| ++handle->txData; /* Increment to next data byte */ |
| } |
| else |
| { |
| wordToSend = ((uint32_t)dummyData << 8) | dummyData; |
| } |
| handle->remainingSendByteCount -= 2; /* decrement remainingSendByteCount by 2 */ |
| base->PUSHR_SLAVE = wordToSend; |
| |
| /* Try to clear the TFFF; if the TX FIFO is full this will clear */ |
| DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag); |
| |
| dataAlreadyFed += 2; |
| |
| /* Exit loop if send count is zero, else update local variables for next loop */ |
| if ((handle->remainingSendByteCount == 0) || (dataAlreadyFed == (dataFedMax * 2))) |
| { |
| break; |
| } |
| } /* End of TX FIFO fill while loop */ |
| } |
| else /* Optimized for bits/frame less than or equal to one byte. */ |
| { |
| while (DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag) |
| { |
| if (handle->txData) |
| { |
| wordToSend = *(handle->txData); |
| /* Increment to next data word*/ |
| ++handle->txData; |
| } |
| else |
| { |
| wordToSend = dummyData; |
| } |
| |
| base->PUSHR_SLAVE = wordToSend; |
| |
| /* Try to clear the TFFF; if the TX FIFO is full this will clear */ |
| DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag); |
| /* Decrement remainingSendByteCount*/ |
| --handle->remainingSendByteCount; |
| |
| dataAlreadyFed++; |
| |
| /* Exit loop if send count is zero, else update local variables for next loop */ |
| if ((handle->remainingSendByteCount == 0) || (dataAlreadyFed == dataFedMax)) |
| { |
| break; |
| } |
| } /* End of TX FIFO fill while loop */ |
| } |
| } |
| |
| /***channel_A *** used for carry the data from Rx_Data_Register(POPR) to User_Receive_Buffer*/ |
| if (handle->remainingReceiveByteCount > 0) |
| { |
| EDMA_ResetChannel(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel); |
| |
| transferConfigA.srcAddr = (uint32_t)rxAddr; |
| transferConfigA.srcOffset = 0; |
| |
| if (handle->rxData) |
| { |
| transferConfigA.destAddr = (uint32_t) & (handle->rxData[0]); |
| transferConfigA.destOffset = 1; |
| } |
| else |
| { |
| transferConfigA.destAddr = (uint32_t) & (handle->rxBuffIfNull); |
| transferConfigA.destOffset = 0; |
| } |
| |
| transferConfigA.destTransferSize = kEDMA_TransferSize1Bytes; |
| |
| if (handle->bitsPerFrame <= 8) |
| { |
| transferConfigA.srcTransferSize = kEDMA_TransferSize1Bytes; |
| transferConfigA.minorLoopBytes = 1; |
| transferConfigA.majorLoopCounts = handle->remainingReceiveByteCount; |
| } |
| else |
| { |
| transferConfigA.srcTransferSize = kEDMA_TransferSize2Bytes; |
| transferConfigA.minorLoopBytes = 2; |
| transferConfigA.majorLoopCounts = handle->remainingReceiveByteCount / 2; |
| } |
| |
| /* Store the initially configured eDMA minor byte transfer count into the DSPI handle */ |
| handle->nbytes = transferConfigA.minorLoopBytes; |
| |
| EDMA_SetTransferConfig(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel, |
| &transferConfigA, NULL); |
| EDMA_EnableChannelInterrupts(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel, |
| kEDMA_MajorInterruptEnable); |
| } |
| |
| if (handle->remainingSendByteCount > 0) |
| { |
| /***channel_C *** used for carry the data from User_Send_Buffer to Tx_Data_Register(PUSHR_SLAVE)*/ |
| EDMA_ResetChannel(handle->edmaTxDataToTxRegHandle->base, handle->edmaTxDataToTxRegHandle->channel); |
| |
| transferConfigC.destAddr = (uint32_t)txAddr; |
| transferConfigC.destOffset = 0; |
| |
| if (handle->txData) |
| { |
| transferConfigC.srcAddr = (uint32_t)(&(handle->txData[0])); |
| transferConfigC.srcOffset = 1; |
| } |
| else |
| { |
| transferConfigC.srcAddr = (uint32_t)(&handle->txBuffIfNull); |
| transferConfigC.srcOffset = 0; |
| if (handle->bitsPerFrame <= 8) |
| { |
| handle->txBuffIfNull = DSPI_DUMMY_DATA; |
| } |
| else |
| { |
| handle->txBuffIfNull = (DSPI_DUMMY_DATA << 8) | DSPI_DUMMY_DATA; |
| } |
| } |
| |
| transferConfigC.srcTransferSize = kEDMA_TransferSize1Bytes; |
| |
| if (handle->bitsPerFrame <= 8) |
| { |
| transferConfigC.destTransferSize = kEDMA_TransferSize1Bytes; |
| transferConfigC.minorLoopBytes = 1; |
| transferConfigC.majorLoopCounts = handle->remainingSendByteCount; |
| } |
| else |
| { |
| transferConfigC.destTransferSize = kEDMA_TransferSize2Bytes; |
| transferConfigC.minorLoopBytes = 2; |
| transferConfigC.majorLoopCounts = handle->remainingSendByteCount / 2; |
| } |
| |
| EDMA_SetTransferConfig(handle->edmaTxDataToTxRegHandle->base, handle->edmaTxDataToTxRegHandle->channel, |
| &transferConfigC, NULL); |
| |
| EDMA_StartTransfer(handle->edmaTxDataToTxRegHandle); |
| } |
| |
| EDMA_StartTransfer(handle->edmaRxRegToRxDataHandle); |
| |
| /*Set channel priority*/ |
| uint8_t channelPriorityLow = handle->edmaRxRegToRxDataHandle->channel; |
| uint8_t channelPriorityHigh = handle->edmaTxDataToTxRegHandle->channel; |
| uint8_t t = 0; |
| |
| if (channelPriorityLow > channelPriorityHigh) |
| { |
| t = channelPriorityLow; |
| channelPriorityLow = channelPriorityHigh; |
| channelPriorityHigh = t; |
| } |
| |
| edma_channel_Preemption_config_t preemption_config_t; |
| preemption_config_t.enableChannelPreemption = true; |
| preemption_config_t.enablePreemptAbility = true; |
| preemption_config_t.channelPriority = channelPriorityLow; |
| |
| if (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) |
| { |
| EDMA_SetChannelPreemptionConfig(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel, |
| &preemption_config_t); |
| |
| preemption_config_t.channelPriority = channelPriorityHigh; |
| EDMA_SetChannelPreemptionConfig(handle->edmaTxDataToTxRegHandle->base, handle->edmaTxDataToTxRegHandle->channel, |
| &preemption_config_t); |
| } |
| else |
| { |
| EDMA_SetChannelPreemptionConfig(handle->edmaTxDataToTxRegHandle->base, handle->edmaTxDataToTxRegHandle->channel, |
| &preemption_config_t); |
| |
| preemption_config_t.channelPriority = channelPriorityHigh; |
| EDMA_SetChannelPreemptionConfig(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel, |
| &preemption_config_t); |
| } |
| |
| /*Set the channel link. |
| For DSPI instances with shared RX/TX DMA requests: Rx DMA request -> channel_A -> channel_C. |
| For DSPI instances with separate RX and TX DMA requests: |
| Rx DMA request -> channel_A |
| Tx DMA request -> channel_C */ |
| if (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) |
| { |
| if (handle->remainingSendByteCount > 0) |
| { |
| EDMA_SetChannelLink(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel, |
| kEDMA_MinorLink, handle->edmaTxDataToTxRegHandle->channel); |
| } |
| DSPI_EnableDMA(base, kDSPI_RxDmaEnable); |
| } |
| else |
| { |
| DSPI_EnableDMA(base, kDSPI_RxDmaEnable | kDSPI_TxDmaEnable); |
| } |
| |
| return kStatus_Success; |
| } |
| |
| static void EDMA_DspiSlaveCallback(edma_handle_t *edmaHandle, |
| void *g_dspiEdmaPrivateHandle, |
| bool transferDone, |
| uint32_t tcds) |
| { |
| assert(edmaHandle); |
| assert(g_dspiEdmaPrivateHandle); |
| |
| dspi_slave_edma_private_handle_t *dspiEdmaPrivateHandle; |
| |
| dspiEdmaPrivateHandle = (dspi_slave_edma_private_handle_t *)g_dspiEdmaPrivateHandle; |
| |
| DSPI_DisableDMA((dspiEdmaPrivateHandle->base), kDSPI_RxDmaEnable | kDSPI_TxDmaEnable); |
| |
| dspiEdmaPrivateHandle->handle->state = kDSPI_Idle; |
| |
| if (dspiEdmaPrivateHandle->handle->callback) |
| { |
| dspiEdmaPrivateHandle->handle->callback(dspiEdmaPrivateHandle->base, dspiEdmaPrivateHandle->handle, |
| kStatus_Success, dspiEdmaPrivateHandle->handle->userData); |
| } |
| } |
| |
| void DSPI_SlaveTransferAbortEDMA(SPI_Type *base, dspi_slave_edma_handle_t *handle) |
| { |
| assert(handle); |
| |
| DSPI_StopTransfer(base); |
| |
| DSPI_DisableDMA(base, kDSPI_RxDmaEnable | kDSPI_TxDmaEnable); |
| |
| EDMA_AbortTransfer(handle->edmaRxRegToRxDataHandle); |
| EDMA_AbortTransfer(handle->edmaTxDataToTxRegHandle); |
| |
| handle->state = kDSPI_Idle; |
| } |
| |
| status_t DSPI_SlaveTransferGetCountEDMA(SPI_Type *base, dspi_slave_edma_handle_t *handle, size_t *count) |
| { |
| assert(handle); |
| |
| if (!count) |
| { |
| return kStatus_InvalidArgument; |
| } |
| |
| /* Catch when there is not an active transfer. */ |
| if (handle->state != kDSPI_Busy) |
| { |
| *count = 0; |
| return kStatus_NoTransferInProgress; |
| } |
| |
| size_t bytes; |
| |
| bytes = (uint32_t)handle->nbytes * EDMA_GetRemainingMajorLoopCount(handle->edmaRxRegToRxDataHandle->base, |
| handle->edmaRxRegToRxDataHandle->channel); |
| |
| *count = handle->totalByteCount - bytes; |
| |
| return kStatus_Success; |
| } |