| diff -Naur kobs-ng-1.3.org/src/bch.c kobs-ng-1.3.new/src/bch.c |
| --- kobs-ng-1.3.org/src/bch.c 1969-12-31 16:00:00.000000000 -0800 |
| +++ kobs-ng-1.3.new/src/bch.c 2014-10-24 20:35:24.344372832 -0700 |
| @@ -0,0 +1,1545 @@ |
| +/* |
| +* Copyright (C) 2010-2014 Freescale Semiconductor, Inc. All Rights Reserved. |
| +*/ |
| + |
| +/* |
| +* This program is free software; you can redistribute it and/or modify |
| +* it under the terms of the GNU General Public License as published by |
| +* the Free Software Foundation; either version 2 of the License, or |
| +* (at your option) any later version. |
| +* |
| +* This program is distributed in the hope that it will be useful, |
| +* but WITHOUT ANY WARRANTY; without even the implied warranty of |
| +* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| +* GNU General Public License for more details. |
| +* |
| +* You should have received a copy of the GNU General Public License along |
| +* with this program; if not, write to the Free Software Foundation, Inc., |
| +* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. |
| +*/ |
| +/* |
| + * Generic binary BCH encoding/decoding library |
| + * |
| + * This program is free software; you can redistribute it and/or modify it |
| + * under the terms of the GNU General Public License version 2 as published by |
| + * the Free Software Foundation. |
| + * |
| + * This program is distributed in the hope that it will be useful, but WITHOUT |
| + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| + * more details. |
| + * |
| + * You should have received a copy of the GNU General Public License along with |
| + * this program; if not, write to the Free Software Foundation, Inc., 51 |
| + * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| + * |
| + * Copyright © 2011 Parrot S.A. |
| + * |
| + * Author: Ivan Djelic <ivan.djelic@parrot.com> |
| + * |
| + * Description: |
| + * |
| + * This library provides runtime configurable encoding/decoding of binary |
| + * Bose-Chaudhuri-Hocquenghem (BCH) codes. |
| + * |
| + * Call init_bch to get a pointer to a newly allocated bch_control structure for |
| + * the given m (Galois field order), t (error correction capability) and |
| + * (optional) primitive polynomial parameters. |
| + * |
| + * Call encode_bch to compute and store ecc parity bytes to a given buffer. |
| + * Call decode_bch to detect and locate errors in received data. |
| + * |
| + * On systems supporting hw BCH features, intermediate results may be provided |
| + * to decode_bch in order to skip certain steps. See decode_bch() documentation |
| + * for details. |
| + * |
| + * Option CONFIG_BCH_CONST_PARAMS can be used to force fixed values of |
| + * parameters m and t; thus allowing extra compiler optimizations and providing |
| + * better (up to 2x) encoding performance. Using this option makes sense when |
| + * (m,t) are fixed and known in advance, e.g. when using BCH error correction |
| + * on a particular NAND flash device. |
| + * |
| + * Algorithmic details: |
| + * |
| + * Encoding is performed by processing 32 input bits in parallel, using 4 |
| + * remainder lookup tables. |
| + * |
| + * The final stage of decoding involves the following internal steps: |
| + * a. Syndrome computation |
| + * b. Error locator polynomial computation using Berlekamp-Massey algorithm |
| + * c. Error locator root finding (by far the most expensive step) |
| + * |
| + * In this implementation, step c is not performed using the usual Chien search. |
| + * Instead, an alternative approach described in [1] is used. It consists in |
| + * factoring the error locator polynomial using the Berlekamp Trace algorithm |
| + * (BTA) down to a certain degree (4), after which ad hoc low-degree polynomial |
| + * solving techniques [2] are used. The resulting algorithm, called BTZ, yields |
| + * much better performance than Chien search for usual (m,t) values (typically |
| + * m >= 13, t < 32, see [1]). |
| + * |
| + * [1] B. Biswas, V. Herbert. Efficient root finding of polynomials over fields |
| + * of characteristic 2, in: Western European Workshop on Research in Cryptology |
| + * - WEWoRC 2009, Graz, Austria, LNCS, Springer, July 2009, to appear. |
| + * [2] [Zin96] V.A. Zinoviev. On the solution of equations of degree 10 over |
| + * finite fields GF(2^q). In Rapport de recherche INRIA no 2829, 1996. |
| + */ |
| + |
| +#include <errno.h> |
| +#include <stdint.h> |
| +#include <stdlib.h> |
| +#include <stdio.h> |
| +#include <string.h> |
| +#include "bch.h" |
| +#include "rand.h" |
| + |
| +#if defined(CONFIG_BCH_CONST_PARAMS) |
| +#define GF_M(_p) (CONFIG_BCH_CONST_M) |
| +#define GF_T(_p) (CONFIG_BCH_CONST_T) |
| +#define GF_N(_p) ((1 << (CONFIG_BCH_CONST_M))-1) |
| +#else |
| +#define GF_M(_p) ((_p)->m) |
| +#define GF_T(_p) ((_p)->t) |
| +#define GF_N(_p) ((_p)->n) |
| +#endif |
| + |
| +#define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d)) |
| +#define ARRAY_SIZE(_A) (sizeof(_A) / sizeof((_A)[0])) |
| +#define BCH_ECC_WORDS(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32) |
| +#define BCH_ECC_BYTES(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8) |
| + |
| +#define METADATABYTE 32 /* metadata size in byte */ |
| +#define BLOCK0BYTE 128 /* block0 size in byte */ |
| +#define BLOCK0ECC 62 /* block0 ecc level */ |
| +#define BLOCKNBYTE 128 /* blockn size in byte */ |
| +#define BLOCKNECC 62 /* blockn ecc level */ |
| +#define NUMOFBLOCKN 7 /* number of blockn */ |
| +#define FCB_GF 13 /* Galois Field for FCB */ |
| + |
| + |
| +/* |
| + * represent a polynomial over GF(2^m) |
| + */ |
| +struct gf_poly { |
| + unsigned int deg; /* polynomial degree */ |
| + unsigned int c[0]; /* polynomial terms */ |
| +}; |
| + |
| +/* given its degree, compute a polynomial size in bytes */ |
| +#define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int)) |
| + |
| +/* polynomial of degree 1 */ |
| +struct gf_poly_deg1 { |
| + struct gf_poly poly; |
| + unsigned int c[2]; |
| +}; |
| + |
| +/* |
| + * same as encode_bch(), but process input data one byte at a time |
| + */ |
| +static void encode_bch_unaligned(struct bch_control *bch, |
| + const unsigned char *data, unsigned int len, |
| + uint32_t *ecc) |
| +{ |
| + int i; |
| + const uint32_t *p; |
| + const int l = BCH_ECC_WORDS(bch)-1; |
| + |
| + printf("!!!!WARNNING, source data is not align\n"); |
| + while (len--) { |
| + p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(*data++)) & 0xff); |
| + |
| + for (i = 0; i < l; i++) |
| + ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++); |
| + |
| + ecc[l] = (ecc[l] << 8)^(*p); |
| + } |
| +} |
| + |
| +/* |
| + * convert ecc bytes to aligned, zero-padded 32-bit ecc words |
| + */ |
| +static void load_ecc8(struct bch_control *bch, uint32_t *dst, |
| + const uint8_t *src) |
| +{ |
| + uint8_t pad[4] = {0, 0, 0, 0}; |
| + unsigned int i, nwords = BCH_ECC_WORDS(bch)-1; |
| + |
| + for (i = 0; i < nwords; i++, src += 4) |
| + dst[i] = (src[0] << 24)|(src[1] << 16)|(src[2] << 8)|src[3]; |
| + |
| + memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords); |
| + dst[nwords] = (pad[0] << 24)|(pad[1] << 16)|(pad[2] << 8)|pad[3]; |
| +} |
| + |
| +/* |
| + * convert 32-bit ecc words to ecc bytes |
| + */ |
| +static void store_ecc8(struct bch_control *bch, uint8_t *dst, |
| + const uint32_t *src) |
| +{ |
| + uint8_t pad[4]; |
| + unsigned int i, nwords = BCH_ECC_WORDS(bch)-1; |
| + |
| + for (i = 0; i < nwords; i++) { |
| + *dst++ = (src[i] >> 24); |
| + *dst++ = (src[i] >> 16) & 0xff; |
| + *dst++ = (src[i] >> 8) & 0xff; |
| + *dst++ = (src[i] >> 0) & 0xff; |
| + } |
| + pad[0] = (src[nwords] >> 24); |
| + pad[1] = (src[nwords] >> 16) & 0xff; |
| + pad[2] = (src[nwords] >> 8) & 0xff; |
| + pad[3] = (src[nwords] >> 0) & 0xff; |
| + memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords); |
| +} |
| + |
| +/* |
| + * reverse bit for byte |
| + */ |
| +static uint8_t reverse_bit(uint8_t in_byte) |
| +{ |
| + int i; |
| + uint8_t out_byte = 0; |
| + |
| + for (i = 0; i < 8; i++) { |
| + if (in_byte & ((0x80) >> i)) { |
| + out_byte |= 1 << i; |
| + } |
| + } |
| + |
| + return out_byte; |
| +} |
| + |
| + /* |
| + * swap 32-bit data, including bit reverse and swap to big endian |
| + */ |
| +static uint32_t swap_data(uint32_t data) |
| +{ |
| + uint32_t r = 0; |
| + |
| + r = reverse_bit(data & 0xFF) << 24; |
| + r |= reverse_bit((data >> 8) & 0xFF) << 16; |
| + r |= reverse_bit((data >> 16) & 0xFF) << 8; |
| + r |= reverse_bit((data >> 24) & 0xFF); |
| + |
| + return r; |
| +} |
| + |
| +/** |
| + * encode_bch - calculate BCH ecc parity of data |
| + * @bch: BCH control structure |
| + * @data: data to encode |
| + * @len: data length in bytes |
| + * @ecc: ecc parity data, must be initialized by caller |
| + * |
| + * The @ecc parity array is used both as input and output parameter, in order to |
| + * allow incremental computations. It should be of the size indicated by member |
| + * @ecc_bytes of @bch, and should be initialized to 0 before the first call. |
| + * |
| + * The exact number of computed ecc parity bits is given by member @ecc_bits of |
| + * @bch; it may be less than m*t for large values of t. |
| + */ |
| +void encode_bch(struct bch_control *bch, const uint8_t *data, |
| + unsigned int len, uint8_t *ecc) |
| +{ |
| + const unsigned int l = BCH_ECC_WORDS(bch)-1; |
| + unsigned int i, mlen; |
| + unsigned long m; |
| + uint32_t w, r[l+1]; |
| + const uint32_t * const tab0 = bch->mod8_tab; |
| + const uint32_t * const tab1 = tab0 + 256*(l+1); |
| + const uint32_t * const tab2 = tab1 + 256*(l+1); |
| + const uint32_t * const tab3 = tab2 + 256*(l+1); |
| + const uint32_t *pdata, *p0, *p1, *p2, *p3; |
| + |
| + if (ecc) { |
| + /* load ecc parity bytes into internal 32-bit buffer */ |
| + load_ecc8(bch, bch->ecc_buf, ecc); |
| + } else { |
| + memset(bch->ecc_buf, 0, sizeof(r)); |
| + } |
| + |
| + /* process first unaligned data bytes */ |
| + m = ((unsigned long)data) & 3; |
| + if (m) { |
| + mlen = (len < (4-m)) ? len : 4-m; |
| + encode_bch_unaligned(bch, data, mlen, bch->ecc_buf); |
| + data += mlen; |
| + len -= mlen; |
| + } |
| + |
| + /* process 32-bit aligned data words */ |
| + pdata = (uint32_t *)data; |
| + mlen = len/4; |
| + data += 4*mlen; |
| + len -= 4*mlen; |
| + memcpy(r, bch->ecc_buf, sizeof(r)); |
| + |
| + /* |
| + * split each 32-bit word into 4 polynomials of weight 8 as follows: |
| + * |
| + * 31 ...24 23 ...16 15 ... 8 7 ... 0 |
| + * xxxxxxxx yyyyyyyy zzzzzzzz tttttttt |
| + * tttttttt mod g = r0 (precomputed) |
| + * zzzzzzzz 00000000 mod g = r1 (precomputed) |
| + * yyyyyyyy 00000000 00000000 mod g = r2 (precomputed) |
| + * xxxxxxxx 00000000 00000000 00000000 mod g = r3 (precomputed) |
| + * xxxxxxxx yyyyyyyy zzzzzzzz tttttttt mod g = r0^r1^r2^r3 |
| + */ |
| + while (mlen--) { |
| + /* input data is read in big-endian format */ |
| + /*TODO: big little endian*/ |
| + /*w = r[0]^cpu_to_be32(*pdata++);*/ |
| + /*w = r[0]^(uint32_t)(*pdata++);*/ |
| + w = r[0]^swap_data(*pdata++); |
| + p0 = tab0 + (l+1)*((w >> 0) & 0xff); |
| + p1 = tab1 + (l+1)*((w >> 8) & 0xff); |
| + p2 = tab2 + (l+1)*((w >> 16) & 0xff); |
| + p3 = tab3 + (l+1)*((w >> 24) & 0xff); |
| + |
| + for (i = 0; i < l; i++) |
| + r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i]; |
| + |
| + r[l] = p0[l]^p1[l]^p2[l]^p3[l]; |
| + } |
| + memcpy(bch->ecc_buf, r, sizeof(r)); |
| + |
| + /* process last unaligned bytes */ |
| + if (len) |
| + encode_bch_unaligned(bch, data, len, bch->ecc_buf); |
| + |
| + /* store ecc parity bytes into original parity buffer */ |
| + if (ecc) |
| + store_ecc8(bch, ecc, bch->ecc_buf); |
| +} |
| + |
| +static inline int modulo(struct bch_control *bch, unsigned int v) |
| +{ |
| + const unsigned int n = GF_N(bch); |
| + while (v >= n) { |
| + v -= n; |
| + v = (v & n) + (v >> GF_M(bch)); |
| + } |
| + return v; |
| +} |
| + |
| +static inline int fls(int x) |
| +{ |
| + int r = 32; |
| + |
| + if (!x) |
| + return 0; |
| + if (!(x & 0xffff0000u)) { |
| + x <<= 16; |
| + r -= 16; |
| + } |
| + if (!(x & 0xff000000u)) { |
| + x <<= 8; |
| + r -= 8; |
| + } |
| + if (!(x & 0xf0000000u)) { |
| + x <<= 4; |
| + r -= 4; |
| + } |
| + if (!(x & 0xc0000000u)) { |
| + x <<= 2; |
| + r -= 2; |
| + } |
| + if (!(x & 0x80000000u)) { |
| + x <<= 1; |
| + r -= 1; |
| + } |
| + return r; |
| +} |
| + |
| +/* |
| +static inline int fls(int x) |
| +{ |
| + int r; |
| + asm("bsrl %1,%0\n\t" |
| + "jnz 1f\n\t" |
| + "movl $-1,%0\n" |
| + "1:" : "=r" (r) : "rm" (x)); |
| + |
| + return r+1; |
| +} */ |
| +/* |
| + * shorter and faster modulo function, only works when v < 2N. |
| + */ |
| +static inline int mod_s(struct bch_control *bch, unsigned int v) |
| +{ |
| + const unsigned int n = GF_N(bch); |
| + return (v < n) ? v : v-n; |
| +} |
| + |
| +static inline int deg(unsigned int poly) |
| +{ |
| + /* polynomial degree is the most-significant bit index */ |
| + return fls(poly)-1; |
| +} |
| + |
| +static inline int parity(unsigned int x) |
| +{ |
| + /* |
| + * public domain code snippet, lifted from |
| + * http://www-graphics.stanford.edu/~seander/bithacks.html |
| + */ |
| + x ^= x >> 1; |
| + x ^= x >> 2; |
| + x = (x & 0x11111111U) * 0x11111111U; |
| + return (x >> 28) & 1; |
| +} |
| + |
| +/* Galois field basic operations: multiply, divide, inverse, etc. */ |
| + |
| +static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a, |
| + unsigned int b) |
| +{ |
| + return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+ |
| + bch->a_log_tab[b])] : 0; |
| +} |
| + |
| +static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a) |
| +{ |
| + return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0; |
| +} |
| + |
| +static inline unsigned int gf_div(struct bch_control *bch, unsigned int a, |
| + unsigned int b) |
| +{ |
| + return a ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+ |
| + GF_N(bch)-bch->a_log_tab[b])] : 0; |
| +} |
| + |
| +static inline unsigned int gf_inv(struct bch_control *bch, unsigned int a) |
| +{ |
| + return bch->a_pow_tab[GF_N(bch)-bch->a_log_tab[a]]; |
| +} |
| + |
| +static inline unsigned int a_pow(struct bch_control *bch, int i) |
| +{ |
| + return bch->a_pow_tab[modulo(bch, i)]; |
| +} |
| + |
| +static inline int a_log(struct bch_control *bch, unsigned int x) |
| +{ |
| + return bch->a_log_tab[x]; |
| +} |
| + |
| +static inline int a_ilog(struct bch_control *bch, unsigned int x) |
| +{ |
| + return mod_s(bch, GF_N(bch)-bch->a_log_tab[x]); |
| +} |
| + |
| +/* |
| + * compute 2t syndromes of ecc polynomial, i.e. ecc(a^j) for j=1..2t |
| + */ |
| +static void compute_syndromes(struct bch_control *bch, uint32_t *ecc, |
| + unsigned int *syn) |
| +{ |
| + int i, j, s; |
| + unsigned int m; |
| + uint32_t poly; |
| + const int t = GF_T(bch); |
| + |
| + s = bch->ecc_bits; |
| + |
| + /* make sure extra bits in last ecc word are cleared */ |
| + m = ((unsigned int)s) & 31; |
| + if (m) |
| + ecc[s/32] &= ~((1u << (32-m))-1); |
| + memset(syn, 0, 2*t*sizeof(*syn)); |
| + |
| + /* compute v(a^j) for j=1 .. 2t-1 */ |
| + do { |
| + poly = *ecc++; |
| + s -= 32; |
| + while (poly) { |
| + i = deg(poly); |
| + for (j = 0; j < 2*t; j += 2) |
| + syn[j] ^= a_pow(bch, (j+1)*(i+s)); |
| + |
| + poly ^= (1 << i); |
| + } |
| + } while (s > 0); |
| + |
| + /* v(a^(2j)) = v(a^j)^2 */ |
| + for (j = 0; j < t; j++) |
| + syn[2*j+1] = gf_sqr(bch, syn[j]); |
| +} |
| + |
| +static void gf_poly_copy(struct gf_poly *dst, struct gf_poly *src) |
| +{ |
| + memcpy(dst, src, GF_POLY_SZ(src->deg)); |
| +} |
| + |
| +static int compute_error_locator_polynomial(struct bch_control *bch, |
| + const unsigned int *syn) |
| +{ |
| + const unsigned int t = GF_T(bch); |
| + const unsigned int n = GF_N(bch); |
| + unsigned int i, j, tmp, l, pd = 1, d = syn[0]; |
| + struct gf_poly *elp = bch->elp; |
| + struct gf_poly *pelp = bch->poly_2t[0]; |
| + struct gf_poly *elp_copy = bch->poly_2t[1]; |
| + int k, pp = -1; |
| + |
| + memset(pelp, 0, GF_POLY_SZ(2*t)); |
| + memset(elp, 0, GF_POLY_SZ(2*t)); |
| + |
| + pelp->deg = 0; |
| + pelp->c[0] = 1; |
| + elp->deg = 0; |
| + elp->c[0] = 1; |
| + |
| + /* use simplified binary Berlekamp-Massey algorithm */ |
| + for (i = 0; (i < t) && (elp->deg <= t); i++) { |
| + if (d) { |
| + k = 2*i-pp; |
| + gf_poly_copy(elp_copy, elp); |
| + /* e[i+1](X) = e[i](X)+di*dp^-1*X^2(i-p)*e[p](X) */ |
| + tmp = a_log(bch, d)+n-a_log(bch, pd); |
| + for (j = 0; j <= pelp->deg; j++) { |
| + if (pelp->c[j]) { |
| + l = a_log(bch, pelp->c[j]); |
| + elp->c[j+k] ^= a_pow(bch, tmp+l); |
| + } |
| + } |
| + /* compute l[i+1] = max(l[i]->c[l[p]+2*(i-p]) */ |
| + tmp = pelp->deg+k; |
| + if (tmp > elp->deg) { |
| + elp->deg = tmp; |
| + gf_poly_copy(pelp, elp_copy); |
| + pd = d; |
| + pp = 2*i; |
| + } |
| + } |
| + /* di+1 = S(2i+3)+elp[i+1].1*S(2i+2)+...+elp[i+1].lS(2i+3-l) */ |
| + if (i < t-1) { |
| + d = syn[2*i+2]; |
| + for (j = 1; j <= elp->deg; j++) |
| + d ^= gf_mul(bch, elp->c[j], syn[2*i+2-j]); |
| + } |
| + } |
| + return (elp->deg > t) ? -1 : (int)elp->deg; |
| +} |
| + |
| +/* |
| + * solve a m x m linear system in GF(2) with an expected number of solutions, |
| + * and return the number of found solutions |
| + */ |
| +static int solve_linear_system(struct bch_control *bch, unsigned int *rows, |
| + unsigned int *sol, int nsol) |
| +{ |
| + const int m = GF_M(bch); |
| + unsigned int tmp, mask; |
| + int rem, c, r, p, k, param[m]; |
| + |
| + k = 0; |
| + mask = 1 << m; |
| + |
| + /* Gaussian elimination */ |
| + for (c = 0; c < m; c++) { |
| + rem = 0; |
| + p = c-k; |
| + /* find suitable row for elimination */ |
| + for (r = p; r < m; r++) { |
| + if (rows[r] & mask) { |
| + if (r != p) { |
| + tmp = rows[r]; |
| + rows[r] = rows[p]; |
| + rows[p] = tmp; |
| + } |
| + rem = r+1; |
| + break; |
| + } |
| + } |
| + if (rem) { |
| + /* perform elimination on remaining rows */ |
| + tmp = rows[p]; |
| + for (r = rem; r < m; r++) { |
| + if (rows[r] & mask) |
| + rows[r] ^= tmp; |
| + } |
| + } else { |
| + /* elimination not needed, store defective row index */ |
| + param[k++] = c; |
| + } |
| + mask >>= 1; |
| + } |
| + /* rewrite system, inserting fake parameter rows */ |
| + if (k > 0) { |
| + p = k; |
| + for (r = m-1; r >= 0; r--) { |
| + if ((r > m-1-k) && rows[r]) |
| + /* system has no solution */ |
| + return 0; |
| + |
| + rows[r] = (p && (r == param[p-1])) ? |
| + p--, 1u << (m-r) : rows[r-p]; |
| + } |
| + } |
| + |
| + if (nsol != (1 << k)) |
| + /* unexpected number of solutions */ |
| + return 0; |
| + |
| + for (p = 0; p < nsol; p++) { |
| + /* set parameters for p-th solution */ |
| + for (c = 0; c < k; c++) |
| + rows[param[c]] = (rows[param[c]] & ~1)|((p >> c) & 1); |
| + |
| + /* compute unique solution */ |
| + tmp = 0; |
| + for (r = m-1; r >= 0; r--) { |
| + mask = rows[r] & (tmp|1); |
| + tmp |= parity(mask) << (m-r); |
| + } |
| + sol[p] = tmp >> 1; |
| + } |
| + return nsol; |
| +} |
| + |
| +/* |
| + * this function builds and solves a linear system for finding roots of a degree |
| + * 4 affine monic polynomial X^4+aX^2+bX+c over GF(2^m). |
| + */ |
| +static int find_affine4_roots(struct bch_control *bch, unsigned int a, |
| + unsigned int b, unsigned int c, |
| + unsigned int *roots) |
| +{ |
| + int i, j, k; |
| + const int m = GF_M(bch); |
| + unsigned int mask = 0xff, t, rows[16] = {0,}; |
| + |
| + j = a_log(bch, b); |
| + k = a_log(bch, a); |
| + rows[0] = c; |
| + |
| + /* buid linear system to solve X^4+aX^2+bX+c = 0 */ |
| + for (i = 0; i < m; i++) { |
| + rows[i+1] = bch->a_pow_tab[4*i]^ |
| + (a ? bch->a_pow_tab[mod_s(bch, k)] : 0)^ |
| + (b ? bch->a_pow_tab[mod_s(bch, j)] : 0); |
| + j++; |
| + k += 2; |
| + } |
| + /* |
| + * transpose 16x16 matrix before passing it to linear solver |
| + * warning: this code assumes m < 16 |
| + */ |
| + for (j = 8; j != 0; j >>= 1, mask ^= (mask << j)) { |
| + for (k = 0; k < 16; k = (k+j+1) & ~j) { |
| + t = ((rows[k] >> j)^rows[k+j]) & mask; |
| + rows[k] ^= (t << j); |
| + rows[k+j] ^= t; |
| + } |
| + } |
| + return solve_linear_system(bch, rows, roots, 4); |
| +} |
| + |
| +/* |
| + * compute root r of a degree 1 polynomial over GF(2^m) (returned as log(1/r)) |
| + */ |
| +static int find_poly_deg1_roots(struct bch_control *bch, struct gf_poly *poly, |
| + unsigned int *roots) |
| +{ |
| + int n = 0; |
| + |
| + if (poly->c[0]) |
| + /* poly[X] = bX+c with c!=0, root=c/b */ |
| + roots[n++] = mod_s(bch, GF_N(bch)-bch->a_log_tab[poly->c[0]]+ |
| + bch->a_log_tab[poly->c[1]]); |
| + return n; |
| +} |
| + |
| +/* |
| + * compute roots of a degree 2 polynomial over GF(2^m) |
| + */ |
| +static int find_poly_deg2_roots(struct bch_control *bch, struct gf_poly *poly, |
| + unsigned int *roots) |
| +{ |
| + int n = 0, i, l0, l1, l2; |
| + unsigned int u, v, r; |
| + |
| + if (poly->c[0] && poly->c[1]) { |
| + |
| + l0 = bch->a_log_tab[poly->c[0]]; |
| + l1 = bch->a_log_tab[poly->c[1]]; |
| + l2 = bch->a_log_tab[poly->c[2]]; |
| + |
| + /* using z=a/bX, transform aX^2+bX+c into z^2+z+u (u=ac/b^2) */ |
| + u = a_pow(bch, l0+l2+2*(GF_N(bch)-l1)); |
| + /* |
| + * let u = sum(li.a^i) i=0..m-1; then compute r = sum(li.xi): |
| + * r^2+r = sum(li.(xi^2+xi)) = sum(li.(a^i+Tr(a^i).a^k)) = |
| + * u + sum(li.Tr(a^i).a^k) = u+a^k.Tr(sum(li.a^i)) = u+a^k.Tr(u) |
| + * i.e. r and r+1 are roots iff Tr(u)=0 |
| + */ |
| + r = 0; |
| + v = u; |
| + while (v) { |
| + i = deg(v); |
| + r ^= bch->xi_tab[i]; |
| + v ^= (1 << i); |
| + } |
| + /* verify root */ |
| + if ((gf_sqr(bch, r)^r) == u) { |
| + /* reverse z=a/bX transformation and compute log(1/r) */ |
| + roots[n++] = modulo(bch, 2*GF_N(bch)-l1- |
| + bch->a_log_tab[r]+l2); |
| + roots[n++] = modulo(bch, 2*GF_N(bch)-l1- |
| + bch->a_log_tab[r^1]+l2); |
| + } |
| + } |
| + return n; |
| +} |
| + |
| +/* |
| + * compute roots of a degree 3 polynomial over GF(2^m) |
| + */ |
| +static int find_poly_deg3_roots(struct bch_control *bch, struct gf_poly *poly, |
| + unsigned int *roots) |
| +{ |
| + int i, n = 0; |
| + unsigned int a, b, c, a2, b2, c2, e3, tmp[4]; |
| + |
| + if (poly->c[0]) { |
| + /* transform polynomial into monic X^3 + a2X^2 + b2X + c2 */ |
| + e3 = poly->c[3]; |
| + c2 = gf_div(bch, poly->c[0], e3); |
| + b2 = gf_div(bch, poly->c[1], e3); |
| + a2 = gf_div(bch, poly->c[2], e3); |
| + |
| + /* (X+a2)(X^3+a2X^2+b2X+c2) = X^4+aX^2+bX+c (affine) */ |
| + c = gf_mul(bch, a2, c2); /* c = a2c2 */ |
| + b = gf_mul(bch, a2, b2)^c2; /* b = a2b2 + c2 */ |
| + a = gf_sqr(bch, a2)^b2; /* a = a2^2 + b2 */ |
| + |
| + /* find the 4 roots of this affine polynomial */ |
| + if (find_affine4_roots(bch, a, b, c, tmp) == 4) { |
| + /* remove a2 from final list of roots */ |
| + for (i = 0; i < 4; i++) { |
| + if (tmp[i] != a2) |
| + roots[n++] = a_ilog(bch, tmp[i]); |
| + } |
| + } |
| + } |
| + return n; |
| +} |
| + |
| +/* |
| + * compute roots of a degree 4 polynomial over GF(2^m) |
| + */ |
| +static int find_poly_deg4_roots(struct bch_control *bch, struct gf_poly *poly, |
| + unsigned int *roots) |
| +{ |
| + int i, l, n = 0; |
| + unsigned int a, b, c, d, e = 0, f, a2, b2, c2, e4; |
| + |
| + if (poly->c[0] == 0) |
| + return 0; |
| + |
| + /* transform polynomial into monic X^4 + aX^3 + bX^2 + cX + d */ |
| + e4 = poly->c[4]; |
| + d = gf_div(bch, poly->c[0], e4); |
| + c = gf_div(bch, poly->c[1], e4); |
| + b = gf_div(bch, poly->c[2], e4); |
| + a = gf_div(bch, poly->c[3], e4); |
| + |
| + /* use Y=1/X transformation to get an affine polynomial */ |
| + if (a) { |
| + /* first, eliminate cX by using z=X+e with ae^2+c=0 */ |
| + if (c) { |
| + /* compute e such that e^2 = c/a */ |
| + f = gf_div(bch, c, a); |
| + l = a_log(bch, f); |
| + l += (l & 1) ? GF_N(bch) : 0; |
| + e = a_pow(bch, l/2); |
| + /* |
| + * use transformation z=X+e: |
| + * z^4+e^4 + a(z^3+ez^2+e^2z+e^3) + b(z^2+e^2) +cz+ce+d |
| + * z^4 + az^3 + (ae+b)z^2 + (ae^2+c)z+e^4+be^2+ae^3+ce+d |
| + * z^4 + az^3 + (ae+b)z^2 + e^4+be^2+d |
| + * z^4 + az^3 + b'z^2 + d' |
| + */ |
| + d = a_pow(bch, 2*l)^gf_mul(bch, b, f)^d; |
| + b = gf_mul(bch, a, e)^b; |
| + } |
| + /* now, use Y=1/X to get Y^4 + b/dY^2 + a/dY + 1/d */ |
| + if (d == 0) |
| + /* assume all roots have multiplicity 1 */ |
| + return 0; |
| + |
| + c2 = gf_inv(bch, d); |
| + b2 = gf_div(bch, a, d); |
| + a2 = gf_div(bch, b, d); |
| + } else { |
| + /* polynomial is already affine */ |
| + c2 = d; |
| + b2 = c; |
| + a2 = b; |
| + } |
| + /* find the 4 roots of this affine polynomial */ |
| + if (find_affine4_roots(bch, a2, b2, c2, roots) == 4) { |
| + for (i = 0; i < 4; i++) { |
| + /* post-process roots (reverse transformations) */ |
| + f = a ? gf_inv(bch, roots[i]) : roots[i]; |
| + roots[i] = a_ilog(bch, f^e); |
| + } |
| + n = 4; |
| + } |
| + return n; |
| +} |
| + |
| +/* |
| + * build monic, log-based representation of a polynomial |
| + */ |
| +static void gf_poly_logrep(struct bch_control *bch, |
| + const struct gf_poly *a, int *rep) |
| +{ |
| + int i, d = a->deg, l = GF_N(bch)-a_log(bch, a->c[a->deg]); |
| + |
| + /* represent 0 values with -1; warning, rep[d] is not set to 1 */ |
| + for (i = 0; i < d; i++) |
| + rep[i] = a->c[i] ? mod_s(bch, a_log(bch, a->c[i])+l) : -1; |
| +} |
| + |
| +/* |
| + * compute polynomial Euclidean division remainder in GF(2^m)[X] |
| + */ |
| +static void gf_poly_mod(struct bch_control *bch, struct gf_poly *a, |
| + const struct gf_poly *b, int *rep) |
| +{ |
| + int la, p, m; |
| + unsigned int i, j, *c = a->c; |
| + const unsigned int d = b->deg; |
| + |
| + if (a->deg < d) |
| + return; |
| + |
| + /* reuse or compute log representation of denominator */ |
| + if (!rep) { |
| + rep = bch->cache; |
| + gf_poly_logrep(bch, b, rep); |
| + } |
| + |
| + for (j = a->deg; j >= d; j--) { |
| + if (c[j]) { |
| + la = a_log(bch, c[j]); |
| + p = j-d; |
| + for (i = 0; i < d; i++, p++) { |
| + m = rep[i]; |
| + if (m >= 0) |
| + c[p] ^= bch->a_pow_tab[mod_s(bch, |
| + m+la)]; |
| + } |
| + } |
| + } |
| + a->deg = d-1; |
| + while (!c[a->deg] && a->deg) |
| + a->deg--; |
| +} |
| + |
| +/* |
| + * compute polynomial Euclidean division quotient in GF(2^m)[X] |
| + */ |
| +static void gf_poly_div(struct bch_control *bch, struct gf_poly *a, |
| + const struct gf_poly *b, struct gf_poly *q) |
| +{ |
| + if (a->deg >= b->deg) { |
| + q->deg = a->deg-b->deg; |
| + /* compute a mod b (modifies a) */ |
| + gf_poly_mod(bch, a, b, NULL); |
| + /* quotient is stored in upper part of polynomial a */ |
| + memcpy(q->c, &a->c[b->deg], (1+q->deg)*sizeof(unsigned int)); |
| + } else { |
| + q->deg = 0; |
| + q->c[0] = 0; |
| + } |
| +} |
| + |
| +/* |
| + * compute polynomial GCD (Greatest Common Divisor) in GF(2^m)[X] |
| + */ |
| +static struct gf_poly *gf_poly_gcd(struct bch_control *bch, struct gf_poly *a, |
| + struct gf_poly *b) |
| +{ |
| + struct gf_poly *tmp; |
| + |
| + if (a->deg < b->deg) { |
| + tmp = b; |
| + b = a; |
| + a = tmp; |
| + } |
| + |
| + while (b->deg > 0) { |
| + gf_poly_mod(bch, a, b, NULL); |
| + tmp = b; |
| + b = a; |
| + a = tmp; |
| + } |
| + |
| + return a; |
| +} |
| + |
| +/* |
| + * Given a polynomial f and an integer k, compute Tr(a^kX) mod f |
| + * This is used in Berlekamp Trace algorithm for splitting polynomials |
| + */ |
| +static void compute_trace_bk_mod(struct bch_control *bch, int k, |
| + const struct gf_poly *f, struct gf_poly *z, |
| + struct gf_poly *out) |
| +{ |
| + const int m = GF_M(bch); |
| + int i, j; |
| + |
| + /* z contains z^2j mod f */ |
| + z->deg = 1; |
| + z->c[0] = 0; |
| + z->c[1] = bch->a_pow_tab[k]; |
| + |
| + out->deg = 0; |
| + memset(out, 0, GF_POLY_SZ(f->deg)); |
| + |
| + /* compute f log representation only once */ |
| + gf_poly_logrep(bch, f, bch->cache); |
| + |
| + for (i = 0; i < m; i++) { |
| + /* add a^(k*2^i)(z^(2^i) mod f) and compute (z^(2^i) mod f)^2 */ |
| + for (j = z->deg; j >= 0; j--) { |
| + out->c[j] ^= z->c[j]; |
| + z->c[2*j] = gf_sqr(bch, z->c[j]); |
| + z->c[2*j+1] = 0; |
| + } |
| + if (z->deg > out->deg) |
| + out->deg = z->deg; |
| + |
| + if (i < m-1) { |
| + z->deg *= 2; |
| + /* z^(2(i+1)) mod f = (z^(2^i) mod f)^2 mod f */ |
| + gf_poly_mod(bch, z, f, bch->cache); |
| + } |
| + } |
| + while (!out->c[out->deg] && out->deg) |
| + out->deg--; |
| +} |
| + |
| +/* |
| + * factor a polynomial using Berlekamp Trace algorithm (BTA) |
| + */ |
| +static void factor_polynomial(struct bch_control *bch, int k, struct gf_poly *f, |
| + struct gf_poly **g, struct gf_poly **h) |
| +{ |
| + struct gf_poly *f2 = bch->poly_2t[0]; |
| + struct gf_poly *q = bch->poly_2t[1]; |
| + struct gf_poly *tk = bch->poly_2t[2]; |
| + struct gf_poly *z = bch->poly_2t[3]; |
| + struct gf_poly *gcd; |
| + |
| + *g = f; |
| + *h = NULL; |
| + |
| + /* tk = Tr(a^k.X) mod f */ |
| + compute_trace_bk_mod(bch, k, f, z, tk); |
| + |
| + if (tk->deg > 0) { |
| + /* compute g = gcd(f, tk) (destructive operation) */ |
| + gf_poly_copy(f2, f); |
| + gcd = gf_poly_gcd(bch, f2, tk); |
| + if (gcd->deg < f->deg) { |
| + /* compute h=f/gcd(f,tk); this will modify f and q */ |
| + gf_poly_div(bch, f, gcd, q); |
| + /* store g and h in-place (clobbering f) */ |
| + *h = &((struct gf_poly_deg1 *)f)[gcd->deg].poly; |
| + gf_poly_copy(*g, gcd); |
| + gf_poly_copy(*h, q); |
| + } |
| + } |
| +} |
| + |
| +/* |
| + * find roots of a polynomial, using BTZ algorithm; see the beginning of this |
| + * file for details |
| + */ |
| +static int find_poly_roots(struct bch_control *bch, unsigned int k, |
| + struct gf_poly *poly, unsigned int *roots) |
| +{ |
| + int cnt; |
| + struct gf_poly *f1, *f2; |
| + |
| + switch (poly->deg) { |
| + /* handle low degree polynomials with ad hoc techniques */ |
| + case 1: |
| + cnt = find_poly_deg1_roots(bch, poly, roots); |
| + break; |
| + case 2: |
| + cnt = find_poly_deg2_roots(bch, poly, roots); |
| + break; |
| + case 3: |
| + cnt = find_poly_deg3_roots(bch, poly, roots); |
| + break; |
| + case 4: |
| + cnt = find_poly_deg4_roots(bch, poly, roots); |
| + break; |
| + default: |
| + /* factor polynomial using Berlekamp Trace Algorithm (BTA) */ |
| + cnt = 0; |
| + if (poly->deg && (k <= GF_M(bch))) { |
| + factor_polynomial(bch, k, poly, &f1, &f2); |
| + if (f1) |
| + cnt += find_poly_roots(bch, k+1, f1, roots); |
| + if (f2) |
| + cnt += find_poly_roots(bch, k+1, f2, roots+cnt); |
| + } |
| + break; |
| + } |
| + return cnt; |
| +} |
| + |
| +#if defined(USE_CHIEN_SEARCH) |
| +/* |
| + * exhaustive root search (Chien) implementation - not used, included only for |
| + * reference/comparison tests |
| + */ |
| +static int chien_search(struct bch_control *bch, unsigned int len, |
| + struct gf_poly *p, unsigned int *roots) |
| +{ |
| + int m; |
| + unsigned int i, j, syn, syn0, count = 0; |
| + const unsigned int k = 8*len+bch->ecc_bits; |
| + |
| + /* use a log-based representation of polynomial */ |
| + gf_poly_logrep(bch, p, bch->cache); |
| + bch->cache[p->deg] = 0; |
| + syn0 = gf_div(bch, p->c[0], p->c[p->deg]); |
| + |
| + for (i = GF_N(bch)-k+1; i <= GF_N(bch); i++) { |
| + /* compute elp(a^i) */ |
| + for (j = 1, syn = syn0; j <= p->deg; j++) { |
| + m = bch->cache[j]; |
| + if (m >= 0) |
| + syn ^= a_pow(bch, m+j*i); |
| + } |
| + if (syn == 0) { |
| + roots[count++] = GF_N(bch)-i; |
| + if (count == p->deg) |
| + break; |
| + } |
| + } |
| + return (count == p->deg) ? count : 0; |
| +} |
| +#define find_poly_roots(_p, _k, _elp, _loc) chien_search(_p, len, _elp, _loc) |
| +#endif /* USE_CHIEN_SEARCH */ |
| + |
| +/** |
| + * decode_bch - decode received codeword and find bit error locations |
| + * @bch: BCH control structure |
| + * @data: received data, ignored if @calc_ecc is provided |
| + * @len: data length in bytes, must always be provided |
| + * @recv_ecc: received ecc, if NULL then assume it was XORed in @calc_ecc |
| + * @calc_ecc: calculated ecc, if NULL then calc_ecc is computed from @data |
| + * @syn: hw computed syndrome data (if NULL, syndrome is calculated) |
| + * @errloc: output array of error locations |
| + * |
| + * Returns: |
| + * The number of errors found, or -EBADMSG if decoding failed, or -EINVAL if |
| + * invalid parameters were provided |
| + * |
| + * Depending on the available hw BCH support and the need to compute @calc_ecc |
| + * separately (using encode_bch()), this function should be called with one of |
| + * the following parameter configurations - |
| + * |
| + * by providing @data and @recv_ecc only: |
| + * decode_bch(@bch, @data, @len, @recv_ecc, NULL, NULL, @errloc) |
| + * |
| + * by providing @recv_ecc and @calc_ecc: |
| + * decode_bch(@bch, NULL, @len, @recv_ecc, @calc_ecc, NULL, @errloc) |
| + * |
| + * by providing ecc = recv_ecc XOR calc_ecc: |
| + * decode_bch(@bch, NULL, @len, NULL, ecc, NULL, @errloc) |
| + * |
| + * by providing syndrome results @syn: |
| + * decode_bch(@bch, NULL, @len, NULL, NULL, @syn, @errloc) |
| + * |
| + * Once decode_bch() has successfully returned with a positive value, error |
| + * locations returned in array @errloc should be interpreted as follows - |
| + * |
| + * if (errloc[n] >= 8*len), then n-th error is located in ecc (no need for |
| + * data correction) |
| + * |
| + * if (errloc[n] < 8*len), then n-th error is located in data and can be |
| + * corrected with statement data[errloc[n]/8] ^= 1 << (errloc[n] % 8); |
| + * |
| + * Note that this function does not perform any data correction by itself, it |
| + * merely indicates error locations. |
| + */ |
| +int decode_bch(struct bch_control *bch, const uint8_t *data, unsigned int len, |
| + const uint8_t *recv_ecc, const uint8_t *calc_ecc, |
| + const unsigned int *syn, unsigned int *errloc) |
| +{ |
| + const unsigned int ecc_words = BCH_ECC_WORDS(bch); |
| + unsigned int nbits; |
| + int i, err, nroots; |
| + uint32_t sum; |
| + |
| + /* sanity check: make sure data length can be handled */ |
| + if (8*len > (bch->n-bch->ecc_bits)) |
| + return -EINVAL; |
| + |
| + /* if caller does not provide syndromes, compute them */ |
| + if (!syn) { |
| + if (!calc_ecc) { |
| + /* compute received data ecc into an internal buffer */ |
| + if (!data || !recv_ecc) |
| + return -EINVAL; |
| + encode_bch(bch, data, len, NULL); |
| + } else { |
| + /* load provided calculated ecc */ |
| + load_ecc8(bch, bch->ecc_buf, calc_ecc); |
| + } |
| + /* load received ecc or assume it was XORed in calc_ecc */ |
| + if (recv_ecc) { |
| + load_ecc8(bch, bch->ecc_buf2, recv_ecc); |
| + /* XOR received and calculated ecc */ |
| + for (i = 0, sum = 0; i < (int)ecc_words; i++) { |
| + bch->ecc_buf[i] ^= bch->ecc_buf2[i]; |
| + sum |= bch->ecc_buf[i]; |
| + } |
| + if (!sum) |
| + /* no error found */ |
| + return 0; |
| + } |
| + compute_syndromes(bch, bch->ecc_buf, bch->syn); |
| + syn = bch->syn; |
| + } |
| + |
| + err = compute_error_locator_polynomial(bch, syn); |
| + if (err > 0) { |
| + nroots = find_poly_roots(bch, 1, bch->elp, errloc); |
| + if (err != nroots) |
| + err = -1; |
| + } |
| + if (err > 0) { |
| + /* post-process raw error locations for easier correction */ |
| + nbits = (len*8)+bch->ecc_bits; |
| + for (i = 0; i < err; i++) { |
| + if (errloc[i] >= nbits) { |
| + err = -1; |
| + break; |
| + } |
| + errloc[i] = nbits-1-errloc[i]; |
| + errloc[i] = (errloc[i] & ~7)|(7-(errloc[i] & 7)); |
| + } |
| + } |
| + return (err >= 0) ? err : -EBADMSG; |
| +} |
| + |
| +/* |
| + * generate Galois field lookup tables |
| + */ |
| +static int build_gf_tables(struct bch_control *bch, unsigned int poly) |
| +{ |
| + unsigned int i, x = 1; |
| + const unsigned int k = 1 << deg(poly); |
| + |
| + /* primitive polynomial must be of degree m */ |
| + if (k != (1u << GF_M(bch))) |
| + return -1; |
| + |
| + for (i = 0; i < GF_N(bch); i++) { |
| + bch->a_pow_tab[i] = x; |
| + bch->a_log_tab[x] = i; |
| + if (i && (x == 1)) |
| + /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */ |
| + return -1; |
| + x <<= 1; |
| + if (x & k) |
| + x ^= poly; |
| + } |
| + bch->a_pow_tab[GF_N(bch)] = 1; |
| + bch->a_log_tab[0] = 0; |
| + |
| + return 0; |
| +} |
| + |
| +/* |
| + * compute generator polynomial remainder tables for fast encoding |
| + */ |
| +static void build_mod8_tables(struct bch_control *bch, const uint32_t *g) |
| +{ |
| + int i, j, b, d; |
| + uint32_t data, hi, lo, *tab; |
| + const int l = BCH_ECC_WORDS(bch); |
| + const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32); |
| + const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32); |
| + |
| + memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab)); |
| + |
| + for (i = 0; i < 256; i++) { |
| + /* p(X)=i is a small polynomial of weight <= 8 */ |
| + for (b = 0; b < 4; b++) { |
| + /* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */ |
| + tab = bch->mod8_tab + (b*256+i)*l; |
| + data = i << (8*b); |
| + while (data) { |
| + d = deg(data); |
| + /* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */ |
| + data ^= g[0] >> (31-d); |
| + for (j = 0; j < ecclen; j++) { |
| + hi = (d < 31) ? g[j] << (d+1) : 0; |
| + lo = (j+1 < plen) ? |
| + g[j+1] >> (31-d) : 0; |
| + tab[j] ^= hi|lo; |
| + } |
| + } |
| + } |
| + } |
| +} |
| + |
| +/* |
| + * build a base for factoring degree 2 polynomials |
| + */ |
| +static int build_deg2_base(struct bch_control *bch) |
| +{ |
| + const int m = GF_M(bch); |
| + int i, j, r; |
| + unsigned int sum, x, y, remaining, ak = 0, xi[m]; |
| + |
| + /* find k s.t. Tr(a^k) = 1 and 0 <= k < m */ |
| + for (i = 0; i < m; i++) { |
| + for (j = 0, sum = 0; j < m; j++) |
| + sum ^= a_pow(bch, i*(1 << j)); |
| + |
| + if (sum) { |
| + ak = bch->a_pow_tab[i]; |
| + break; |
| + } |
| + } |
| + /* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */ |
| + remaining = m; |
| + memset(xi, 0, sizeof(xi)); |
| + |
| + for (x = 0; (x <= GF_N(bch)) && remaining; x++) { |
| + y = gf_sqr(bch, x)^x; |
| + for (i = 0; i < 2; i++) { |
| + r = a_log(bch, y); |
| + if (y && (r < m) && !xi[r]) { |
| + bch->xi_tab[r] = x; |
| + xi[r] = 1; |
| + remaining--; |
| + break; |
| + } |
| + y ^= ak; |
| + } |
| + } |
| + /* should not happen but check anyway */ |
| + return remaining ? -1 : 0; |
| +} |
| + |
| +static void *bch_alloc(size_t size, int *err) |
| +{ |
| + void *ptr; |
| + |
| + ptr = malloc(size); |
| + if (ptr == NULL) |
| + *err = 1; |
| + return ptr; |
| +} |
| + |
| +/* |
| + * compute generator polynomial for given (m,t) parameters. |
| + */ |
| +static uint32_t *compute_generator_polynomial(struct bch_control *bch) |
| +{ |
| + const unsigned int m = GF_M(bch); |
| + const unsigned int t = GF_T(bch); |
| + int n, err = 0; |
| + unsigned int i, j, nbits, r, word, *roots; |
| + struct gf_poly *g; |
| + uint32_t *genpoly; |
| + |
| + g = bch_alloc(GF_POLY_SZ(m*t), &err); |
| + roots = bch_alloc((bch->n+1)*sizeof(*roots), &err); |
| + genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err); |
| + |
| + if (err) { |
| + free(genpoly); |
| + genpoly = NULL; |
| + goto finish; |
| + } |
| + |
| + /* enumerate all roots of g(X) */ |
| + memset(roots , 0, (bch->n+1)*sizeof(*roots)); |
| + for (i = 0; i < t; i++) { |
| + for (j = 0, r = 2*i+1; j < m; j++) { |
| + roots[r] = 1; |
| + r = mod_s(bch, 2*r); |
| + } |
| + } |
| + /* build generator polynomial g(X) */ |
| + g->deg = 0; |
| + g->c[0] = 1; |
| + for (i = 0; i < GF_N(bch); i++) { |
| + if (roots[i]) { |
| + /* multiply g(X) by (X+root) */ |
| + r = bch->a_pow_tab[i]; |
| + g->c[g->deg+1] = 1; |
| + for (j = g->deg; j > 0; j--) |
| + g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1]; |
| + |
| + g->c[0] = gf_mul(bch, g->c[0], r); |
| + g->deg++; |
| + } |
| + } |
| + /* store left-justified binary representation of g(X) */ |
| + n = g->deg+1; |
| + i = 0; |
| + while (n > 0) { |
| + nbits = (n > 32) ? 32 : n; |
| + for (j = 0, word = 0; j < nbits; j++) { |
| + if (g->c[n-1-j]) |
| + word |= 1u << (31-j); |
| + } |
| + genpoly[i++] = word; |
| + n -= nbits; |
| + } |
| + |
| + bch->ecc_bits = g->deg; |
| + |
| +finish: |
| + free(g); |
| + free(roots); |
| + |
| + return genpoly; |
| +} |
| + |
| +/** |
| + * init_bch - initialize a BCH encoder/decoder |
| + * @m: Galois field order, should be in the range 5-15 |
| + * @t: maximum error correction capability, in bits |
| + * @prim_poly: user-provided primitive polynomial (or 0 to use default) |
| + * |
| + * Returns: |
| + * a newly allocated BCH control structure if successful, NULL otherwise |
| + * |
| + * This initialization can take some time, as lookup tables are built for fast |
| + * encoding/decoding; make sure not to call this function from a time critical |
| + * path. Usually, init_bch() should be called on module/driver init and |
| + * free_bch() should be called to release memory on exit. |
| + * |
| + * You may provide your own primitive polynomial of degree @m in argument |
| + * @prim_poly, or let init_bch() use its default polynomial. |
| + * |
| + * Once init_bch() has successfully returned a pointer to a newly allocated |
| + * BCH control structure, ecc length in bytes is given by member @ecc_bytes of |
| + * the structure. |
| + */ |
| +struct bch_control *init_bch(int m, int t, unsigned int prim_poly) |
| +{ |
| + int err = 0; |
| + unsigned int i, words; |
| + uint32_t *genpoly; |
| + struct bch_control *bch = NULL; |
| + |
| + const int min_m = 5; |
| + const int max_m = 15; |
| + |
| + /* default primitive polynomials */ |
| + static const unsigned int prim_poly_tab[] = { |
| + 0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b, |
| + 0x402b, 0x8003, |
| + }; |
| + |
| +#if defined(CONFIG_BCH_CONST_PARAMS) |
| + if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) { |
| + printk(KERN_ERR "bch encoder/decoder was configured to support " |
| + "parameters m=%d, t=%d only!\n", |
| + CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T); |
| + goto fail; |
| + } |
| +#endif |
| + if ((m < min_m) || (m > max_m)) |
| + /* |
| + * values of m greater than 15 are not currently supported; |
| + * supporting m > 15 would require changing table base type |
| + * (uint16_t) and a small patch in matrix transposition |
| + */ |
| + goto fail; |
| + |
| + /* sanity checks */ |
| + if ((t < 1) || (m*t >= ((1 << m)-1))) |
| + /* invalid t value */ |
| + goto fail; |
| + |
| + /* select a primitive polynomial for generating GF(2^m) */ |
| + if (prim_poly == 0) |
| + prim_poly = prim_poly_tab[m-min_m]; |
| + |
| + bch = malloc(sizeof(*bch)); |
| + if (bch == NULL) |
| + goto fail; |
| + |
| + bch->m = m; |
| + bch->t = t; |
| + bch->n = (1 << m)-1; |
| + words = DIV_ROUND_UP(m*t, 32); |
| + bch->ecc_bytes = DIV_ROUND_UP(m*t, 8); |
| + bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err); |
| + bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err); |
| + bch->mod8_tab = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err); |
| + bch->ecc_buf = bch_alloc(words*sizeof(*bch->ecc_buf), &err); |
| + bch->ecc_buf2 = bch_alloc(words*sizeof(*bch->ecc_buf2), &err); |
| + bch->xi_tab = bch_alloc(m*sizeof(*bch->xi_tab), &err); |
| + bch->syn = bch_alloc(2*t*sizeof(*bch->syn), &err); |
| + bch->cache = bch_alloc(2*t*sizeof(*bch->cache), &err); |
| + bch->elp = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err); |
| + |
| + for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++) |
| + bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err); |
| + |
| + if (err) |
| + goto fail; |
| + |
| + err = build_gf_tables(bch, prim_poly); |
| + if (err) |
| + goto fail; |
| + |
| + /* use generator polynomial for computing encoding tables */ |
| + genpoly = compute_generator_polynomial(bch); |
| + if (genpoly == NULL) |
| + goto fail; |
| + |
| + build_mod8_tables(bch, genpoly); |
| + free(genpoly); |
| + |
| + err = build_deg2_base(bch); |
| + if (err) |
| + goto fail; |
| + |
| + return bch; |
| + |
| +fail: |
| + free_bch(bch); |
| + return NULL; |
| +} |
| + |
| +/** |
| + * free_bch - free the BCH control structure |
| + * @bch: BCH control structure to release |
| + */ |
| +void free_bch(struct bch_control *bch) |
| +{ |
| + unsigned int i; |
| + |
| + if (bch) { |
| + free(bch->a_pow_tab); |
| + free(bch->a_log_tab); |
| + free(bch->mod8_tab); |
| + free(bch->ecc_buf); |
| + free(bch->ecc_buf2); |
| + free(bch->xi_tab); |
| + free(bch->syn); |
| + free(bch->cache); |
| + free(bch->elp); |
| + |
| + for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++) |
| + free(bch->poly_2t[i]); |
| + |
| + free(bch); |
| + } |
| +} |
| + |
| +int encode_bch_ecc_62(void *source_block, size_t source_size, |
| + void *target_block, size_t target_size) |
| +{ |
| + int m = METADATABYTE; |
| + int b0 = BLOCK0BYTE; |
| + int e0 = BLOCK0ECC; |
| + int bn = BLOCKNBYTE; |
| + int en = BLOCKNECC; |
| + int n = NUMOFBLOCKN; |
| + int gf = FCB_GF; |
| + |
| + struct bch_control *bch; |
| + uint8_t *ecc_buf; |
| + int ecc_buf_size; |
| + uint8_t *tmp_buf; |
| + int tmp_buf_size; |
| + int real_buf_size; |
| + int i, j; |
| + int ecc_bit_off; |
| + int data_ecc_blk_size; |
| + int low_byte_off, low_bit_off; |
| + int high_byte_off, high_bit_off; |
| + uint8_t byte_low, byte_high; |
| + |
| + /* sanity check */ |
| + /* nand data block must be large enough for FCB structure */ |
| + if (source_size > b0 + n * bn) |
| + return -EINVAL; |
| + /* nand page need to be large enough to contain Meta, FCB and ECC */ |
| + if (target_size < m + b0 + e0*gf/8 + n*bn + n*en*gf/8) |
| + return -EINVAL; |
| + |
| + /* init bch, using default polynomial */ |
| + bch = init_bch(gf, en, 0); |
| + if(!bch) |
| + return -EINVAL; |
| + |
| + /* buffer for ecc */ |
| + ecc_buf_size = (gf * en + 7)/8; |
| + ecc_buf = malloc(ecc_buf_size); |
| + if(!ecc_buf) |
| + return -EINVAL; |
| + |
| + /* temp buffer to store data and ecc */ |
| + tmp_buf_size = b0 + (e0 * gf + 7)/8 + (bn + (en * gf + 7)/8) * 7; |
| + tmp_buf = malloc(tmp_buf_size); |
| + if(!tmp_buf) |
| + return -EINVAL; |
| + memset(tmp_buf, 0, tmp_buf_size); |
| + |
| + /* generate ecc code for each data block and store in temp buffer */ |
| + |
| + for (i = 0; i < n+1; i++) { |
| + memset(ecc_buf, 0, ecc_buf_size); |
| + encode_bch(bch, source_block + i * bn, bn, ecc_buf); |
| + |
| + memcpy(tmp_buf + i * (bn + ecc_buf_size), source_block + i * bn, bn); |
| + |
| + /* reverse ecc bit */ |
| + for (j = 0; j < ecc_buf_size; j++) { |
| + ecc_buf[j] = reverse_bit(ecc_buf[j]); |
| + } |
| + |
| + memcpy(tmp_buf + (i+1)*bn + i*ecc_buf_size, ecc_buf, ecc_buf_size); |
| + } |
| + |
| + /* store Metadata for taget block with randomizer*/ |
| + memcpy(target_block, RandData, m); |
| + /*memset(target_block, 0, m);*/ |
| + |
| + /* shift the bit to combine the source data and ecc */ |
| + real_buf_size = (b0*8 + gf*e0 + (bn*8 + gf*en)*n)/8; |
| + /* bit offset for each ecc block */ |
| + ecc_bit_off = 8 - (gf * en)%8; |
| + /* size of a data block plus ecc block */ |
| + data_ecc_blk_size = bn +(gf*en+7)/8; |
| + |
| + for (i = 0; i < real_buf_size; i++) { |
| + low_bit_off = ((i/data_ecc_blk_size) * ecc_bit_off)%8; |
| + low_byte_off = ((i/data_ecc_blk_size) * ecc_bit_off)/8; |
| + high_bit_off = (((i+1)/data_ecc_blk_size) * ecc_bit_off)%8; |
| + high_byte_off = (((i+1)/data_ecc_blk_size) * ecc_bit_off)/8; |
| + |
| + byte_low = tmp_buf[i+low_byte_off] >> low_bit_off; |
| + byte_high = tmp_buf[i+1+high_byte_off] << (8 - high_bit_off); |
| + |
| + *(uint8_t *)(target_block + i + m) = (byte_low | byte_high) ^ RandData[i + m]; |
| + } |
| + |
| + free(ecc_buf); |
| + free(tmp_buf); |
| + return 0; |
| +} |
| diff -Naur kobs-ng-1.3.org/src/bch.h kobs-ng-1.3.new/src/bch.h |
| --- kobs-ng-1.3.org/src/bch.h 1969-12-31 16:00:00.000000000 -0800 |
| +++ kobs-ng-1.3.new/src/bch.h 2014-10-24 20:35:24.344372832 -0700 |
| @@ -0,0 +1,100 @@ |
| +/* |
| +* Copyright (C) 2010-2014 Freescale Semiconductor, Inc. All Rights Reserved. |
| +*/ |
| + |
| +/* |
| +* This program is free software; you can redistribute it and/or modify |
| +* it under the terms of the GNU General Public License as published by |
| +* the Free Software Foundation; either version 2 of the License, or |
| +* (at your option) any later version. |
| +* |
| +* This program is distributed in the hope that it will be useful, |
| +* but WITHOUT ANY WARRANTY; without even the implied warranty of |
| +* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| +* GNU General Public License for more details. |
| +* |
| +* You should have received a copy of the GNU General Public License along |
| +* with this program; if not, write to the Free Software Foundation, Inc., |
| +* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. |
| +*/ |
| +/* |
| + * Generic binary BCH encoding/decoding library |
| + * |
| + * This program is free software; you can redistribute it and/or modify it |
| + * under the terms of the GNU General Public License version 2 as published by |
| + * the Free Software Foundation. |
| + * |
| + * This program is distributed in the hope that it will be useful, but WITHOUT |
| + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| + * more details. |
| + * |
| + * You should have received a copy of the GNU General Public License along with |
| + * this program; if not, write to the Free Software Foundation, Inc., 51 |
| + * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| + * |
| + * Copyright © 2011 Parrot S.A. |
| + * |
| + * Author: Ivan Djelic <ivan.djelic@parrot.com> |
| + * |
| + * Description: |
| + * |
| + * This library provides runtime configurable encoding/decoding of binary |
| + * Bose-Chaudhuri-Hocquenghem (BCH) codes. |
| +*/ |
| +#ifndef _BCH_H |
| +#define _BCH_H |
| + |
| +//#include <types.h> |
| + |
| +/** |
| + * struct bch_control - BCH control structure |
| + * @m: Galois field order |
| + * @n: maximum codeword size in bits (= 2^m-1) |
| + * @t: error correction capability in bits |
| + * @ecc_bits: ecc exact size in bits, i.e. generator polynomial degree (<=m*t) |
| + * @ecc_bytes: ecc max size (m*t bits) in bytes |
| + * @a_pow_tab: Galois field GF(2^m) exponentiation lookup table |
| + * @a_log_tab: Galois field GF(2^m) log lookup table |
| + * @mod8_tab: remainder generator polynomial lookup tables |
| + * @ecc_buf: ecc parity words buffer |
| + * @ecc_buf2: ecc parity words buffer |
| + * @xi_tab: GF(2^m) base for solving degree 2 polynomial roots |
| + * @syn: syndrome buffer |
| + * @cache: log-based polynomial representation buffer |
| + * @elp: error locator polynomial |
| + * @poly_2t: temporary polynomials of degree 2t |
| + */ |
| +struct bch_control { |
| + unsigned int m; |
| + unsigned int n; |
| + unsigned int t; |
| + unsigned int ecc_bits; |
| + unsigned int ecc_bytes; |
| +/* private: */ |
| + uint16_t *a_pow_tab; |
| + uint16_t *a_log_tab; |
| + uint32_t *mod8_tab; |
| + uint32_t *ecc_buf; |
| + uint32_t *ecc_buf2; |
| + unsigned int *xi_tab; |
| + unsigned int *syn; |
| + int *cache; |
| + struct gf_poly *elp; |
| + struct gf_poly *poly_2t[4]; |
| +}; |
| + |
| +struct bch_control *init_bch(int m, int t, unsigned int prim_poly); |
| + |
| +void free_bch(struct bch_control *bch); |
| + |
| +void encode_bch(struct bch_control *bch, const uint8_t *data, |
| + unsigned int len, uint8_t *ecc); |
| + |
| +int decode_bch(struct bch_control *bch, const uint8_t *data, unsigned int len, |
| + const uint8_t *recv_ecc, const uint8_t *calc_ecc, |
| + const unsigned int *syn, unsigned int *errloc); |
| + |
| +int encode_bch_ecc_62(void *source_block, size_t source_size, |
| + void *target_block, size_t target_size); |
| +#endif /* _BCH_H */ |
| diff -Naur kobs-ng-1.3.org/src/BootControlBlocks.h kobs-ng-1.3.new/src/BootControlBlocks.h |
| --- kobs-ng-1.3.org/src/BootControlBlocks.h 2013-11-04 18:36:41.000000000 -0800 |
| +++ kobs-ng-1.3.new/src/BootControlBlocks.h 2014-10-24 20:35:24.340372832 -0700 |
| @@ -1,5 +1,5 @@ |
| /* |
| -* Copyright (C) 2010-2011 Freescale Semiconductor, Inc. All Rights Reserved. |
| +* Copyright (C) 2010-2014 Freescale Semiconductor, Inc. All Rights Reserved. |
| */ |
| |
| /* |
| @@ -45,6 +45,8 @@ |
| |
| #define BCB_MAGIC_OFFSET 12 |
| |
| +#define MAXSEQLEN 183 |
| + |
| //============================================================================== |
| |
| //! \brief NAND Timing structure for setting up the GPMI timing. |
| @@ -247,6 +249,17 @@ |
| uint32_t m_u32TMTiming1_BusyTimeout; |
| } FCB_ROM_NAND_TM_Timing_t; |
| |
| +typedef struct { |
| + uint32_t m_u32ONFISpeed; |
| + uint32_t m_u32ONFITiming_ReadLatency; |
| + uint32_t m_u32ONFITiming_CEDelay; |
| + uint32_t m_u32ONFITiming_PreambleDelay; |
| + uint32_t m_u32ONFITiming_PostambleDelay; |
| + uint32_t m_u32ONFITiming_CmdAddPause; |
| + uint32_t m_u32ONFITiming_DataPause; |
| + uint32_t m_u32ONFITiming_BusyTimeout; |
| +} FCB_ROM_NAND_ONFI_Timing_t; |
| + |
| struct fcb_block { |
| FCB_ROM_NAND_Timing_t m_NANDTiming; //!< Optimum timing parameters for Tas, Tds, Tdh in nsec. |
| uint32_t m_u32PageDataSize; //!< 2048 for 2K pages, 4096 for 4K pages. |
| @@ -285,6 +298,16 @@ |
| FCB_ROM_NAND_TM_Timing_t m_NANDTMTiming; |
| uint32_t m_u32DISBBM; /* the flag to enable (1)/disable(0) bi swap */ |
| uint32_t m_u32BBMarkerPhysicalOffsetInSpareData; /* The swap position of main area in spare area */ |
| + |
| + uint32_t m_u32OnfiSyncEnable; //!< Enable the Onfi nand sync mode support |
| + FCB_ROM_NAND_ONFI_Timing_t m_NANDONFITiming; |
| + uint32_t m_u32DISBBSearch; //!< Disable the badblock search when reading the firmware, only using DBBT. |
| + |
| + uint32_t m_u32RandomizerEnable; //!< Enable randomizer support |
| + uint32_t reserved[15]; |
| + uint32_t m_u32ReadRetryEnable; //!< Enable ready retry support |
| + uint32_t m_u32ReadRetrySeqLength; //!< Read retry sequence length |
| + uint32_t m_u32ReadRetrySeq[MAXSEQLEN]; //!< Read retry sequence length |
| }; |
| |
| //============================================================================== |
| diff -Naur kobs-ng-1.3.org/src/main.c kobs-ng-1.3.new/src/main.c |
| --- kobs-ng-1.3.org/src/main.c 2013-11-04 18:36:41.000000000 -0800 |
| +++ kobs-ng-1.3.new/src/main.c 2014-10-24 20:35:24.344372832 -0700 |
| @@ -2,7 +2,7 @@ |
| * cb-dump.c - Dump control structures of the NAND |
| * |
| * Copyright (c) 2008 by Embedded Alley Solution Inc. |
| - * Copyright (C) 2010-2012 Freescale Semiconductor, Inc. |
| + * Copyright (C) 2010-2014 Freescale Semiconductor, Inc. |
| * |
| * Author: Pantelis Antoniou <pantelis@embeddedalley.com> |
| * |
| @@ -562,8 +562,8 @@ |
| int ret; |
| int sz = getpagesize(); |
| |
| - from = open(file_name, O_RDONLY); |
| - to = open(tmp_file, O_CREAT | O_RDWR); |
| + from = open(file_name, O_RDONLY, S_IRUSR | S_IWUSR); |
| + to = open(tmp_file, O_CREAT | O_RDWR, S_IRUSR | S_IWUSR); |
| if (from < 0 || to < 0) { |
| fprintf(stderr, "unable to create a temporary file\n"); |
| exit(5); |
| diff -Naur kobs-ng-1.3.org/src/Makefile.am kobs-ng-1.3.new/src/Makefile.am |
| --- kobs-ng-1.3.org/src/Makefile.am 2013-11-04 18:36:41.000000000 -0800 |
| +++ kobs-ng-1.3.new/src/Makefile.am 2014-10-24 20:35:24.340372832 -0700 |
| @@ -3,6 +3,6 @@ |
| bin_PROGRAMS=kobs-ng |
| |
| kobs_ng_SOURCES=main.c mtd.c rom_nand_hamming_code_ecc.c ncb.c bootstream.c sha1.c \ |
| - aescrypt.c aeskey.c aestab.c plat_boot_config.c \ |
| + aescrypt.c aeskey.c aestab.c plat_boot_config.c bch.c \ |
| rom_nand_hamming_code_ecc.h mtd.h BootControlBlocks.h bootstream.h sha.h \ |
| - aes.h aesopt.h plat_boot_config.h |
| + aes.h aesopt.h plat_boot_config.h bch.h rand.h |
| diff -Naur kobs-ng-1.3.org/src/Makefile.in kobs-ng-1.3.new/src/Makefile.in |
| --- kobs-ng-1.3.org/src/Makefile.in 2013-11-04 18:36:41.000000000 -0800 |
| +++ kobs-ng-1.3.new/src/Makefile.in 2014-10-24 20:35:24.340372832 -0700 |
| @@ -49,7 +49,8 @@ |
| am_kobs_ng_OBJECTS = main.$(OBJEXT) mtd.$(OBJEXT) \ |
| rom_nand_hamming_code_ecc.$(OBJEXT) ncb.$(OBJEXT) \ |
| bootstream.$(OBJEXT) sha1.$(OBJEXT) aescrypt.$(OBJEXT) \ |
| - aeskey.$(OBJEXT) aestab.$(OBJEXT) plat_boot_config.$(OBJEXT) |
| + aeskey.$(OBJEXT) aestab.$(OBJEXT) plat_boot_config.$(OBJEXT) \ |
| + bch.$(OBJEXT) |
| kobs_ng_OBJECTS = $(am_kobs_ng_OBJECTS) |
| kobs_ng_LDADD = $(LDADD) |
| DEFAULT_INCLUDES = -I.@am__isrc@ -I$(top_builddir)/include |
| @@ -158,9 +159,9 @@ |
| top_srcdir = @top_srcdir@ |
| INCLUDES = -I$(top_srcdir)/include |
| kobs_ng_SOURCES = main.c mtd.c rom_nand_hamming_code_ecc.c ncb.c bootstream.c sha1.c \ |
| - aescrypt.c aeskey.c aestab.c plat_boot_config.c \ |
| + aescrypt.c aeskey.c aestab.c plat_boot_config.c bch.c\ |
| rom_nand_hamming_code_ecc.h mtd.h BootControlBlocks.h bootstream.h sha.h \ |
| - aes.h aesopt.h plat_boot_config.h |
| + aes.h aesopt.h plat_boot_config.h bch.h rand.h |
| |
| all: all-am |
| |
| @@ -233,7 +234,7 @@ |
| |
| clean-binPROGRAMS: |
| -test -z "$(bin_PROGRAMS)" || rm -f $(bin_PROGRAMS) |
| -kobs-ng$(EXEEXT): $(kobs_ng_OBJECTS) $(kobs_ng_DEPENDENCIES) |
| +kobs-ng$(EXEEXT): $(kobs_ng_OBJECTS) $(kobs_ng_DEPENDENCIES) |
| @rm -f kobs-ng$(EXEEXT) |
| $(LINK) $(kobs_ng_OBJECTS) $(kobs_ng_LDADD) $(LIBS) |
| |
| @@ -253,6 +254,7 @@ |
| @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/plat_boot_config.Po@am__quote@ |
| @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/rom_nand_hamming_code_ecc.Po@am__quote@ |
| @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/sha1.Po@am__quote@ |
| +@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/bch.Po@am__quote@ |
| |
| .c.o: |
| @am__fastdepCC_TRUE@ $(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< |
| diff -Naur kobs-ng-1.3.org/src/mtd.c kobs-ng-1.3.new/src/mtd.c |
| --- kobs-ng-1.3.org/src/mtd.c 2013-11-04 18:36:41.000000000 -0800 |
| +++ kobs-ng-1.3.new/src/mtd.c 2014-10-24 20:35:24.344372832 -0700 |
| @@ -1,7 +1,7 @@ |
| /* |
| * mtd.c - Dump control structures of the NAND |
| * |
| - * Copyright 2008-2013 Freescale Semiconductor, Inc. |
| + * Copyright 2008-2014 Freescale Semiconductor, Inc. |
| * Copyright (c) 2008 by Embedded Alley Solution Inc. |
| * |
| * Author: Pantelis Antoniou <pantelis@embeddedalley.com> |
| @@ -1455,6 +1455,8 @@ |
| mtd_size(md) - md->fcb.FCB_Block.m_u32Firmware2_startingPage * page_size); |
| break; |
| case ROM_Version_3: |
| + case ROM_Version_4: |
| + case ROM_Version_5: |
| #undef P3 |
| #define P3(x) printf(" %s = 0x%08x\n", #x, md->fcb.x) |
| printf("FCB\n"); |
| @@ -1504,6 +1506,26 @@ |
| P3(m_NANDTMTiming.m_u32TMSpeed); |
| P3(m_NANDTMTiming.m_u32TMTiming1_BusyTimeout); |
| P3(m_u32DISBBM); |
| + P3(m_u32BBMarkerPhysicalOffsetInSpareData); |
| + |
| + if(ROM_Version_3 < plat_config_data->m_u32RomVer) { |
| + P3(m_u32OnfiSyncEnable); |
| + P3(m_NANDONFITiming.m_u32ONFISpeed); |
| + P3(m_NANDONFITiming.m_u32ONFITiming_ReadLatency); |
| + P3(m_NANDONFITiming.m_u32ONFITiming_CEDelay); |
| + P3(m_NANDONFITiming.m_u32ONFITiming_PreambleDelay); |
| + P3(m_NANDONFITiming.m_u32ONFITiming_PostambleDelay); |
| + P3(m_NANDONFITiming.m_u32ONFITiming_CmdAddPause); |
| + P3(m_NANDONFITiming.m_u32ONFITiming_DataPause); |
| + P3(m_NANDONFITiming.m_u32ONFITiming_BusyTimeout); |
| + P3(m_u32DISBBSearch); |
| + } |
| + |
| + if(ROM_Version_4 < plat_config_data->m_u32RomVer) { |
| + P3(m_u32RandomizerEnable); |
| + P3(m_u32ReadRetryEnable); |
| + P3(m_u32ReadRetrySeqLength); |
| + } |
| #undef P3 |
| #define P3(x) printf(" %s = 0x%08x\n", #x, md->dbbt50.x) |
| printf("DBBT\n"); |
| @@ -1652,6 +1674,7 @@ |
| b->m_u32BadBlockMarkerStartBit = geo->block_mark_bit_offset; |
| b->m_u32BBMarkerPhysicalOffset = mtd_writesize(md); |
| b->m_u32BCHType = 0; |
| + |
| return 0; |
| } |
| |
| @@ -2877,6 +2900,47 @@ |
| return write_boot_stream(md, fp); |
| } |
| |
| +int v5_rom_mtd_commit_structures(struct mtd_data *md, FILE *fp, int flags) |
| +{ |
| + int size, i, r, chip = 0; |
| + loff_t ofs; |
| + struct mtd_config *cfg = &md->cfg; |
| + |
| + /* [1] Write the FCB search area. */ |
| + size = mtd_writesize(md) + mtd_oobsize(md); |
| + memset(md->buf, 0, size); |
| + r = fcb_encrypt(&md->fcb, md->buf, size, 2); |
| + if (r < 0) |
| + return r; |
| + |
| + mtd_commit_bcb(md, "FCB", 0, 0, 0, 1, size, false); |
| + |
| + /* [2] Write the DBBT search area. */ |
| + memset(md->buf, 0, mtd_writesize(md)); |
| + memcpy(md->buf, &(md->dbbt50), sizeof(md->dbbt50)); |
| + mtd_commit_bcb(md, "DBBT", 1, 1, 1, 1, mtd_writesize(md), true); |
| + |
| + /* Write the DBBT table area. */ |
| + memset(md->buf, 0, mtd_writesize(md)); |
| + if (md->dbbt50.DBBT_Block.v3.m_u32DBBTNumOfPages > 0 && md->bbtn[0] != NULL) { |
| + memcpy(md->buf, md->bbtn[0], sizeof(*md->bbtn[0])); |
| + |
| + ofs = cfg->search_area_size_in_bytes; |
| + |
| + for (i = 0; i < 4; i++, ofs += cfg->stride_size_in_bytes) { |
| + vp(md, "mtd: PUTTING down DBBT%d BBTN%d @0x%llx (0x%x)\n", |
| + i, 0, ofs + 4 * mtd_writesize(md), mtd_writesize(md)); |
| + |
| + r = mtd_write_page(md, chip, ofs + 4 * mtd_writesize(md), 1); |
| + if (r != mtd_writesize(md)) { |
| + fprintf(stderr, "mtd: Failed to write BBTN @0x%llx (%d)\n", ofs, r); |
| + } |
| + } |
| + } |
| + |
| + /* [3] Write the two boot streams. */ |
| + return write_boot_stream(md, fp); |
| +} |
| #undef ARG |
| #define ARG(x) { .name = #x , .offset = offsetof(struct mtd_config, x), .ignore = false, } |
| #define ARG_IGNORE(x) { .name = #x , .offset = offsetof(struct mtd_config, x), .ignore = true, } |
| diff -Naur kobs-ng-1.3.org/src/mtd.h kobs-ng-1.3.new/src/mtd.h |
| --- kobs-ng-1.3.org/src/mtd.h 2013-11-04 18:36:41.000000000 -0800 |
| +++ kobs-ng-1.3.new/src/mtd.h 2014-10-24 20:35:24.344372832 -0700 |
| @@ -1,7 +1,7 @@ |
| /* |
| * mtd.c - Dump control structures of the NAND |
| * |
| -* Copyright 2008-2011 Freescale Semiconductor, Inc. |
| +* Copyright 2008-2014 Freescale Semiconductor, Inc. |
| * Copyright (c) 2008 by Embedded Alley Solution Inc. |
| * |
| * Author: Pantelis Antoniou <pantelis@embeddedalley.com> |
| @@ -211,7 +211,9 @@ |
| ROM_Version_0 = 0, /* e.g., i.MX23 */ |
| ROM_Version_1 = 1, /* e.g., i.MX28 */ |
| ROM_Version_2 = 2, /* e.g., i.MX53 */ |
| - ROM_Version_3 = 3, /* e.g., i.MX50 */ |
| + ROM_Version_3 = 3, /* e.g., i.MX50, iMX6dqsl */ |
| + ROM_Version_4 = 4, /* e.g., i.MX6sx */ |
| + ROM_Version_5 = 5, /* e.g., i.MX6sx TO1.2*/ |
| }; |
| |
| static inline int mtd_pages_per_block(struct mtd_data *md) |
| @@ -291,6 +293,7 @@ |
| int v2_rom_mtd_commit_structures(struct mtd_data *md, FILE *fp, int flags); |
| int v3_rom_mtd_commit_structures(struct mtd_data *md, FILE *fp, int flags); |
| int v4_rom_mtd_commit_structures(struct mtd_data *md, FILE *fp, int flags); |
| +int v5_rom_mtd_commit_structures(struct mtd_data *md, FILE *fp, int flags); |
| |
| int mtd_set_ecc_mode(struct mtd_data *md, int ecc); |
| |
| diff -Naur kobs-ng-1.3.org/src/ncb.c kobs-ng-1.3.new/src/ncb.c |
| --- kobs-ng-1.3.org/src/ncb.c 2013-11-04 18:36:41.000000000 -0800 |
| +++ kobs-ng-1.3.new/src/ncb.c 2014-10-24 20:35:32.684372507 -0700 |
| @@ -1,6 +1,7 @@ |
| /* |
| * ncb.c - verify and encode NCB |
| * |
| + * Copyright (C) 2014 Freescale Semiconductor, Inc. |
| * Copyright (c) 2008 by Embedded Alley Solution Inc. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| @@ -29,6 +30,9 @@ |
| #include "mtd.h" |
| #include "config.h" |
| #include "rom_nand_hamming_code_ecc.h" |
| +#include "bch.h" |
| + |
| +#define MAX_HAMMING_FCB_SZ 220 |
| |
| static inline int even_number_of_1s(uint8_t byte) |
| { |
| @@ -365,12 +369,12 @@ |
| uint32_t accumulator; |
| uint8_t *p; |
| uint8_t *q; |
| + int fcb_size; |
| |
| //---------------------------------------------------------------------- |
| // Check for nonsense. |
| //---------------------------------------------------------------------- |
| |
| - assert(version == 1); |
| assert(size >= sizeof(BCB_ROM_BootBlockStruct_t)); |
| |
| //---------------------------------------------------------------------- |
| @@ -402,6 +406,8 @@ |
| |
| fcb->m_u32Checksum = accumulator; |
| |
| + fcb_size = MAX_HAMMING_FCB_SZ < sizeof(*fcb) ? MAX_HAMMING_FCB_SZ : sizeof(*fcb); |
| + |
| //---------------------------------------------------------------------- |
| // Compute the ECC bytes. |
| //---------------------------------------------------------------------- |
| @@ -412,7 +418,9 @@ |
| memcpy(target, fcb, sizeof(*fcb)); |
| return size; |
| case 1: |
| - return encode_hamming_code_13_8(fcb, sizeof(*fcb), target, size); |
| + return encode_hamming_code_13_8(fcb, fcb_size, target, size); |
| + case 2: |
| + return encode_bch_ecc_62(fcb, sizeof(*fcb), target, size); |
| default: |
| fprintf(stderr, "FCB version == %d? Something is wrong!\n", version); |
| return -EINVAL; |
| diff -Naur kobs-ng-1.3.org/src/plat_boot_config.c kobs-ng-1.3.new/src/plat_boot_config.c |
| --- kobs-ng-1.3.org/src/plat_boot_config.c 2013-11-04 18:36:41.000000000 -0800 |
| +++ kobs-ng-1.3.new/src/plat_boot_config.c 2014-10-24 20:35:32.684372507 -0700 |
| @@ -1,5 +1,5 @@ |
| /* |
| -* Copyright (C) 2010-2012 Freescale Semiconductor, Inc. All Rights Reserved. |
| +* Copyright (C) 2010-2014 Freescale Semiconductor, Inc. All Rights Reserved. |
| */ |
| |
| /* |
| @@ -105,12 +105,39 @@ |
| .rom_mtd_commit_structures = v4_rom_mtd_commit_structures, |
| }; |
| |
| +static platform_config mx6sx_boot_config = { |
| + .m_u32RomVer = ROM_Version_4, |
| + .m_u32EnDISBBM = 0, |
| + .m_u32EnBootStreamVerify = 0, |
| + .m_u32UseNfcGeo = 0, |
| + .m_u32UseMultiBootArea = 0, |
| + .m_u32UseSinglePageStride = 0, |
| + .m_u32DBBT_FingerPrint = DBBT_FINGERPRINT2, |
| + .rom_mtd_init = v4_rom_mtd_init, |
| + .rom_mtd_commit_structures = v4_rom_mtd_commit_structures, |
| +}; |
| + |
| +static platform_config mx6sx_to_1_2_boot_config = { |
| + .m_u32RomVer = ROM_Version_5, |
| + .m_u32EnDISBBM = 0, |
| + .m_u32EnBootStreamVerify = 0, |
| + .m_u32UseNfcGeo = 0, |
| + .m_u32UseMultiBootArea = 0, |
| + .m_u32UseSinglePageStride = 0, |
| + .m_u32DBBT_FingerPrint = DBBT_FINGERPRINT2, |
| + .rom_mtd_init = v4_rom_mtd_init, |
| + .rom_mtd_commit_structures = v5_rom_mtd_commit_structures, |
| +}; |
| + |
| int discover_boot_rom_version(void) |
| { |
| FILE *cpuinfo; |
| + FILE *soc_id; |
| + FILE *revision; |
| char line_buffer[100]; |
| static char *banner = "Revision"; |
| static char *banner_hw = "Hardware"; |
| + static char *plat_imx6sx = "i.MX6SX"; |
| char *rev; |
| int system_rev, hw_system_rev = 0; |
| |
| @@ -147,6 +174,9 @@ |
| } |
| |
| rev = index(line_buffer, ':'); |
| + |
| + /*check soc_id and revision for mx6sx*/ |
| + |
| if (rev != NULL) { |
| rev++; |
| system_rev = strtoul(rev, NULL, 16); |
| @@ -178,6 +208,24 @@ |
| case MX6Q: |
| case MX6DL: |
| plat_config_data = &mx6q_boot_config; |
| + soc_id = fopen("/sys/devices/soc0/soc_id", "r"); |
| + if (!soc_id) { |
| + exit(1); |
| + } |
| + fgets(line_buffer, sizeof(line_buffer), soc_id); |
| + |
| + if (!strncmp(line_buffer, plat_imx6sx, strlen(plat_imx6sx))) { |
| + revision = fopen("/sys/devices/soc0/revision", "r"); |
| + if (!revision) { |
| + exit(1); |
| + } |
| + fgets(line_buffer, sizeof(line_buffer), revision); |
| + if (!strncmp(line_buffer, "1.0", strlen("1.0")) || |
| + !strncmp(line_buffer, "1.1", strlen("1.1"))) |
| + plat_config_data = &mx6sx_boot_config; |
| + if (!strncmp(line_buffer, "1.2", strlen("1.2"))) |
| + plat_config_data = &mx6sx_to_1_2_boot_config; |
| + } |
| break; |
| |
| default: |
| diff -Naur kobs-ng-1.3.org/src/rand.h kobs-ng-1.3.new/src/rand.h |
| --- kobs-ng-1.3.org/src/rand.h 1969-12-31 16:00:00.000000000 -0800 |
| +++ kobs-ng-1.3.new/src/rand.h 2014-10-24 20:35:24.344372832 -0700 |
| @@ -0,0 +1,1107 @@ |
| +/* |
| +* Copyright (C) 2014 Freescale Semiconductor, Inc. All Rights Reserved. |
| +*/ |
| + |
| +/* |
| +* This program is free software; you can redistribute it and/or modify |
| +* it under the terms of the GNU General Public License as published by |
| +* the Free Software Foundation; either version 2 of the License, or |
| +* (at your option) any later version. |
| +* |
| +* This program is distributed in the hope that it will be useful, |
| +* but WITHOUT ANY WARRANTY; without even the implied warranty of |
| +* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| +* GNU General Public License for more details. |
| +* |
| +* You should have received a copy of the GNU General Public License along |
| +* with this program; if not, write to the Free Software Foundation, Inc., |
| +* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. |
| +*/ |
| + |
| +#ifndef RAND_H_ |
| +#define RAND_H_ |
| + |
| +unsigned char RandData[]={ |
| + 0x2b, 0xd4, 0xd2, 0x2d, 0x55, 0xaa, 0xac, 0x53, |
| + 0xab, 0x54, 0xd5, 0x2a, 0xd3, 0x2c, 0xad, 0x52, |
| + 0x33, 0xcc, 0x34, 0xcb, 0xaa, 0x55, 0x2d, 0xd2, |
| + 0x4c, 0xb3, 0xd2, 0x2d, 0xb3, 0x4c, 0x35, 0xca, |
| + 0xb4, 0x4b, 0x35, 0xca, 0x34, 0xcb, 0xb2, 0x4d, |
| + 0x35, 0xca, 0xb2, 0x4d, 0xad, 0x52, 0xcb, 0x34, |
| + 0xad, 0x52, 0x4b, 0xb4, 0x52, 0xad, 0x52, 0xad, |
| + 0x52, 0xad, 0x4a, 0xb5, 0xb2, 0x4d, 0x4d, 0xb2, |
| + 0x32, 0xcd, 0x4a, 0xb5, 0xb4, 0x4b, 0x4b, 0xb4, |
| + 0x2c, 0xd3, 0xaa, 0x55, 0x55, 0xaa, 0x2a, 0xd5, |
| + 0x2a, 0xd5, 0xcc, 0x33, 0x33, 0xcc, 0xd4, 0x2b, |
| + 0xcb, 0x34, 0x33, 0xcc, 0x4c, 0xb3, 0xb4, 0x4b, |
| + 0xcd, 0x32, 0x33, 0xcc, 0x54, 0xab, 0x4a, 0xb5, |
| + 0xcc, 0x33, 0xb3, 0x4c, 0x33, 0xcc, 0x2a, 0xd5, |
| + 0xcc, 0x33, 0x2b, 0xd4, 0x2c, 0xd3, 0x34, 0xcb, |
| + 0x4c, 0xb3, 0x34, 0xcb, 0x4a, 0xb5, 0x32, 0xcd, |
| + 0x54, 0xab, 0xd2, 0x2d, 0xb5, 0x4a, 0xb3, 0x4c, |
| + 0xb3, 0x4c, 0xd5, 0x2a, 0xd5, 0x2a, 0x2b, 0xd4, |
| + 0x34, 0xcb, 0xd4, 0x2b, 0x4b, 0xb4, 0xb4, 0x4b, |
| + 0x4d, 0xb2, 0xb4, 0x4b, 0x55, 0xaa, 0x4a, 0xb5, |
| + 0x54, 0xab, 0xca, 0x35, 0x33, 0xcc, 0xaa, 0x55, |
| + 0x33, 0xcc, 0x32, 0xcd, 0x2c, 0xd3, 0x2c, 0xd3, |
| + 0xac, 0x53, 0x33, 0xcc, 0xca, 0x35, 0x35, 0xca, |
| + 0xd2, 0x2d, 0xd3, 0x2c, 0x2d, 0xd2, 0x52, 0xad, |
| + 0xca, 0x35, 0x55, 0xaa, 0xaa, 0x55, 0xcd, 0x32, |
| + 0x2d, 0xd2, 0xcc, 0x33, 0xb3, 0x4c, 0x53, 0xac, |
| + 0xca, 0x35, 0x33, 0xcc, 0xd4, 0x2b, 0xcd, 0x32, |
| + 0xcd, 0x32, 0xb3, 0x4c, 0xab, 0x54, 0x53, 0xac, |
| + 0xcc, 0x33, 0xab, 0x54, 0xd3, 0x2c, 0x2d, 0xd2, |
| + 0x4c, 0xb3, 0x2c, 0xd3, 0xaa, 0x55, 0x35, 0xca, |
| + 0xd4, 0x2b, 0xd5, 0x2a, 0x33, 0xcc, 0xb2, 0x4d, |
| + 0x2b, 0xd4, 0x34, 0xcb, 0xac, 0x53, 0xab, 0x54, |
| + 0x4b, 0xb4, 0x32, 0xcd, 0x52, 0xad, 0xac, 0x53, |
| + 0xb5, 0x4a, 0x53, 0xac, 0xd2, 0x2d, 0xcd, 0x32, |
| + 0xd5, 0x2a, 0x4d, 0xb2, 0xaa, 0x55, 0xd3, 0x2c, |
| + 0xab, 0x54, 0xcb, 0x34, 0xd3, 0x2c, 0xb5, 0x4a, |
| + 0x53, 0xac, 0x32, 0xcd, 0x2a, 0xd5, 0x2a, 0xd5, |
| + 0xb2, 0x4d, 0xd3, 0x2c, 0x2b, 0xd4, 0x54, 0xab, |
| + 0xd4, 0x2b, 0xb5, 0x4a, 0x4b, 0xb4, 0xac, 0x53, |
| + 0x2b, 0xd4, 0xaa, 0x55, 0xd5, 0x2a, 0xad, 0x52, |
| + 0x2b, 0xd4, 0xcc, 0x33, 0xab, 0x54, 0xad, 0x52, |
| + 0xcb, 0x34, 0xb3, 0x4c, 0xb3, 0x4c, 0xad, 0x52, |
| + 0xcd, 0x32, 0x2b, 0xd4, 0xb4, 0x4b, 0x4d, 0xb2, |
| + 0x4c, 0xb3, 0xb4, 0x4b, 0xb5, 0x4a, 0x2b, 0xd4, |
| + 0x54, 0xab, 0xca, 0x35, 0x55, 0xaa, 0xb4, 0x4b, |
| + 0x33, 0xcc, 0xd2, 0x2d, 0x53, 0xac, 0x2a, 0xd5, |
| + 0xac, 0x53, 0x35, 0xca, 0x32, 0xcd, 0x34, 0xcb, |
| + 0x32, 0xcd, 0x52, 0xad, 0x4c, 0xb3, 0x52, 0xad, |
| + 0xac, 0x53, 0x2d, 0xd2, 0xb4, 0x4b, 0x2d, 0xd2, |
| + 0xb2, 0x4d, 0xb5, 0x4a, 0xb5, 0x4a, 0x55, 0xaa, |
| + 0x34, 0xcb, 0xca, 0x35, 0x35, 0xca, 0xac, 0x53, |
| + 0x2d, 0xd2, 0xd2, 0x2d, 0xcd, 0x32, 0x4d, 0xb2, |
| + 0xaa, 0x55, 0x55, 0xaa, 0xac, 0x53, 0xcb, 0x34, |
| + 0x33, 0xcc, 0x2c, 0xd3, 0x52, 0xad, 0x32, 0xcd, |
| + 0xcc, 0x33, 0x55, 0xaa, 0xb2, 0x4d, 0x33, 0xcc, |
| + 0x2c, 0xd3, 0x4c, 0xb3, 0xd4, 0x2b, 0x33, 0xcc, |
| + 0xca, 0x35, 0xab, 0x54, 0xcb, 0x34, 0xd3, 0x2c, |
| + 0x4d, 0xb2, 0xac, 0x53, 0xcd, 0x32, 0x55, 0xaa, |
| + 0xd4, 0x2b, 0x4d, 0xb2, 0x2c, 0xd3, 0xac, 0x53, |
| + 0xab, 0x54, 0x2b, 0xd4, 0xca, 0x35, 0xad, 0x52, |
| + 0x53, 0xac, 0xd4, 0x2b, 0xad, 0x52, 0x2d, 0xd2, |
| + 0x52, 0xad, 0x54, 0xab, 0xb2, 0x4d, 0x55, 0xaa, |
| + 0x52, 0xad, 0x4c, 0xb3, 0x34, 0xcb, 0x4c, 0xb3, |
| + 0xd2, 0x2d, 0xab, 0x54, 0xcd, 0x32, 0x4b, 0xb4, |
| + 0x4a, 0xb5, 0x4c, 0xb3, 0x4c, 0xb3, 0xca, 0x35, |
| + 0xd5, 0x2a, 0x2b, 0xd4, 0x34, 0xcb, 0xd2, 0x2d, |
| + 0x4b, 0xb4, 0xb4, 0x4b, 0xad, 0x52, 0xb5, 0x4a, |
| + 0x55, 0xaa, 0x4a, 0xb5, 0x32, 0xcd, 0xca, 0x35, |
| + 0x33, 0xcc, 0x4a, 0xb5, 0x2c, 0xd3, 0x32, 0xcd, |
| + 0x2c, 0xd3, 0x2a, 0xd5, 0xaa, 0x55, 0x33, 0xcc, |
| + 0x2a, 0xd5, 0xd4, 0x2b, 0xd3, 0x2c, 0xd3, 0x2c, |
| + 0x4b, 0xb4, 0x34, 0xcb, 0xca, 0x35, 0xb5, 0x4a, |
| + 0x55, 0xaa, 0xd2, 0x2d, 0x2d, 0xd2, 0xca, 0x35, |
| + 0xb3, 0x4c, 0x55, 0xaa, 0x2a, 0xd5, 0x32, 0xcd, |
| + 0x34, 0xcb, 0xcc, 0x33, 0xab, 0x54, 0xb3, 0x4c, |
| + 0xcd, 0x32, 0xb3, 0x4c, 0xd3, 0x2c, 0x4b, 0xb4, |
| + 0xcc, 0x33, 0x2b, 0xd4, 0x4a, 0xb5, 0x2a, 0xd5, |
| + 0x4c, 0xb3, 0xd4, 0x2b, 0x35, 0xca, 0x34, 0xcb, |
| + 0x54, 0xab, 0xd4, 0x2b, 0x4d, 0xb2, 0xb2, 0x4d, |
| + 0x53, 0xac, 0x54, 0xab, 0xb4, 0x4b, 0x2b, 0xd4, |
| + 0x52, 0xad, 0xac, 0x53, 0x55, 0xaa, 0x54, 0xab, |
| + 0xd2, 0x2d, 0xcd, 0x32, 0x53, 0xac, 0x4c, 0xb3, |
| + 0xaa, 0x55, 0x33, 0xcc, 0xd2, 0x2d, 0xcb, 0x34, |
| + 0xd3, 0x2c, 0x53, 0xac, 0x4a, 0xb5, 0x32, 0xcd, |
| + 0xca, 0x35, 0xcd, 0x32, 0xb5, 0x4a, 0xd3, 0x2c, |
| + 0xad, 0x52, 0xd3, 0x2c, 0xd5, 0x2a, 0x55, 0xaa, |
| + 0xd2, 0x2d, 0xd5, 0x2a, 0x2b, 0xd4, 0x4c, 0xb3, |
| + 0x2a, 0xd5, 0xb4, 0x4b, 0xcb, 0x34, 0xcb, 0x34, |
| + 0x4b, 0xb4, 0xaa, 0x55, 0x4d, 0xb2, 0xb2, 0x4d, |
| + 0x35, 0xca, 0x4c, 0xb3, 0xb4, 0x4b, 0xcb, 0x34, |
| + 0xcd, 0x32, 0xab, 0x54, 0x55, 0xaa, 0x52, 0xad, |
| + 0x4c, 0xb3, 0xcc, 0x33, 0xb3, 0x4c, 0x2d, 0xd2, |
| + 0xd4, 0x2b, 0x33, 0xcc, 0xb4, 0x4b, 0xb5, 0x4a, |
| + 0xcb, 0x34, 0xb3, 0x4c, 0x35, 0xca, 0xaa, 0x55, |
| + 0xcd, 0x32, 0xcb, 0x34, 0x2d, 0xd2, 0x4c, 0xb3, |
| + 0x4c, 0xb3, 0x52, 0xad, 0xca, 0x35, 0x2b, 0xd4, |
| + 0xb4, 0x4b, 0xcd, 0x32, 0x4d, 0xb2, 0xb4, 0x4b, |
| + 0xb5, 0x4a, 0x53, 0xac, 0x54, 0xab, 0xca, 0x35, |
| + 0xd5, 0x2a, 0xad, 0x52, 0x33, 0xcc, 0xd2, 0x2d, |
| + 0xab, 0x54, 0x2d, 0xd2, 0xac, 0x53, 0xb5, 0x4a, |
| + 0xb3, 0x4c, 0x35, 0xca, 0x32, 0xcd, 0x2a, 0xd5, |
| + 0x34, 0xcb, 0x52, 0xad, 0x2c, 0xd3, 0xb4, 0x4b, |
| + 0xad, 0x52, 0x2d, 0xd2, 0x4a, 0xb5, 0x4a, 0xb5, |
| + 0xb2, 0x4d, 0xd5, 0x2a, 0x35, 0xca, 0x4a, 0xb5, |
| + 0x34, 0xcb, 0xd4, 0x2b, 0x2d, 0xd2, 0xaa, 0x55, |
| + 0x4d, 0xb2, 0x54, 0xab, 0x2a, 0xd5, 0x4c, 0xb3, |
| + 0x54, 0xab, 0xcc, 0x33, 0xcb, 0x34, 0xab, 0x54, |
| + 0xd3, 0x2c, 0xb3, 0x4c, 0x4d, 0xb2, 0x2c, 0xd3, |
| + 0xca, 0x35, 0x4b, 0xb4, 0xd4, 0x2b, 0xd5, 0x2a, |
| + 0x4d, 0xb2, 0xaa, 0x55, 0x2b, 0xd4, 0x54, 0xab, |
| + 0x34, 0xcb, 0xac, 0x53, 0x4b, 0xb4, 0xac, 0x53, |
| + 0xcd, 0x32, 0xad, 0x52, 0xd5, 0x2a, 0x4d, 0xb2, |
| + 0xac, 0x53, 0xcd, 0x32, 0xab, 0x54, 0x2b, 0xd4, |
| + 0xb2, 0x4d, 0xb3, 0x4c, 0x53, 0xac, 0x54, 0xab, |
| + 0xd4, 0x2b, 0x2b, 0xd4, 0x52, 0xad, 0xac, 0x53, |
| + 0x4b, 0xb4, 0x54, 0xab, 0xd2, 0x2d, 0xad, 0x52, |
| + 0x55, 0xaa, 0x4c, 0xb3, 0xaa, 0x55, 0xcd, 0x32, |
| + 0xd3, 0x2c, 0xcb, 0x34, 0xb3, 0x4c, 0x33, 0xcc, |
| + 0x4a, 0xb5, 0x32, 0xcd, 0xd4, 0x2b, 0xd3, 0x2c, |
| + 0xb5, 0x4a, 0xb3, 0x4c, 0xcb, 0x34, 0xd5, 0x2a, |
| + 0xd5, 0x2a, 0xab, 0x54, 0x2d, 0xd2, 0xd4, 0x2b, |
| + 0x4b, 0xb4, 0x4c, 0xb3, 0x4a, 0xb5, 0xb4, 0x4b, |
| + 0xd5, 0x2a, 0xcb, 0x34, 0x55, 0xaa, 0xca, 0x35, |
| + 0x4b, 0xb4, 0xd2, 0x2d, 0x33, 0xcc, 0xb2, 0x4d, |
| + 0xb5, 0x4a, 0x35, 0xca, 0xac, 0x53, 0xcb, 0x34, |
| + 0x35, 0xca, 0x32, 0xcd, 0x52, 0xad, 0xd2, 0x2d, |
| + 0xad, 0x52, 0x53, 0xac, 0xb2, 0x4d, 0x55, 0xaa, |
| + 0xd2, 0x2d, 0x4d, 0xb2, 0x34, 0xcb, 0x4c, 0xb3, |
| + 0xaa, 0x55, 0xab, 0x54, 0xcd, 0x32, 0xcb, 0x34, |
| + 0x53, 0xac, 0x4c, 0xb3, 0x4c, 0xb3, 0x32, 0xcd, |
| + 0xd2, 0x2d, 0x2b, 0xd4, 0xb4, 0x4b, 0x53, 0xac, |
| + 0x4a, 0xb5, 0xb4, 0x4b, 0xd5, 0x2a, 0xcd, 0x32, |
| + 0x55, 0xaa, 0xca, 0x35, 0xab, 0x54, 0xd3, 0x2c, |
| + 0x33, 0xcc, 0xb2, 0x4d, 0xd3, 0x2c, 0x35, 0xca, |
| + 0xac, 0x53, 0x2b, 0xd4, 0x2a, 0xd5, 0x32, 0xcd, |
| + 0x52, 0xad, 0xd4, 0x2b, 0xab, 0x54, 0x53, 0xac, |
| + 0x52, 0xad, 0xb4, 0x4b, 0xd3, 0x2c, 0x4d, 0xb2, |
| + 0x52, 0xad, 0x2a, 0xd5, 0xaa, 0x55, 0x4b, 0xb4, |
| + 0x32, 0xcd, 0xd4, 0x2b, 0x53, 0xac, 0x4a, 0xb5, |
| + 0x4c, 0xb3, 0x34, 0xcb, 0x32, 0xcd, 0x2a, 0xd5, |
| + 0x54, 0xab, 0x52, 0xad, 0x2c, 0xd3, 0xb4, 0x4b, |
| + 0xb3, 0x4c, 0x2d, 0xd2, 0x4a, 0xb5, 0x2a, 0xd5, |
| + 0xb4, 0x4b, 0xd5, 0x2a, 0x35, 0xca, 0xb4, 0x4b, |
| + 0x35, 0xca, 0xd4, 0x2b, 0x4d, 0xb2, 0xca, 0x35, |
| + 0x4d, 0xb2, 0x54, 0xab, 0x34, 0xcb, 0x52, 0xad, |
| + 0x54, 0xab, 0xac, 0x53, 0xad, 0x52, 0xad, 0x52, |
| + 0xd3, 0x2c, 0x4d, 0xb2, 0xb2, 0x4d, 0x2d, 0xd2, |
| + 0xaa, 0x55, 0x4b, 0xb4, 0xb4, 0x4b, 0xd5, 0x2a, |
| + 0x53, 0xac, 0xaa, 0x55, 0x35, 0xca, 0x34, 0xcb, |
| + 0x32, 0xcd, 0xcc, 0x33, 0x4d, 0xb2, 0x52, 0xad, |
| + 0xcc, 0x33, 0x53, 0xac, 0xb4, 0x4b, 0x2d, 0xd2, |
| + 0xcc, 0x33, 0xad, 0x52, 0xb5, 0x4a, 0x35, 0xca, |
| + 0xac, 0x53, 0xcd, 0x32, 0x35, 0xca, 0x32, 0xcd, |
| + 0xb2, 0x4d, 0xd3, 0x2c, 0xad, 0x52, 0x53, 0xac, |
| + 0xd4, 0x2b, 0x55, 0xaa, 0xd2, 0x2d, 0xad, 0x52, |
| + 0x2b, 0xd4, 0x4c, 0xb3, 0xaa, 0x55, 0xad, 0x52, |
| + 0xcb, 0x34, 0xcb, 0x34, 0xb3, 0x4c, 0xad, 0x52, |
| + 0x4d, 0xb2, 0x32, 0xcd, 0xb4, 0x4b, 0x4d, 0xb2, |
| + 0xb4, 0x4b, 0xb3, 0x4c, 0xb5, 0x4a, 0xab, 0x54, |
| + 0xd5, 0x2a, 0xcb, 0x34, 0x55, 0xaa, 0xcc, 0x33, |
| + 0x4b, 0xb4, 0xd2, 0x2d, 0xd3, 0x2c, 0xb3, 0x4c, |
| + 0xb5, 0x4a, 0x35, 0xca, 0xca, 0x35, 0xcb, 0x34, |
| + 0x35, 0xca, 0xd2, 0x2d, 0x4d, 0xb2, 0xd2, 0x2d, |
| + 0xad, 0x52, 0x55, 0xaa, 0xb4, 0x4b, 0x55, 0xaa, |
| + 0x32, 0xcd, 0xac, 0x53, 0x35, 0xca, 0x4c, 0xb3, |
| + 0xcc, 0x33, 0xcd, 0x32, 0xcd, 0x32, 0x2b, 0xd4, |
| + 0xac, 0x53, 0x53, 0xac, 0x4c, 0xb3, 0x34, 0xcb, |
| + 0xd2, 0x2d, 0x2d, 0xd2, 0x54, 0xab, 0x52, 0xad, |
| + 0xaa, 0x55, 0xb5, 0x4a, 0xb3, 0x4c, 0xcd, 0x32, |
| + 0x33, 0xcc, 0x2a, 0xd5, 0xb4, 0x4b, 0x33, 0xcc, |
| + 0x2c, 0xd3, 0xb4, 0x4b, 0xd5, 0x2a, 0x33, 0xcc, |
| + 0x4a, 0xb5, 0xca, 0x35, 0xcb, 0x34, 0xd3, 0x2c, |
| + 0x35, 0xca, 0xb2, 0x4d, 0xcd, 0x32, 0xd5, 0x2a, |
| + 0xad, 0x52, 0x4b, 0xb4, 0x2c, 0xd3, 0x54, 0xab, |
| + 0x52, 0xad, 0x2a, 0xd5, 0x4a, 0xb5, 0x4c, 0xb3, |
| + 0x32, 0xcd, 0xd4, 0x2b, 0xd5, 0x2a, 0x4b, 0xb4, |
| + 0x4c, 0xb3, 0xd4, 0x2b, 0x4b, 0xb4, 0x2a, 0xd5, |
| + 0x54, 0xab, 0xb4, 0x4b, 0x35, 0xca, 0xb4, 0x4b, |
| + 0x53, 0xac, 0xca, 0x35, 0x4d, 0xb2, 0x2a, 0xd5, |
| + 0x32, 0xcd, 0x52, 0xad, 0x34, 0xcb, 0x54, 0xab, |
| + 0xac, 0x53, 0xad, 0x52, 0x4d, 0xb2, 0x2c, 0xd3, |
| + 0xb2, 0x4d, 0x4d, 0xb2, 0xd4, 0x2b, 0x55, 0xaa, |
| + 0xb4, 0x4b, 0xab, 0x54, 0x2b, 0xd4, 0xac, 0x53, |
| + 0x55, 0xaa, 0xac, 0x53, 0xcb, 0x34, 0xcd, 0x32, |
| + 0xd3, 0x2c, 0xad, 0x52, 0xad, 0x52, 0x33, 0xcc, |
| + 0xaa, 0x55, 0x4d, 0xb2, 0xd2, 0x2d, 0xd3, 0x2c, |
| + 0xb3, 0x4c, 0x4b, 0xb4, 0xca, 0x35, 0x35, 0xca, |
| + 0x54, 0xab, 0xca, 0x35, 0x2d, 0xd2, 0xb2, 0x4d, |
| + 0x33, 0xcc, 0x52, 0xad, 0xaa, 0x55, 0x2b, 0xd4, |
| + 0xac, 0x53, 0xcd, 0x32, 0x53, 0xac, 0x34, 0xcb, |
| + 0xb2, 0x4d, 0x33, 0xcc, 0x52, 0xad, 0x52, 0xad, |
| + 0xd4, 0x2b, 0x53, 0xac, 0xb2, 0x4d, 0xad, 0x52, |
| + 0xcb, 0x34, 0x4d, 0xb2, 0xb4, 0x4b, 0xad, 0x52, |
| + 0xad, 0x52, 0xab, 0x54, 0xb5, 0x4a, 0x4d, 0xb2, |
| + 0x52, 0xad, 0xcc, 0x33, 0xb5, 0x4a, 0x4b, 0xb4, |
| + 0xd2, 0x2d, 0xd3, 0x2c, 0x55, 0xaa, 0x4a, 0xb5, |
| + 0xca, 0x35, 0xd5, 0x2a, 0x33, 0xcc, 0xca, 0x35, |
| + 0x2d, 0xd2, 0x34, 0xcb, 0x2c, 0xd3, 0x52, 0xad, |
| + 0x4a, 0xb5, 0x32, 0xcd, 0xaa, 0x55, 0xcd, 0x32, |
| + 0xb5, 0x4a, 0xd3, 0x2c, 0xb3, 0x4c, 0xd3, 0x2c, |
| + 0xd5, 0x2a, 0x35, 0xca, 0xd4, 0x2b, 0xd5, 0x2a, |
| + 0x2b, 0xd4, 0xb2, 0x4d, 0x2b, 0xd4, 0xb4, 0x4b, |
| + 0xab, 0x54, 0xab, 0x54, 0x4b, 0xb4, 0xaa, 0x55, |
| + 0x53, 0xac, 0xac, 0x53, 0x35, 0xca, 0x2c, 0xd3, |
| + 0xd2, 0x2d, 0xcd, 0x32, 0xcd, 0x32, 0x55, 0xaa, |
| + 0xaa, 0x55, 0x53, 0xac, 0x2c, 0xd3, 0xcc, 0x33, |
| + 0xd3, 0x2c, 0x2d, 0xd2, 0xca, 0x35, 0x33, 0xcc, |
| + 0xaa, 0x55, 0xd5, 0x2a, 0xcd, 0x32, 0xd3, 0x2c, |
| + 0x33, 0xcc, 0x54, 0xab, 0xcc, 0x33, 0x35, 0xca, |
| + 0x4c, 0xb3, 0x2c, 0xd3, 0x2c, 0xd3, 0x32, 0xcd, |
| + 0xd4, 0x2b, 0x35, 0xca, 0xaa, 0x55, 0xb3, 0x4c, |
| + 0x2b, 0xd4, 0xd2, 0x2d, 0xd3, 0x2c, 0xab, 0x54, |
| + 0xab, 0x54, 0x35, 0xca, 0x4a, 0xb5, 0xac, 0x53, |
| + 0x33, 0xcc, 0xd2, 0x2d, 0xd5, 0x2a, 0x2d, 0xd2, |
| + 0xac, 0x53, 0xd5, 0x2a, 0xab, 0x54, 0x35, 0xca, |
| + 0x32, 0xcd, 0xb4, 0x4b, 0x33, 0xcc, 0x52, 0xad, |
| + 0x4c, 0xb3, 0x2a, 0xd5, 0xac, 0x53, 0x2d, 0xd2, |
| + 0x34, 0xcb, 0x34, 0xcb, 0xb2, 0x4d, 0xb5, 0x4a, |
| + 0x4d, 0xb2, 0x52, 0xad, 0x34, 0xcb, 0x4a, 0xb5, |
| + 0xb4, 0x4b, 0xad, 0x52, 0x2d, 0xd2, 0xaa, 0x55, |
| + 0xb5, 0x4a, 0x4d, 0xb2, 0x2a, 0xd5, 0xcc, 0x33, |
| + 0xb5, 0x4a, 0xcb, 0x34, 0xcb, 0x34, 0xd3, 0x2c, |
| + 0x55, 0xaa, 0xb2, 0x4d, 0xcd, 0x32, 0xd5, 0x2a, |
| + 0xb3, 0x4c, 0x4b, 0xb4, 0x2c, 0xd3, 0x34, 0xcb, |
| + 0x54, 0xab, 0x2a, 0xd5, 0x4a, 0xb5, 0xb2, 0x4d, |
| + 0x33, 0xcc, 0xd4, 0x2b, 0xb5, 0x4a, 0x2b, 0xd4, |
| + 0x4c, 0xb3, 0xd4, 0x2b, 0x55, 0xaa, 0x34, 0xcb, |
| + 0x54, 0xab, 0xd4, 0x2b, 0x53, 0xac, 0xb2, 0x4d, |
| + 0x53, 0xac, 0x34, 0xcb, 0xb2, 0x4d, 0x2b, 0xd4, |
| + 0x52, 0xad, 0x52, 0xad, 0x54, 0xab, 0x54, 0xab, |
| + 0xb2, 0x4d, 0xad, 0x52, 0x53, 0xac, 0x4c, 0xb3, |
| + 0xb4, 0x4b, 0x2d, 0xd2, 0xd2, 0x2d, 0xab, 0x54, |
| + 0xb5, 0x4a, 0x55, 0xaa, 0x4a, 0xb5, 0xcc, 0x33, |
| + 0x35, 0xca, 0xcc, 0x33, 0xd5, 0x2a, 0xd3, 0x2c, |
| + 0xcd, 0x32, 0xd3, 0x2c, 0xcb, 0x34, 0x55, 0xaa, |
| + 0xcc, 0x33, 0xb5, 0x4a, 0x2d, 0xd2, 0x2c, 0xd3, |
| + 0x2c, 0xd3, 0x4a, 0xb5, 0xca, 0x35, 0x35, 0xca, |
| + 0x2a, 0xd5, 0xca, 0x35, 0x2d, 0xd2, 0xd2, 0x2d, |
| + 0x2b, 0xd4, 0x52, 0xad, 0xaa, 0x55, 0xb5, 0x4a, |
| + 0xab, 0x54, 0xcd, 0x32, 0x33, 0xcc, 0xaa, 0x55, |
| + 0xb3, 0x4c, 0x33, 0xcc, 0x2c, 0xd3, 0x2c, 0xd3, |
| + 0xd4, 0x2b, 0x33, 0xcc, 0xca, 0x35, 0xb5, 0x4a, |
| + 0xcb, 0x34, 0xd3, 0x2c, 0x2d, 0xd2, 0xaa, 0x55, |
| + 0xcd, 0x32, 0x55, 0xaa, 0x2a, 0xd5, 0x4c, 0xb3, |
| + 0x2c, 0xd3, 0xcc, 0x33, 0xcb, 0x34, 0x2b, 0xd4, |
| + 0xca, 0x35, 0xb3, 0x4c, 0x4d, 0xb2, 0xd4, 0x2b, |
| + 0xcd, 0x32, 0x4b, 0xb4, 0x54, 0xab, 0x54, 0xab, |
| + 0x4c, 0xb3, 0xaa, 0x55, 0x53, 0xac, 0x2c, 0xd3, |
| + 0x34, 0xcb, 0x2c, 0xd3, 0xd2, 0x2d, 0xb5, 0x4a, |
| + 0xcd, 0x32, 0x55, 0xaa, 0x2a, 0xd5, 0x4a, 0xb5, |
| + 0x2c, 0xd3, 0xcc, 0x33, 0x2b, 0xd4, 0x2a, 0xd5, |
| + 0xca, 0x35, 0xb3, 0x4c, 0x2b, 0xd4, 0xd4, 0x2b, |
| + 0xcd, 0x32, 0xab, 0x54, 0x4b, 0xb4, 0x54, 0xab, |
| + 0x4c, 0xb3, 0xac, 0x53, 0x55, 0xaa, 0x2c, 0xd3, |
| + 0xd4, 0x2b, 0xcd, 0x32, 0xd3, 0x2c, 0xb5, 0x4a, |
| + 0xab, 0x54, 0x33, 0xcc, 0x2a, 0xd5, 0xaa, 0x55, |
| + 0xd3, 0x2c, 0xd3, 0x2c, 0x2b, 0xd4, 0x2c, 0xd3, |
| + 0xca, 0x35, 0xb5, 0x4a, 0xcb, 0x34, 0xd5, 0x2a, |
| + 0x2d, 0xd2, 0xaa, 0x55, 0x2d, 0xd2, 0x54, 0xab, |
| + 0x2a, 0xd5, 0x4c, 0xb3, 0x4a, 0xb5, 0xcc, 0x33, |
| + 0xcb, 0x34, 0xcb, 0x34, 0xd5, 0x2a, 0xb3, 0x4c, |
| + 0x4d, 0xb2, 0xd2, 0x2d, 0xcb, 0x34, 0x4b, 0xb4, |
| + 0xb4, 0x4b, 0xb5, 0x4a, 0x4d, 0xb2, 0xaa, 0x55, |
| + 0x35, 0xca, 0x4a, 0xb5, 0x34, 0xcb, 0xcc, 0x33, |
| + 0x2d, 0xd2, 0xaa, 0x55, 0xcd, 0x32, 0x53, 0xac, |
| + 0x2a, 0xd5, 0x4c, 0xb3, 0xcc, 0x33, 0xcd, 0x32, |
| + 0xcb, 0x34, 0x2b, 0xd4, 0xac, 0x53, 0xb3, 0x4c, |
| + 0x4d, 0xb2, 0x34, 0xcb, 0xd2, 0x2d, 0x4b, 0xb4, |
| + 0x54, 0xab, 0x52, 0xad, 0x4a, 0xb5, 0xaa, 0x55, |
| + 0xb3, 0x4c, 0xcd, 0x32, 0x35, 0xca, 0x2c, 0xd3, |
| + 0xb4, 0x4b, 0xd3, 0x2c, 0xcd, 0x32, 0xb5, 0x4a, |
| + 0xd5, 0x2a, 0x55, 0xaa, 0x2c, 0xd3, 0xca, 0x35, |
| + 0x2b, 0xd4, 0x2c, 0xd3, 0x2a, 0xd5, 0xb2, 0x4d, |
| + 0xcb, 0x34, 0xd5, 0x2a, 0xab, 0x54, 0xab, 0x54, |
| + 0x2d, 0xd2, 0xb4, 0x4b, 0x53, 0xac, 0x4c, 0xb3, |
| + 0x4a, 0xb5, 0x2a, 0xd5, 0xd2, 0x2d, 0xcb, 0x34, |
| + 0x35, 0xca, 0x54, 0xab, 0x4a, 0xb5, 0xd2, 0x2d, |
|