blob: 4a36723ea7e2a9ca132100fa37dfaabb844362f0 [file] [log] [blame]
/* ------------------------------------------------------------------ */
/* decNumber package local type, tuning, and macro definitions */
/* ------------------------------------------------------------------ */
/* Copyright (c) IBM Corporation, 2000-2010. All rights reserved. */
/* */
/* This software is made available under the terms of the */
/* ICU License -- ICU 1.8.1 and later. */
/* */
/* The description and User's Guide ("The decNumber C Library") for */
/* this software is called decNumber.pdf. This document is */
/* available, together with arithmetic and format specifications, */
/* testcases, and Web links, on the General Decimal Arithmetic page. */
/* */
/* Please send comments, suggestions, and corrections to the author: */
/* mfc@uk.ibm.com */
/* Mike Cowlishaw, IBM Fellow */
/* IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK */
/* ------------------------------------------------------------------ */
/* This header file is included by all modules in the decNumber */
/* library, and contains local type definitions, tuning parameters, */
/* etc. It should not need to be used by application programs. */
/* decNumber.h or one of decDouble (etc.) must be included first. */
/* ------------------------------------------------------------------ */
#if !defined(DECNUMBERLOC)
#define DECNUMBERLOC
#define DECVERSION "decNumber 3.61" /* Package Version [16 max.] */
#define DECNLAUTHOR "Mike Cowlishaw" /* Who to blame */
#include <stdlib.h> /* for abs */
#include <string.h> /* for memset, strcpy */
/* Conditional code flag -- set this to match hardware platform */
#if !defined(DECLITEND)
#define DECLITEND 1 /* 1=little-endian, 0=big-endian */
#endif
/* Conditional code flag -- set this to 1 for best performance */
#if !defined(DECUSE64)
#define DECUSE64 1 /* 1=use int64s, 0=int32 & smaller only */
#endif
/* Conditional check flags -- set these to 0 for best performance */
#if !defined(DECCHECK)
#define DECCHECK 0 /* 1 to enable robust checking */
#endif
#if !defined(DECALLOC)
#define DECALLOC 0 /* 1 to enable memory accounting */
#endif
#if !defined(DECTRACE)
#define DECTRACE 0 /* 1 to trace certain internals, etc. */
#endif
/* Tuning parameter for decNumber (arbitrary precision) module */
#if !defined(DECBUFFER)
#define DECBUFFER 36 /* Size basis for local buffers. This */
/* should be a common maximum precision */
/* rounded up to a multiple of 4; must */
/* be zero or positive. */
#endif
/* ---------------------------------------------------------------- */
/* Definitions for all modules (general-purpose) */
/* ---------------------------------------------------------------- */
/* Local names for common types -- for safety, decNumber modules do */
/* not use int or long directly. */
#define Flag uint8_t
#define Byte int8_t
#define uByte uint8_t
#define Short int16_t
#define uShort uint16_t
#define Int int32_t
#define uInt uint32_t
#define Unit decNumberUnit
#if DECUSE64
#define Long int64_t
#define uLong uint64_t
#endif
/* Development-use definitions */
typedef long int LI; /* for printf arguments only */
#define DECNOINT 0 /* 1 to check no internal use of 'int' */
/* or stdint types */
#if DECNOINT
/* if these interfere with your C includes, do not set DECNOINT */
#define int ? /* enable to ensure that plain C 'int' */
#define long ?? /* .. or 'long' types are not used */
#endif
/* Shared lookup tables */
extern const uByte DECSTICKYTAB[10]; /* re-round digits if sticky */
extern const uInt DECPOWERS[10]; /* powers of ten table */
/* The following are included from decDPD.h */
extern const uShort DPD2BIN[1024]; /* DPD -> 0-999 */
extern const uShort BIN2DPD[1000]; /* 0-999 -> DPD */
extern const uInt DPD2BINK[1024]; /* DPD -> 0-999000 */
extern const uInt DPD2BINM[1024]; /* DPD -> 0-999000000 */
extern const uByte DPD2BCD8[4096]; /* DPD -> ddd + len */
extern const uByte BIN2BCD8[4000]; /* 0-999 -> ddd + len */
extern const uShort BCD2DPD[2458]; /* 0-0x999 -> DPD (0x999=2457)*/
/* LONGMUL32HI -- set w=(u*v)>>32, where w, u, and v are uInts */
/* (that is, sets w to be the high-order word of the 64-bit result; */
/* the low-order word is simply u*v.) */
/* This version is derived from Knuth via Hacker's Delight; */
/* it seems to optimize better than some others tried */
#define LONGMUL32HI(w, u, v) { \
uInt u0, u1, v0, v1, w0, w1, w2, t; \
u0=u & 0xffff; u1=u>>16; \
v0=v & 0xffff; v1=v>>16; \
w0=u0*v0; \
t=u1*v0 + (w0>>16); \
w1=t & 0xffff; w2=t>>16; \
w1=u0*v1 + w1; \
(w)=u1*v1 + w2 + (w1>>16);}
/* ROUNDUP -- round an integer up to a multiple of n */
#define ROUNDUP(i, n) ((((i)+(n)-1)/n)*n)
#define ROUNDUP4(i) (((i)+3)&~3) /* special for n=4 */
/* ROUNDDOWN -- round an integer down to a multiple of n */
#define ROUNDDOWN(i, n) (((i)/n)*n)
#define ROUNDDOWN4(i) ((i)&~3) /* special for n=4 */
/* References to multi-byte sequences under different sizes; these */
/* require locally declared variables, but do not violate strict */
/* aliasing or alignment (as did the UINTAT simple cast to uInt). */
/* Variables needed are uswork, uiwork, etc. [so do not use at same */
/* level in an expression, e.g., UBTOUI(x)==UBTOUI(y) may fail]. */
/* Return a uInt, etc., from bytes starting at a char* or uByte* */
#define UBTOUS(b) (memcpy((void *)&uswork, b, 2), uswork)
#define UBTOUI(b) (memcpy((void *)&uiwork, b, 4), uiwork)
/* Store a uInt, etc., into bytes starting at a char* or uByte*. */
/* Returns i, evaluated, for convenience; has to use uiwork because */
/* i may be an expression. */
#define UBFROMUS(b, i) (uswork=(i), memcpy(b, (void *)&uswork, 2), uswork)
#define UBFROMUI(b, i) (uiwork=(i), memcpy(b, (void *)&uiwork, 4), uiwork)
/* X10 and X100 -- multiply integer i by 10 or 100 */
/* [shifts are usually faster than multiply; could be conditional] */
#define X10(i) (((i)<<1)+((i)<<3))
#define X100(i) (((i)<<2)+((i)<<5)+((i)<<6))
/* MAXI and MINI -- general max & min (not in ANSI) for integers */
#define MAXI(x,y) ((x)<(y)?(y):(x))
#define MINI(x,y) ((x)>(y)?(y):(x))
/* Useful constants */
#define BILLION 1000000000 /* 10**9 */
/* CHARMASK: 0x30303030 for ASCII/UTF8; 0xF0F0F0F0 for EBCDIC */
#define CHARMASK ((((((((uInt)'0')<<8)+'0')<<8)+'0')<<8)+'0')
/* ---------------------------------------------------------------- */
/* Definitions for arbitary-precision modules (only valid after */
/* decNumber.h has been included) */
/* ---------------------------------------------------------------- */
/* Limits and constants */
#define DECNUMMAXP 999999999 /* maximum precision code can handle */
#define DECNUMMAXE 999999999 /* maximum adjusted exponent ditto */
#define DECNUMMINE -999999999 /* minimum adjusted exponent ditto */
#if (DECNUMMAXP != DEC_MAX_DIGITS)
#error Maximum digits mismatch
#endif
#if (DECNUMMAXE != DEC_MAX_EMAX)
#error Maximum exponent mismatch
#endif
#if (DECNUMMINE != DEC_MIN_EMIN)
#error Minimum exponent mismatch
#endif
/* Set DECDPUNMAX -- the maximum integer that fits in DECDPUN */
/* digits, and D2UTABLE -- the initializer for the D2U table */
#if DECDPUN==1
#define DECDPUNMAX 9
#define D2UTABLE {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17, \
18,19,20,21,22,23,24,25,26,27,28,29,30,31,32, \
33,34,35,36,37,38,39,40,41,42,43,44,45,46,47, \
48,49}
#elif DECDPUN==2
#define DECDPUNMAX 99
#define D2UTABLE {0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10, \
11,11,12,12,13,13,14,14,15,15,16,16,17,17,18, \
18,19,19,20,20,21,21,22,22,23,23,24,24,25}
#elif DECDPUN==3
#define DECDPUNMAX 999
#define D2UTABLE {0,1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7, \
8,8,8,9,9,9,10,10,10,11,11,11,12,12,12,13,13, \
13,14,14,14,15,15,15,16,16,16,17}
#elif DECDPUN==4
#define DECDPUNMAX 9999
#define D2UTABLE {0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,6, \
6,6,6,7,7,7,7,8,8,8,8,9,9,9,9,10,10,10,10,11, \
11,11,11,12,12,12,12,13}
#elif DECDPUN==5
#define DECDPUNMAX 99999
#define D2UTABLE {0,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,5, \
5,5,5,5,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8,9,9,9, \
9,9,10,10,10,10}
#elif DECDPUN==6
#define DECDPUNMAX 999999
#define D2UTABLE {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4, \
4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,7,7,8, \
8,8,8,8,8,9}
#elif DECDPUN==7
#define DECDPUNMAX 9999999
#define D2UTABLE {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3, \
4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,6,7, \
7,7,7,7,7,7}
#elif DECDPUN==8
#define DECDPUNMAX 99999999
#define D2UTABLE {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3, \
3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6, \
6,6,6,6,6,7}
#elif DECDPUN==9
#define DECDPUNMAX 999999999
#define D2UTABLE {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3, \
3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5, \
5,5,6,6,6,6}
#elif defined(DECDPUN)
#error DECDPUN must be in the range 1-9
#endif
/* ----- Shared data (in decNumber.c) ----- */
/* Public lookup table used by the D2U macro (see below) */
#define DECMAXD2U 49
extern const uByte d2utable[DECMAXD2U+1];
/* ----- Macros ----- */
/* ISZERO -- return true if decNumber dn is a zero */
/* [performance-critical in some situations] */
#define ISZERO(dn) decNumberIsZero(dn) /* now just a local name */
/* D2U -- return the number of Units needed to hold d digits */
/* (runtime version, with table lookaside for small d) */
#if DECDPUN==8
#define D2U(d) ((unsigned)((d)<=DECMAXD2U?d2utable[d]:((d)+7)>>3))
#elif DECDPUN==4
#define D2U(d) ((unsigned)((d)<=DECMAXD2U?d2utable[d]:((d)+3)>>2))
#else
#define D2U(d) ((d)<=DECMAXD2U?d2utable[d]:((d)+DECDPUN-1)/DECDPUN)
#endif
/* SD2U -- static D2U macro (for compile-time calculation) */
#define SD2U(d) (((d)+DECDPUN-1)/DECDPUN)
/* MSUDIGITS -- returns digits in msu, from digits, calculated */
/* using D2U */
#define MSUDIGITS(d) ((d)-(D2U(d)-1)*DECDPUN)
/* D2N -- return the number of decNumber structs that would be */
/* needed to contain that number of digits (and the initial */
/* decNumber struct) safely. Note that one Unit is included in the */
/* initial structure. Used for allocating space that is aligned on */
/* a decNumber struct boundary. */
#define D2N(d) \
((((SD2U(d)-1)*sizeof(Unit))+sizeof(decNumber)*2-1)/sizeof(decNumber))
/* TODIGIT -- macro to remove the leading digit from the unsigned */
/* integer u at column cut (counting from the right, LSD=0) and */
/* place it as an ASCII character into the character pointed to by */
/* c. Note that cut must be <= 9, and the maximum value for u is */
/* 2,000,000,000 (as is needed for negative exponents of */
/* subnormals). The unsigned integer pow is used as a temporary */
/* variable. */
#define TODIGIT(u, cut, c, pow) { \
*(c)='0'; \
pow=DECPOWERS[cut]*2; \
if ((u)>pow) { \
pow*=4; \
if ((u)>=pow) {(u)-=pow; *(c)+=8;} \
pow/=2; \
if ((u)>=pow) {(u)-=pow; *(c)+=4;} \
pow/=2; \
} \
if ((u)>=pow) {(u)-=pow; *(c)+=2;} \
pow/=2; \
if ((u)>=pow) {(u)-=pow; *(c)+=1;} \
}
/* ---------------------------------------------------------------- */
/* Definitions for fixed-precision modules (only valid after */
/* decSingle.h, decDouble.h, or decQuad.h has been included) */
/* ---------------------------------------------------------------- */
/* bcdnum -- a structure describing a format-independent finite */
/* number, whose coefficient is a string of bcd8 uBytes */
typedef struct {
uByte *msd; /* -> most significant digit */
uByte *lsd; /* -> least ditto */
uInt sign; /* 0=positive, DECFLOAT_Sign=negative */
Int exponent; /* Unadjusted signed exponent (q), or */
/* DECFLOAT_NaN etc. for a special */
} bcdnum;
/* Test if exponent or bcdnum exponent must be a special, etc. */
#define EXPISSPECIAL(exp) ((exp)>=DECFLOAT_MinSp)
#define EXPISINF(exp) (exp==DECFLOAT_Inf)
#define EXPISNAN(exp) (exp==DECFLOAT_qNaN || exp==DECFLOAT_sNaN)
#define NUMISSPECIAL(num) (EXPISSPECIAL((num)->exponent))
/* Refer to a 32-bit word or byte in a decFloat (df) by big-endian */
/* (array) notation (the 0 word or byte contains the sign bit), */
/* automatically adjusting for endianness; similarly address a word */
/* in the next-wider format (decFloatWider, or dfw) */
#define DECWORDS (DECBYTES/4)
#define DECWWORDS (DECWBYTES/4)
#if DECLITEND
#define DFBYTE(df, off) ((df)->bytes[DECBYTES-1-(off)])
#define DFWORD(df, off) ((df)->words[DECWORDS-1-(off)])
#define DFWWORD(dfw, off) ((dfw)->words[DECWWORDS-1-(off)])
#else
#define DFBYTE(df, off) ((df)->bytes[off])
#define DFWORD(df, off) ((df)->words[off])
#define DFWWORD(dfw, off) ((dfw)->words[off])
#endif
/* Tests for sign or specials, directly on DECFLOATs */
#define DFISSIGNED(df) (DFWORD(df, 0)&0x80000000)
#define DFISSPECIAL(df) ((DFWORD(df, 0)&0x78000000)==0x78000000)
#define DFISINF(df) ((DFWORD(df, 0)&0x7c000000)==0x78000000)
#define DFISNAN(df) ((DFWORD(df, 0)&0x7c000000)==0x7c000000)
#define DFISQNAN(df) ((DFWORD(df, 0)&0x7e000000)==0x7c000000)
#define DFISSNAN(df) ((DFWORD(df, 0)&0x7e000000)==0x7e000000)
/* Shared lookup tables */
extern const uInt DECCOMBMSD[64]; /* Combination field -> MSD */
extern const uInt DECCOMBFROM[48]; /* exp+msd -> Combination */
/* Private generic (utility) routine */
#if DECCHECK || DECTRACE
extern void decShowNum(const bcdnum *, const char *);
#endif
/* Format-dependent macros and constants */
#if defined(DECPMAX)
/* Useful constants */
#define DECPMAX9 (ROUNDUP(DECPMAX, 9)/9) /* 'Pmax' in 10**9s */
/* Top words for a zero */
#define SINGLEZERO 0x22500000
#define DOUBLEZERO 0x22380000
#define QUADZERO 0x22080000
/* [ZEROWORD is defined to be one of these in the DFISZERO macro] */
/* Format-dependent common tests: */
/* DFISZERO -- test for (any) zero */
/* DFISCCZERO -- test for coefficient continuation being zero */
/* DFISCC01 -- test for coefficient contains only 0s and 1s */
/* DFISINT -- test for finite and exponent q=0 */
/* DFISUINT01 -- test for sign=0, finite, exponent q=0, and */
/* MSD=0 or 1 */
/* ZEROWORD is also defined here. */
/* In DFISZERO the first test checks the least-significant word */
/* (most likely to be non-zero); the penultimate tests MSD and */
/* DPDs in the signword, and the final test excludes specials and */
/* MSD>7. DFISINT similarly has to allow for the two forms of */
/* MSD codes. DFISUINT01 only has to allow for one form of MSD */
/* code. */
#if DECPMAX==7
#define ZEROWORD SINGLEZERO
/* [test macros not needed except for Zero] */
#define DFISZERO(df) ((DFWORD(df, 0)&0x1c0fffff)==0 \
&& (DFWORD(df, 0)&0x60000000)!=0x60000000)
#elif DECPMAX==16
#define ZEROWORD DOUBLEZERO
#define DFISZERO(df) ((DFWORD(df, 1)==0 \
&& (DFWORD(df, 0)&0x1c03ffff)==0 \
&& (DFWORD(df, 0)&0x60000000)!=0x60000000))
#define DFISINT(df) ((DFWORD(df, 0)&0x63fc0000)==0x22380000 \
||(DFWORD(df, 0)&0x7bfc0000)==0x6a380000)
#define DFISUINT01(df) ((DFWORD(df, 0)&0xfbfc0000)==0x22380000)
#define DFISCCZERO(df) (DFWORD(df, 1)==0 \
&& (DFWORD(df, 0)&0x0003ffff)==0)
#define DFISCC01(df) ((DFWORD(df, 0)&~0xfffc9124)==0 \
&& (DFWORD(df, 1)&~0x49124491)==0)
#elif DECPMAX==34
#define ZEROWORD QUADZERO
#define DFISZERO(df) ((DFWORD(df, 3)==0 \
&& DFWORD(df, 2)==0 \
&& DFWORD(df, 1)==0 \
&& (DFWORD(df, 0)&0x1c003fff)==0 \
&& (DFWORD(df, 0)&0x60000000)!=0x60000000))
#define DFISINT(df) ((DFWORD(df, 0)&0x63ffc000)==0x22080000 \
||(DFWORD(df, 0)&0x7bffc000)==0x6a080000)
#define DFISUINT01(df) ((DFWORD(df, 0)&0xfbffc000)==0x22080000)
#define DFISCCZERO(df) (DFWORD(df, 3)==0 \
&& DFWORD(df, 2)==0 \
&& DFWORD(df, 1)==0 \
&& (DFWORD(df, 0)&0x00003fff)==0)
#define DFISCC01(df) ((DFWORD(df, 0)&~0xffffc912)==0 \
&& (DFWORD(df, 1)&~0x44912449)==0 \
&& (DFWORD(df, 2)&~0x12449124)==0 \
&& (DFWORD(df, 3)&~0x49124491)==0)
#endif
/* Macros to test if a certain 10 bits of a uInt or pair of uInts */
/* are a canonical declet [higher or lower bits are ignored]. */
/* declet is at offset 0 (from the right) in a uInt: */
#define CANONDPD(dpd) (((dpd)&0x300)==0 || ((dpd)&0x6e)!=0x6e)
/* declet is at offset k (a multiple of 2) in a uInt: */
#define CANONDPDOFF(dpd, k) (((dpd)&(0x300<<(k)))==0 \
|| ((dpd)&(((uInt)0x6e)<<(k)))!=(((uInt)0x6e)<<(k)))
/* declet is at offset k (a multiple of 2) in a pair of uInts: */
/* [the top 2 bits will always be in the more-significant uInt] */
#define CANONDPDTWO(hi, lo, k) (((hi)&(0x300>>(32-(k))))==0 \
|| ((hi)&(0x6e>>(32-(k))))!=(0x6e>>(32-(k))) \
|| ((lo)&(((uInt)0x6e)<<(k)))!=(((uInt)0x6e)<<(k)))
/* Macro to test whether a full-length (length DECPMAX) BCD8 */
/* coefficient, starting at uByte u, is all zeros */
/* Test just the LSWord first, then the remainder as a sequence */
/* of tests in order to avoid same-level use of UBTOUI */
#if DECPMAX==7
#define ISCOEFFZERO(u) ( \
UBTOUI((u)+DECPMAX-4)==0 \
&& UBTOUS((u)+DECPMAX-6)==0 \
&& *(u)==0)
#elif DECPMAX==16
#define ISCOEFFZERO(u) ( \
UBTOUI((u)+DECPMAX-4)==0 \
&& UBTOUI((u)+DECPMAX-8)==0 \
&& UBTOUI((u)+DECPMAX-12)==0 \
&& UBTOUI(u)==0)
#elif DECPMAX==34
#define ISCOEFFZERO(u) ( \
UBTOUI((u)+DECPMAX-4)==0 \
&& UBTOUI((u)+DECPMAX-8)==0 \
&& UBTOUI((u)+DECPMAX-12)==0 \
&& UBTOUI((u)+DECPMAX-16)==0 \
&& UBTOUI((u)+DECPMAX-20)==0 \
&& UBTOUI((u)+DECPMAX-24)==0 \
&& UBTOUI((u)+DECPMAX-28)==0 \
&& UBTOUI((u)+DECPMAX-32)==0 \
&& UBTOUS(u)==0)
#endif
/* Macros and masks for the exponent continuation field and MSD */
/* Get the exponent continuation from a decFloat *df as an Int */
#define GETECON(df) ((Int)((DFWORD((df), 0)&0x03ffffff)>>(32-6-DECECONL)))
/* Ditto, from the next-wider format */
#define GETWECON(df) ((Int)((DFWWORD((df), 0)&0x03ffffff)>>(32-6-DECWECONL)))
/* Get the biased exponent similarly */
#define GETEXP(df) ((Int)(DECCOMBEXP[DFWORD((df), 0)>>26]+GETECON(df)))
/* Get the unbiased exponent similarly */
#define GETEXPUN(df) ((Int)GETEXP(df)-DECBIAS)
/* Get the MSD similarly (as uInt) */
#define GETMSD(df) (DECCOMBMSD[DFWORD((df), 0)>>26])
/* Compile-time computes of the exponent continuation field masks */
/* full exponent continuation field: */
#define ECONMASK ((0x03ffffff>>(32-6-DECECONL))<<(32-6-DECECONL))
/* same, not including its first digit (the qNaN/sNaN selector): */
#define ECONNANMASK ((0x01ffffff>>(32-6-DECECONL))<<(32-6-DECECONL))
/* Macros to decode the coefficient in a finite decFloat *df into */
/* a BCD string (uByte *bcdin) of length DECPMAX uBytes. */
/* In-line sequence to convert least significant 10 bits of uInt */
/* dpd to three BCD8 digits starting at uByte u. Note that an */
/* extra byte is written to the right of the three digits because */
/* four bytes are moved at a time for speed; the alternative */
/* macro moves exactly three bytes (usually slower). */
#define dpd2bcd8(u, dpd) memcpy(u, &DPD2BCD8[((dpd)&0x3ff)*4], 4)
#define dpd2bcd83(u, dpd) memcpy(u, &DPD2BCD8[((dpd)&0x3ff)*4], 3)
/* Decode the declets. After extracting each one, it is decoded */
/* to BCD8 using a table lookup (also used for variable-length */
/* decode). Each DPD decode is 3 bytes BCD8 plus a one-byte */
/* length which is not used, here). Fixed-length 4-byte moves */
/* are fast, however, almost everywhere, and so are used except */
/* for the final three bytes (to avoid overrun). The code below */
/* is 36 instructions for Doubles and about 70 for Quads, even */
/* on IA32. */
/* Two macros are defined for each format: */
/* GETCOEFF extracts the coefficient of the current format */
/* GETWCOEFF extracts the coefficient of the next-wider format. */
/* The latter is a copy of the next-wider GETCOEFF using DFWWORD. */
#if DECPMAX==7
#define GETCOEFF(df, bcd) { \
uInt sourhi=DFWORD(df, 0); \
*(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
dpd2bcd8(bcd+1, sourhi>>10); \
dpd2bcd83(bcd+4, sourhi);}
#define GETWCOEFF(df, bcd) { \
uInt sourhi=DFWWORD(df, 0); \
uInt sourlo=DFWWORD(df, 1); \
*(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
dpd2bcd8(bcd+1, sourhi>>8); \
dpd2bcd8(bcd+4, (sourhi<<2) | (sourlo>>30)); \
dpd2bcd8(bcd+7, sourlo>>20); \
dpd2bcd8(bcd+10, sourlo>>10); \
dpd2bcd83(bcd+13, sourlo);}
#elif DECPMAX==16
#define GETCOEFF(df, bcd) { \
uInt sourhi=DFWORD(df, 0); \
uInt sourlo=DFWORD(df, 1); \
*(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
dpd2bcd8(bcd+1, sourhi>>8); \
dpd2bcd8(bcd+4, (sourhi<<2) | (sourlo>>30)); \
dpd2bcd8(bcd+7, sourlo>>20); \
dpd2bcd8(bcd+10, sourlo>>10); \
dpd2bcd83(bcd+13, sourlo);}
#define GETWCOEFF(df, bcd) { \
uInt sourhi=DFWWORD(df, 0); \
uInt sourmh=DFWWORD(df, 1); \
uInt sourml=DFWWORD(df, 2); \
uInt sourlo=DFWWORD(df, 3); \
*(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
dpd2bcd8(bcd+1, sourhi>>4); \
dpd2bcd8(bcd+4, ((sourhi)<<6) | (sourmh>>26)); \
dpd2bcd8(bcd+7, sourmh>>16); \
dpd2bcd8(bcd+10, sourmh>>6); \
dpd2bcd8(bcd+13, ((sourmh)<<4) | (sourml>>28)); \
dpd2bcd8(bcd+16, sourml>>18); \
dpd2bcd8(bcd+19, sourml>>8); \
dpd2bcd8(bcd+22, ((sourml)<<2) | (sourlo>>30)); \
dpd2bcd8(bcd+25, sourlo>>20); \
dpd2bcd8(bcd+28, sourlo>>10); \
dpd2bcd83(bcd+31, sourlo);}
#elif DECPMAX==34
#define GETCOEFF(df, bcd) { \
uInt sourhi=DFWORD(df, 0); \
uInt sourmh=DFWORD(df, 1); \
uInt sourml=DFWORD(df, 2); \
uInt sourlo=DFWORD(df, 3); \
*(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
dpd2bcd8(bcd+1, sourhi>>4); \
dpd2bcd8(bcd+4, ((sourhi)<<6) | (sourmh>>26)); \
dpd2bcd8(bcd+7, sourmh>>16); \
dpd2bcd8(bcd+10, sourmh>>6); \
dpd2bcd8(bcd+13, ((sourmh)<<4) | (sourml>>28)); \
dpd2bcd8(bcd+16, sourml>>18); \
dpd2bcd8(bcd+19, sourml>>8); \
dpd2bcd8(bcd+22, ((sourml)<<2) | (sourlo>>30)); \
dpd2bcd8(bcd+25, sourlo>>20); \
dpd2bcd8(bcd+28, sourlo>>10); \
dpd2bcd83(bcd+31, sourlo);}
#define GETWCOEFF(df, bcd) {??} /* [should never be used] */
#endif
/* Macros to decode the coefficient in a finite decFloat *df into */
/* a base-billion uInt array, with the least-significant */
/* 0-999999999 'digit' at offset 0. */
/* Decode the declets. After extracting each one, it is decoded */
/* to binary using a table lookup. Three tables are used; one */
/* the usual DPD to binary, the other two pre-multiplied by 1000 */
/* and 1000000 to avoid multiplication during decode. These */
/* tables can also be used for multiplying up the MSD as the DPD */
/* code for 0 through 9 is the identity. */
#define DPD2BIN0 DPD2BIN /* for prettier code */
#if DECPMAX==7
#define GETCOEFFBILL(df, buf) { \
uInt sourhi=DFWORD(df, 0); \
(buf)[0]=DPD2BIN0[sourhi&0x3ff] \
+DPD2BINK[(sourhi>>10)&0x3ff] \
+DPD2BINM[DECCOMBMSD[sourhi>>26]];}
#elif DECPMAX==16
#define GETCOEFFBILL(df, buf) { \
uInt sourhi, sourlo; \
sourlo=DFWORD(df, 1); \
(buf)[0]=DPD2BIN0[sourlo&0x3ff] \
+DPD2BINK[(sourlo>>10)&0x3ff] \
+DPD2BINM[(sourlo>>20)&0x3ff]; \
sourhi=DFWORD(df, 0); \
(buf)[1]=DPD2BIN0[((sourhi<<2) | (sourlo>>30))&0x3ff] \
+DPD2BINK[(sourhi>>8)&0x3ff] \
+DPD2BINM[DECCOMBMSD[sourhi>>26]];}
#elif DECPMAX==34
#define GETCOEFFBILL(df, buf) { \
uInt sourhi, sourmh, sourml, sourlo; \
sourlo=DFWORD(df, 3); \
(buf)[0]=DPD2BIN0[sourlo&0x3ff] \
+DPD2BINK[(sourlo>>10)&0x3ff] \
+DPD2BINM[(sourlo>>20)&0x3ff]; \
sourml=DFWORD(df, 2); \
(buf)[1]=DPD2BIN0[((sourml<<2) | (sourlo>>30))&0x3ff] \
+DPD2BINK[(sourml>>8)&0x3ff] \
+DPD2BINM[(sourml>>18)&0x3ff]; \
sourmh=DFWORD(df, 1); \
(buf)[2]=DPD2BIN0[((sourmh<<4) | (sourml>>28))&0x3ff] \
+DPD2BINK[(sourmh>>6)&0x3ff] \
+DPD2BINM[(sourmh>>16)&0x3ff]; \
sourhi=DFWORD(df, 0); \
(buf)[3]=DPD2BIN0[((sourhi<<6) | (sourmh>>26))&0x3ff] \
+DPD2BINK[(sourhi>>4)&0x3ff] \
+DPD2BINM[DECCOMBMSD[sourhi>>26]];}
#endif
/* Macros to decode the coefficient in a finite decFloat *df into */
/* a base-thousand uInt array (of size DECLETS+1, to allow for */
/* the MSD), with the least-significant 0-999 'digit' at offset 0.*/
/* Decode the declets. After extracting each one, it is decoded */
/* to binary using a table lookup. */
#if DECPMAX==7
#define GETCOEFFTHOU(df, buf) { \
uInt sourhi=DFWORD(df, 0); \
(buf)[0]=DPD2BIN[sourhi&0x3ff]; \
(buf)[1]=DPD2BIN[(sourhi>>10)&0x3ff]; \
(buf)[2]=DECCOMBMSD[sourhi>>26];}
#elif DECPMAX==16
#define GETCOEFFTHOU(df, buf) { \
uInt sourhi, sourlo; \
sourlo=DFWORD(df, 1); \
(buf)[0]=DPD2BIN[sourlo&0x3ff]; \
(buf)[1]=DPD2BIN[(sourlo>>10)&0x3ff]; \
(buf)[2]=DPD2BIN[(sourlo>>20)&0x3ff]; \
sourhi=DFWORD(df, 0); \
(buf)[3]=DPD2BIN[((sourhi<<2) | (sourlo>>30))&0x3ff]; \
(buf)[4]=DPD2BIN[(sourhi>>8)&0x3ff]; \
(buf)[5]=DECCOMBMSD[sourhi>>26];}
#elif DECPMAX==34
#define GETCOEFFTHOU(df, buf) { \
uInt sourhi, sourmh, sourml, sourlo; \
sourlo=DFWORD(df, 3); \
(buf)[0]=DPD2BIN[sourlo&0x3ff]; \
(buf)[1]=DPD2BIN[(sourlo>>10)&0x3ff]; \
(buf)[2]=DPD2BIN[(sourlo>>20)&0x3ff]; \
sourml=DFWORD(df, 2); \
(buf)[3]=DPD2BIN[((sourml<<2) | (sourlo>>30))&0x3ff]; \
(buf)[4]=DPD2BIN[(sourml>>8)&0x3ff]; \
(buf)[5]=DPD2BIN[(sourml>>18)&0x3ff]; \
sourmh=DFWORD(df, 1); \
(buf)[6]=DPD2BIN[((sourmh<<4) | (sourml>>28))&0x3ff]; \
(buf)[7]=DPD2BIN[(sourmh>>6)&0x3ff]; \
(buf)[8]=DPD2BIN[(sourmh>>16)&0x3ff]; \
sourhi=DFWORD(df, 0); \
(buf)[9]=DPD2BIN[((sourhi<<6) | (sourmh>>26))&0x3ff]; \
(buf)[10]=DPD2BIN[(sourhi>>4)&0x3ff]; \
(buf)[11]=DECCOMBMSD[sourhi>>26];}
#endif
/* Macros to decode the coefficient in a finite decFloat *df and */
/* add to a base-thousand uInt array (as for GETCOEFFTHOU). */
/* After the addition then most significant 'digit' in the array */
/* might have a value larger then 10 (with a maximum of 19). */
#if DECPMAX==7
#define ADDCOEFFTHOU(df, buf) { \
uInt sourhi=DFWORD(df, 0); \
(buf)[0]+=DPD2BIN[sourhi&0x3ff]; \
if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \
(buf)[1]+=DPD2BIN[(sourhi>>10)&0x3ff]; \
if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \
(buf)[2]+=DECCOMBMSD[sourhi>>26];}
#elif DECPMAX==16
#define ADDCOEFFTHOU(df, buf) { \
uInt sourhi, sourlo; \
sourlo=DFWORD(df, 1); \
(buf)[0]+=DPD2BIN[sourlo&0x3ff]; \
if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \
(buf)[1]+=DPD2BIN[(sourlo>>10)&0x3ff]; \
if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \
(buf)[2]+=DPD2BIN[(sourlo>>20)&0x3ff]; \
if (buf[2]>999) {buf[2]-=1000; buf[3]++;} \
sourhi=DFWORD(df, 0); \
(buf)[3]+=DPD2BIN[((sourhi<<2) | (sourlo>>30))&0x3ff]; \
if (buf[3]>999) {buf[3]-=1000; buf[4]++;} \
(buf)[4]+=DPD2BIN[(sourhi>>8)&0x3ff]; \
if (buf[4]>999) {buf[4]-=1000; buf[5]++;} \
(buf)[5]+=DECCOMBMSD[sourhi>>26];}
#elif DECPMAX==34
#define ADDCOEFFTHOU(df, buf) { \
uInt sourhi, sourmh, sourml, sourlo; \
sourlo=DFWORD(df, 3); \
(buf)[0]+=DPD2BIN[sourlo&0x3ff]; \
if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \
(buf)[1]+=DPD2BIN[(sourlo>>10)&0x3ff]; \
if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \
(buf)[2]+=DPD2BIN[(sourlo>>20)&0x3ff]; \
if (buf[2]>999) {buf[2]-=1000; buf[3]++;} \
sourml=DFWORD(df, 2); \
(buf)[3]+=DPD2BIN[((sourml<<2) | (sourlo>>30))&0x3ff]; \
if (buf[3]>999) {buf[3]-=1000; buf[4]++;} \
(buf)[4]+=DPD2BIN[(sourml>>8)&0x3ff]; \
if (buf[4]>999) {buf[4]-=1000; buf[5]++;} \
(buf)[5]+=DPD2BIN[(sourml>>18)&0x3ff]; \
if (buf[5]>999) {buf[5]-=1000; buf[6]++;} \
sourmh=DFWORD(df, 1); \
(buf)[6]+=DPD2BIN[((sourmh<<4) | (sourml>>28))&0x3ff]; \
if (buf[6]>999) {buf[6]-=1000; buf[7]++;} \
(buf)[7]+=DPD2BIN[(sourmh>>6)&0x3ff]; \
if (buf[7]>999) {buf[7]-=1000; buf[8]++;} \
(buf)[8]+=DPD2BIN[(sourmh>>16)&0x3ff]; \
if (buf[8]>999) {buf[8]-=1000; buf[9]++;} \
sourhi=DFWORD(df, 0); \
(buf)[9]+=DPD2BIN[((sourhi<<6) | (sourmh>>26))&0x3ff]; \
if (buf[9]>999) {buf[9]-=1000; buf[10]++;} \
(buf)[10]+=DPD2BIN[(sourhi>>4)&0x3ff]; \
if (buf[10]>999) {buf[10]-=1000; buf[11]++;} \
(buf)[11]+=DECCOMBMSD[sourhi>>26];}
#endif
/* Set a decFloat to the maximum positive finite number (Nmax) */
#if DECPMAX==7
#define DFSETNMAX(df) \
{DFWORD(df, 0)=0x77f3fcff;}
#elif DECPMAX==16
#define DFSETNMAX(df) \
{DFWORD(df, 0)=0x77fcff3f; \
DFWORD(df, 1)=0xcff3fcff;}
#elif DECPMAX==34
#define DFSETNMAX(df) \
{DFWORD(df, 0)=0x77ffcff3; \
DFWORD(df, 1)=0xfcff3fcf; \
DFWORD(df, 2)=0xf3fcff3f; \
DFWORD(df, 3)=0xcff3fcff;}
#endif
/* [end of format-dependent macros and constants] */
#endif
#else
#error decNumberLocal included more than once
#endif