blob: b14c60c95d17ab747e57869413690549a1c84de3 [file] [log] [blame]
/**
* @file child_reader.cpp
* Facility for reading from child processes
*
* @remark Copyright 2002 OProfile authors
* @remark Read the file COPYING
*
* @author Philippe Elie
* @author John Levon
*/
#include <unistd.h>
#include <sys/wait.h>
#include <limits.h>
#include <cerrno>
#include <sstream>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include "op_libiberty.h"
#include "child_reader.h"
using namespace std;
child_reader::child_reader(string const & cmd, vector<string> const & args)
:
fd1(-1), fd2(-1),
pos1(0), end1(0),
pos2(0), end2(0),
pid(0),
first_error(0),
buf2(0), sz_buf2(0),
buf1(new char[PIPE_BUF]),
process_name(cmd),
is_terminated(true),
terminate_on_exception(false),
forked(false)
{
exec_command(cmd, args);
}
child_reader::~child_reader()
{
terminate_process();
delete [] buf1;
if (buf2) {
// allocated through C alloc
free(buf2);
}
}
void child_reader::exec_command(string const & cmd, vector<string> const & args)
{
int pstdout[2];
int pstderr[2];
if (pipe(pstdout) == -1 || pipe(pstderr) == -1) {
first_error = errno;
return;
}
pid = fork();
switch (pid) {
case -1:
first_error = errno;
return;
case 0: {
char const ** argv = new char const *[args.size() + 2];
size_t i;
argv[0] = cmd.c_str();
for (i = 1 ; i <= args.size() ; ++i)
argv[i] = args[i - 1].c_str();
argv[i] = 0;
// child: we can cleanup a few fd
close(pstdout[0]);
dup2(pstdout[1], STDOUT_FILENO);
close(pstdout[1]);
close(pstderr[0]);
dup2(pstderr[1], STDERR_FILENO);
close(pstderr[1]);
execvp(cmd.c_str(), (char * const *)argv);
int ret_code = errno;
// we can communicate with parent by writing to stderr
// and by returning a non zero error code. Setting
// first_error in the child is a non-sense
// we are in the child process: so this error message
// is redirect to the parent process
cerr << "Couldn't exec \"" << cmd << "\" : "
<< strerror(errno) << endl;
exit(ret_code);
}
default:;
// parent: we do not write on these fd.
close(pstdout[1]);
close(pstderr[1]);
forked = true;
break;
}
fd1 = pstdout[0];
fd2 = pstderr[0];
is_terminated = false;
return;
}
bool child_reader::block_read()
{
fd_set read_fs;
FD_ZERO(&read_fs);
FD_SET(fd1, &read_fs);
FD_SET(fd2, &read_fs);
if (select(max(fd1, fd2) + 1, &read_fs, 0, 0, 0) >= 0) {
if (FD_ISSET(fd1, &read_fs)) {
ssize_t temp = read(fd1, buf1, PIPE_BUF);
if (temp >= 0)
end1 = temp;
else
end1 = 0;
}
if (FD_ISSET(fd2, &read_fs)) {
if (end2 >= sz_buf2) {
sz_buf2 = sz_buf2 ? sz_buf2 * 2 : PIPE_BUF;
buf2 = (char *)xrealloc(buf2, sz_buf2);
}
ssize_t temp = read(fd2, buf2 + end2, sz_buf2 - end2);
if (temp > 0)
end2 += temp;
}
}
bool ret = !(end1 == 0 && end2 == 0);
if (end1 == -1)
end1 = 0;
if (end2 == -1)
end2 = 0;
return ret;
}
bool child_reader::getline(string & result)
{
// some stl lacks string::clear()
result.erase(result.begin(), result.end());
bool ok = true;
bool ret = true;
bool can_stop = false;
do {
int temp = end2;
if (pos1 >= end1) {
pos1 = 0;
ret = block_read();
}
// for efficiency try to copy as much as we can of data
ssize_t temp_pos = pos1;
while (temp_pos < end1 && ok) {
char ch = buf1[temp_pos++];
if (ch == '\n')
ok = false;
}
// !ok ==> endl has been read so do not copy it.
result.append(&buf1[pos1], (temp_pos - pos1) - !ok);
if (!ok || !end1)
can_stop = true;
// reading zero byte from stdout don't mean than we exhausted
// all stdout output, we must continue to try until reading
// stdout and stderr return zero byte.
if (ok && temp != end2)
can_stop = false;
pos1 = temp_pos;
} while (!can_stop);
// Is this correct ?
return end1 != 0 || result.length() != 0;
}
bool child_reader::get_data(ostream & out, ostream & err)
{
bool ret = true;
while (ret) {
ret = block_read();
out.write(buf1, end1);
err.write(buf2, end2);
end1 = end2 = 0;
}
return first_error == 0;
}
int child_reader::terminate_process()
{
// can be called explicitely or by dtor,
// we must protect against multiple call
if (!is_terminated) {
int ret;
waitpid(pid, &ret, 0);
is_terminated = true;
if (WIFEXITED(ret)) {
first_error = WEXITSTATUS(ret) | WIFSIGNALED(ret);
} else if (WIFSIGNALED(ret)) {
terminate_on_exception = true;
first_error = WTERMSIG(ret);
} else {
// FIXME: this seems impossible, waitpid *must* wait
// and either the process terminate normally or through
// a signal.
first_error = -1;
}
}
if (fd1 != -1) {
close(fd1);
fd1 = -1;
}
if (fd2 != -1) {
close(fd2);
fd2 = -1;
}
return first_error;
}
string child_reader::error_str() const
{
ostringstream err;
if (!forked) {
err << string("unable to fork, error: ")
<< strerror(first_error);
} else if (is_terminated) {
if (first_error) {
if (terminate_on_exception) {
err << process_name << " terminated by signal "
<< first_error;
} else {
err << process_name << " return "
<< first_error;
}
}
}
return err.str();
}