blob: 84c7799d612f7bd286454937f4eb9f137a1a47d9 [file] [log] [blame]
/* md.c - message digest dispatcher
* Copyright (C) 1998, 1999, 2002, 2003, 2006,
* 2008 Free Software Foundation, Inc.
*
* This file is part of Libgcrypt.
*
* Libgcrypt is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser general Public License as
* published by the Free Software Foundation; either version 2.1 of
* the License, or (at your option) any later version.
*
* Libgcrypt is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include "g10lib.h"
#include "cipher.h"
#include "ath.h"
#include "rmd.h"
/* A dummy extraspec so that we do not need to tests the extraspec
field from the module specification against NULL and instead
directly test the respective fields of extraspecs. */
static md_extra_spec_t dummy_extra_spec;
/* This is the list of the digest implementations included in
libgcrypt. */
static struct digest_table_entry
{
gcry_md_spec_t *digest;
md_extra_spec_t *extraspec;
unsigned int algorithm;
int fips_allowed;
} digest_table[] =
{
#if USE_CRC
/* We allow the CRC algorithms even in FIPS mode because they are
actually no cryptographic primitives. */
{ &_gcry_digest_spec_crc32,
&dummy_extra_spec, GCRY_MD_CRC32, 1 },
{ &_gcry_digest_spec_crc32_rfc1510,
&dummy_extra_spec, GCRY_MD_CRC32_RFC1510, 1 },
{ &_gcry_digest_spec_crc24_rfc2440,
&dummy_extra_spec, GCRY_MD_CRC24_RFC2440, 1 },
#endif
#if USE_MD4
{ &_gcry_digest_spec_md4,
&dummy_extra_spec, GCRY_MD_MD4 },
#endif
#if USE_MD5
{ &_gcry_digest_spec_md5,
&dummy_extra_spec, GCRY_MD_MD5, 1 },
#endif
#if USE_RMD160
{ &_gcry_digest_spec_rmd160,
&dummy_extra_spec, GCRY_MD_RMD160 },
#endif
#if USE_SHA1
{ &_gcry_digest_spec_sha1,
&_gcry_digest_extraspec_sha1, GCRY_MD_SHA1, 1 },
#endif
#if USE_SHA256
{ &_gcry_digest_spec_sha256,
&_gcry_digest_extraspec_sha256, GCRY_MD_SHA256, 1 },
{ &_gcry_digest_spec_sha224,
&_gcry_digest_extraspec_sha224, GCRY_MD_SHA224, 1 },
#endif
#if USE_SHA512
{ &_gcry_digest_spec_sha512,
&_gcry_digest_extraspec_sha512, GCRY_MD_SHA512, 1 },
{ &_gcry_digest_spec_sha384,
&_gcry_digest_extraspec_sha384, GCRY_MD_SHA384, 1 },
#endif
#if USE_TIGER
{ &_gcry_digest_spec_tiger,
&dummy_extra_spec, GCRY_MD_TIGER },
{ &_gcry_digest_spec_tiger1,
&dummy_extra_spec, GCRY_MD_TIGER1 },
{ &_gcry_digest_spec_tiger2,
&dummy_extra_spec, GCRY_MD_TIGER2 },
#endif
#if USE_WHIRLPOOL
{ &_gcry_digest_spec_whirlpool,
&dummy_extra_spec, GCRY_MD_WHIRLPOOL },
#endif
{ NULL },
};
/* List of registered digests. */
static gcry_module_t digests_registered;
/* This is the lock protecting DIGESTS_REGISTERED. */
static ath_mutex_t digests_registered_lock = ATH_MUTEX_INITIALIZER;
/* Flag to check wether the default ciphers have already been
registered. */
static int default_digests_registered;
typedef struct gcry_md_list
{
gcry_md_spec_t *digest;
gcry_module_t module;
struct gcry_md_list *next;
size_t actual_struct_size; /* Allocated size of this structure. */
PROPERLY_ALIGNED_TYPE context;
} GcryDigestEntry;
/* this structure is put right after the gcry_md_hd_t buffer, so that
* only one memory block is needed. */
struct gcry_md_context
{
int magic;
size_t actual_handle_size; /* Allocated size of this handle. */
int secure;
FILE *debug;
int finalized;
GcryDigestEntry *list;
byte *macpads;
int macpads_Bsize; /* Blocksize as used for the HMAC pads. */
};
#define CTX_MAGIC_NORMAL 0x11071961
#define CTX_MAGIC_SECURE 0x16917011
/* Convenient macro for registering the default digests. */
#define REGISTER_DEFAULT_DIGESTS \
do \
{ \
ath_mutex_lock (&digests_registered_lock); \
if (! default_digests_registered) \
{ \
md_register_default (); \
default_digests_registered = 1; \
} \
ath_mutex_unlock (&digests_registered_lock); \
} \
while (0)
static const char * digest_algo_to_string( int algo );
static gcry_err_code_t check_digest_algo (int algo);
static gcry_err_code_t md_open (gcry_md_hd_t *h, int algo,
int secure, int hmac);
static gcry_err_code_t md_enable (gcry_md_hd_t hd, int algo);
static gcry_err_code_t md_copy (gcry_md_hd_t a, gcry_md_hd_t *b);
static void md_close (gcry_md_hd_t a);
static void md_write (gcry_md_hd_t a, const void *inbuf, size_t inlen);
static void md_final(gcry_md_hd_t a);
static byte *md_read( gcry_md_hd_t a, int algo );
static int md_get_algo( gcry_md_hd_t a );
static int md_digest_length( int algo );
static const byte *md_asn_oid( int algo, size_t *asnlen, size_t *mdlen );
static void md_start_debug ( gcry_md_hd_t a, const char *suffix );
static void md_stop_debug ( gcry_md_hd_t a );
/* Internal function. Register all the ciphers included in
CIPHER_TABLE. Returns zero on success or an error code. */
static void
md_register_default (void)
{
gcry_err_code_t err = 0;
int i;
for (i = 0; !err && digest_table[i].digest; i++)
{
if ( fips_mode ())
{
if (!digest_table[i].fips_allowed)
continue;
if (digest_table[i].algorithm == GCRY_MD_MD5
&& _gcry_enforced_fips_mode () )
continue; /* Do not register in enforced fips mode. */
}
err = _gcry_module_add (&digests_registered,
digest_table[i].algorithm,
(void *) digest_table[i].digest,
(void *) digest_table[i].extraspec,
NULL);
}
if (err)
BUG ();
}
/* Internal callback function. */
static int
gcry_md_lookup_func_name (void *spec, void *data)
{
gcry_md_spec_t *digest = (gcry_md_spec_t *) spec;
char *name = (char *) data;
return (! stricmp (digest->name, name));
}
/* Internal callback function. Used via _gcry_module_lookup. */
static int
gcry_md_lookup_func_oid (void *spec, void *data)
{
gcry_md_spec_t *digest = (gcry_md_spec_t *) spec;
char *oid = (char *) data;
gcry_md_oid_spec_t *oid_specs = digest->oids;
int ret = 0, i;
if (oid_specs)
{
for (i = 0; oid_specs[i].oidstring && (! ret); i++)
if (! stricmp (oid, oid_specs[i].oidstring))
ret = 1;
}
return ret;
}
/* Internal function. Lookup a digest entry by it's name. */
static gcry_module_t
gcry_md_lookup_name (const char *name)
{
gcry_module_t digest;
digest = _gcry_module_lookup (digests_registered, (void *) name,
gcry_md_lookup_func_name);
return digest;
}
/* Internal function. Lookup a cipher entry by it's oid. */
static gcry_module_t
gcry_md_lookup_oid (const char *oid)
{
gcry_module_t digest;
digest = _gcry_module_lookup (digests_registered, (void *) oid,
gcry_md_lookup_func_oid);
return digest;
}
/* Register a new digest module whose specification can be found in
DIGEST. On success, a new algorithm ID is stored in ALGORITHM_ID
and a pointer representhing this module is stored in MODULE. */
gcry_error_t
_gcry_md_register (gcry_md_spec_t *digest,
md_extra_spec_t *extraspec,
unsigned int *algorithm_id,
gcry_module_t *module)
{
gcry_err_code_t err = 0;
gcry_module_t mod;
/* We do not support module loading in fips mode. */
if (fips_mode ())
return gpg_error (GPG_ERR_NOT_SUPPORTED);
ath_mutex_lock (&digests_registered_lock);
err = _gcry_module_add (&digests_registered, 0,
(void *) digest,
(void *)(extraspec? extraspec : &dummy_extra_spec),
&mod);
ath_mutex_unlock (&digests_registered_lock);
if (! err)
{
*module = mod;
*algorithm_id = mod->mod_id;
}
return gcry_error (err);
}
/* Unregister the digest identified by ID, which must have been
registered with gcry_digest_register. */
void
gcry_md_unregister (gcry_module_t module)
{
ath_mutex_lock (&digests_registered_lock);
_gcry_module_release (module);
ath_mutex_unlock (&digests_registered_lock);
}
static int
search_oid (const char *oid, int *algorithm, gcry_md_oid_spec_t *oid_spec)
{
gcry_module_t module;
int ret = 0;
if (oid && ((! strncmp (oid, "oid.", 4))
|| (! strncmp (oid, "OID.", 4))))
oid += 4;
module = gcry_md_lookup_oid (oid);
if (module)
{
gcry_md_spec_t *digest = module->spec;
int i;
for (i = 0; digest->oids[i].oidstring && !ret; i++)
if (! stricmp (oid, digest->oids[i].oidstring))
{
if (algorithm)
*algorithm = module->mod_id;
if (oid_spec)
*oid_spec = digest->oids[i];
ret = 1;
}
_gcry_module_release (module);
}
return ret;
}
/****************
* Map a string to the digest algo
*/
int
gcry_md_map_name (const char *string)
{
gcry_module_t digest;
int ret, algorithm = 0;
if (! string)
return 0;
REGISTER_DEFAULT_DIGESTS;
/* If the string starts with a digit (optionally prefixed with
either "OID." or "oid."), we first look into our table of ASN.1
object identifiers to figure out the algorithm */
ath_mutex_lock (&digests_registered_lock);
ret = search_oid (string, &algorithm, NULL);
if (! ret)
{
/* Not found, search a matching digest name. */
digest = gcry_md_lookup_name (string);
if (digest)
{
algorithm = digest->mod_id;
_gcry_module_release (digest);
}
}
ath_mutex_unlock (&digests_registered_lock);
return algorithm;
}
/****************
* Map a digest algo to a string
*/
static const char *
digest_algo_to_string (int algorithm)
{
const char *name = NULL;
gcry_module_t digest;
REGISTER_DEFAULT_DIGESTS;
ath_mutex_lock (&digests_registered_lock);
digest = _gcry_module_lookup_id (digests_registered, algorithm);
if (digest)
{
name = ((gcry_md_spec_t *) digest->spec)->name;
_gcry_module_release (digest);
}
ath_mutex_unlock (&digests_registered_lock);
return name;
}
/****************
* This function simply returns the name of the algorithm or some constant
* string when there is no algo. It will never return NULL.
* Use the macro gcry_md_test_algo() to check whether the algorithm
* is valid.
*/
const char *
gcry_md_algo_name (int algorithm)
{
const char *s = digest_algo_to_string (algorithm);
return s ? s : "?";
}
static gcry_err_code_t
check_digest_algo (int algorithm)
{
gcry_err_code_t rc = 0;
gcry_module_t digest;
REGISTER_DEFAULT_DIGESTS;
ath_mutex_lock (&digests_registered_lock);
digest = _gcry_module_lookup_id (digests_registered, algorithm);
if (digest)
_gcry_module_release (digest);
else
rc = GPG_ERR_DIGEST_ALGO;
ath_mutex_unlock (&digests_registered_lock);
return rc;
}
/****************
* Open a message digest handle for use with algorithm ALGO.
* More algorithms may be added by md_enable(). The initial algorithm
* may be 0.
*/
static gcry_err_code_t
md_open (gcry_md_hd_t *h, int algo, int secure, int hmac)
{
gcry_err_code_t err = GPG_ERR_NO_ERROR;
int bufsize = secure ? 512 : 1024;
struct gcry_md_context *ctx;
gcry_md_hd_t hd;
size_t n;
/* Allocate a memory area to hold the caller visible buffer with it's
* control information and the data required by this module. Set the
* context pointer at the beginning to this area.
* We have to use this strange scheme because we want to hide the
* internal data but have a variable sized buffer.
*
* +---+------+---........------+-------------+
* !ctx! bctl ! buffer ! private !
* +---+------+---........------+-------------+
* ! ^
* !---------------------------!
*
* We have to make sure that private is well aligned.
*/
n = sizeof (struct gcry_md_handle) + bufsize;
n = ((n + sizeof (PROPERLY_ALIGNED_TYPE) - 1)
/ sizeof (PROPERLY_ALIGNED_TYPE)) * sizeof (PROPERLY_ALIGNED_TYPE);
/* Allocate and set the Context pointer to the private data */
if (secure)
hd = gcry_malloc_secure (n + sizeof (struct gcry_md_context));
else
hd = gcry_malloc (n + sizeof (struct gcry_md_context));
if (! hd)
err = gpg_err_code_from_errno (errno);
if (! err)
{
hd->ctx = ctx = (struct gcry_md_context *) ((char *) hd + n);
/* Setup the globally visible data (bctl in the diagram).*/
hd->bufsize = n - sizeof (struct gcry_md_handle) + 1;
hd->bufpos = 0;
/* Initialize the private data. */
memset (hd->ctx, 0, sizeof *hd->ctx);
ctx->magic = secure ? CTX_MAGIC_SECURE : CTX_MAGIC_NORMAL;
ctx->actual_handle_size = n + sizeof (struct gcry_md_context);
ctx->secure = secure;
if (hmac)
{
switch (algo)
{
case GCRY_MD_SHA384:
case GCRY_MD_SHA512:
ctx->macpads_Bsize = 128;
break;
default:
ctx->macpads_Bsize = 64;
break;
}
ctx->macpads = gcry_malloc_secure (2*(ctx->macpads_Bsize));
if (!ctx->macpads)
{
err = gpg_err_code_from_errno (errno);
md_close (hd);
}
}
}
if (! err)
{
/* Hmmm, should we really do that? - yes [-wk] */
_gcry_fast_random_poll ();
if (algo)
{
err = md_enable (hd, algo);
if (err)
md_close (hd);
}
}
if (! err)
*h = hd;
return err;
}
/* Create a message digest object for algorithm ALGO. FLAGS may be
given as an bitwise OR of the gcry_md_flags values. ALGO may be
given as 0 if the algorithms to be used are later set using
gcry_md_enable. H is guaranteed to be a valid handle or NULL on
error. */
gcry_error_t
gcry_md_open (gcry_md_hd_t *h, int algo, unsigned int flags)
{
gcry_err_code_t err = GPG_ERR_NO_ERROR;
gcry_md_hd_t hd;
if ((flags & ~(GCRY_MD_FLAG_SECURE | GCRY_MD_FLAG_HMAC)))
err = GPG_ERR_INV_ARG;
else
{
err = md_open (&hd, algo, (flags & GCRY_MD_FLAG_SECURE),
(flags & GCRY_MD_FLAG_HMAC));
}
*h = err? NULL : hd;
return gcry_error (err);
}
static gcry_err_code_t
md_enable (gcry_md_hd_t hd, int algorithm)
{
struct gcry_md_context *h = hd->ctx;
gcry_md_spec_t *digest = NULL;
GcryDigestEntry *entry;
gcry_module_t module;
gcry_err_code_t err = 0;
for (entry = h->list; entry; entry = entry->next)
if (entry->module->mod_id == algorithm)
return err; /* already enabled */
REGISTER_DEFAULT_DIGESTS;
ath_mutex_lock (&digests_registered_lock);
module = _gcry_module_lookup_id (digests_registered, algorithm);
ath_mutex_unlock (&digests_registered_lock);
if (! module)
{
log_debug ("md_enable: algorithm %d not available\n", algorithm);
err = GPG_ERR_DIGEST_ALGO;
}
else
digest = (gcry_md_spec_t *) module->spec;
if (!err && algorithm == GCRY_MD_MD5 && fips_mode ())
{
_gcry_inactivate_fips_mode ("MD5 used");
if (_gcry_enforced_fips_mode () )
{
/* We should never get to here because we do not register
MD5 in enforced fips mode. But better throw an error. */
err = GPG_ERR_DIGEST_ALGO;
}
}
if (!err)
{
size_t size = (sizeof (*entry)
+ digest->contextsize
- sizeof (entry->context));
/* And allocate a new list entry. */
if (h->secure)
entry = gcry_malloc_secure (size);
else
entry = gcry_malloc (size);
if (! entry)
err = gpg_err_code_from_errno (errno);
else
{
entry->digest = digest;
entry->module = module;
entry->next = h->list;
entry->actual_struct_size = size;
h->list = entry;
/* And init this instance. */
entry->digest->init (&entry->context.c);
}
}
if (err)
{
if (module)
{
ath_mutex_lock (&digests_registered_lock);
_gcry_module_release (module);
ath_mutex_unlock (&digests_registered_lock);
}
}
return err;
}
gcry_error_t
gcry_md_enable (gcry_md_hd_t hd, int algorithm)
{
return gcry_error (md_enable (hd, algorithm));
}
static gcry_err_code_t
md_copy (gcry_md_hd_t ahd, gcry_md_hd_t *b_hd)
{
gcry_err_code_t err = GPG_ERR_NO_ERROR;
struct gcry_md_context *a = ahd->ctx;
struct gcry_md_context *b;
GcryDigestEntry *ar, *br;
gcry_md_hd_t bhd;
size_t n;
if (ahd->bufpos)
md_write (ahd, NULL, 0);
n = (char *) ahd->ctx - (char *) ahd;
if (a->secure)
bhd = gcry_malloc_secure (n + sizeof (struct gcry_md_context));
else
bhd = gcry_malloc (n + sizeof (struct gcry_md_context));
if (! bhd)
err = gpg_err_code_from_errno (errno);
if (! err)
{
bhd->ctx = b = (struct gcry_md_context *) ((char *) bhd + n);
/* No need to copy the buffer due to the write above. */
gcry_assert (ahd->bufsize == (n - sizeof (struct gcry_md_handle) + 1));
bhd->bufsize = ahd->bufsize;
bhd->bufpos = 0;
gcry_assert (! ahd->bufpos);
memcpy (b, a, sizeof *a);
b->list = NULL;
b->debug = NULL;
if (a->macpads)
{
b->macpads = gcry_malloc_secure (2*(a->macpads_Bsize));
if (! b->macpads)
{
err = gpg_err_code_from_errno (errno);
md_close (bhd);
}
else
memcpy (b->macpads, a->macpads, (2*(a->macpads_Bsize)));
}
}
/* Copy the complete list of algorithms. The copied list is
reversed, but that doesn't matter. */
if (!err)
{
for (ar = a->list; ar; ar = ar->next)
{
if (a->secure)
br = gcry_malloc_secure (sizeof *br
+ ar->digest->contextsize
- sizeof(ar->context));
else
br = gcry_malloc (sizeof *br
+ ar->digest->contextsize
- sizeof (ar->context));
if (!br)
{
err = gpg_err_code_from_errno (errno);
md_close (bhd);
break;
}
memcpy (br, ar, (sizeof (*br) + ar->digest->contextsize
- sizeof (ar->context)));
br->next = b->list;
b->list = br;
/* Add a reference to the module. */
ath_mutex_lock (&digests_registered_lock);
_gcry_module_use (br->module);
ath_mutex_unlock (&digests_registered_lock);
}
}
if (a->debug && !err)
md_start_debug (bhd, "unknown");
if (!err)
*b_hd = bhd;
return err;
}
gcry_error_t
gcry_md_copy (gcry_md_hd_t *handle, gcry_md_hd_t hd)
{
gcry_err_code_t err;
err = md_copy (hd, handle);
if (err)
*handle = NULL;
return gcry_error (err);
}
/*
* Reset all contexts and discard any buffered stuff. This may be used
* instead of a md_close(); md_open().
*/
void
gcry_md_reset (gcry_md_hd_t a)
{
GcryDigestEntry *r;
/* Note: We allow this even in fips non operational mode. */
a->bufpos = a->ctx->finalized = 0;
for (r = a->ctx->list; r; r = r->next)
{
memset (r->context.c, 0, r->digest->contextsize);
(*r->digest->init) (&r->context.c);
}
if (a->ctx->macpads)
md_write (a, a->ctx->macpads, a->ctx->macpads_Bsize); /* inner pad */
}
static void
md_close (gcry_md_hd_t a)
{
GcryDigestEntry *r, *r2;
if (! a)
return;
if (a->ctx->debug)
md_stop_debug (a);
for (r = a->ctx->list; r; r = r2)
{
r2 = r->next;
ath_mutex_lock (&digests_registered_lock);
_gcry_module_release (r->module);
ath_mutex_unlock (&digests_registered_lock);
wipememory (r, r->actual_struct_size);
gcry_free (r);
}
if (a->ctx->macpads)
{
wipememory (a->ctx->macpads, 2*(a->ctx->macpads_Bsize));
gcry_free(a->ctx->macpads);
}
wipememory (a, a->ctx->actual_handle_size);
gcry_free(a);
}
void
gcry_md_close (gcry_md_hd_t hd)
{
/* Note: We allow this even in fips non operational mode. */
md_close (hd);
}
static void
md_write (gcry_md_hd_t a, const void *inbuf, size_t inlen)
{
GcryDigestEntry *r;
if (a->ctx->debug)
{
if (a->bufpos && fwrite (a->buf, a->bufpos, 1, a->ctx->debug) != 1)
BUG();
if (inlen && fwrite (inbuf, inlen, 1, a->ctx->debug) != 1)
BUG();
}
for (r = a->ctx->list; r; r = r->next)
{
if (a->bufpos)
(*r->digest->write) (&r->context.c, a->buf, a->bufpos);
(*r->digest->write) (&r->context.c, inbuf, inlen);
}
a->bufpos = 0;
}
void
gcry_md_write (gcry_md_hd_t hd, const void *inbuf, size_t inlen)
{
md_write (hd, inbuf, inlen);
}
static void
md_final (gcry_md_hd_t a)
{
GcryDigestEntry *r;
if (a->ctx->finalized)
return;
if (a->bufpos)
md_write (a, NULL, 0);
for (r = a->ctx->list; r; r = r->next)
(*r->digest->final) (&r->context.c);
a->ctx->finalized = 1;
if (a->ctx->macpads)
{
/* Finish the hmac. */
int algo = md_get_algo (a);
byte *p = md_read (a, algo);
size_t dlen = md_digest_length (algo);
gcry_md_hd_t om;
gcry_err_code_t err = md_open (&om, algo, a->ctx->secure, 0);
if (err)
_gcry_fatal_error (err, NULL);
md_write (om,
(a->ctx->macpads)+(a->ctx->macpads_Bsize),
a->ctx->macpads_Bsize);
md_write (om, p, dlen);
md_final (om);
/* Replace our digest with the mac (they have the same size). */
memcpy (p, md_read (om, algo), dlen);
md_close (om);
}
}
static gcry_err_code_t
prepare_macpads (gcry_md_hd_t hd, const unsigned char *key, size_t keylen)
{
int i;
int algo = md_get_algo (hd);
unsigned char *helpkey = NULL;
unsigned char *ipad, *opad;
if (!algo)
return GPG_ERR_DIGEST_ALGO; /* Might happen if no algo is enabled. */
if ( keylen > hd->ctx->macpads_Bsize )
{
helpkey = gcry_malloc_secure (md_digest_length (algo));
if (!helpkey)
return gpg_err_code_from_errno (errno);
gcry_md_hash_buffer (algo, helpkey, key, keylen);
key = helpkey;
keylen = md_digest_length (algo);
gcry_assert ( keylen <= hd->ctx->macpads_Bsize );
}
memset ( hd->ctx->macpads, 0, 2*(hd->ctx->macpads_Bsize) );
ipad = hd->ctx->macpads;
opad = (hd->ctx->macpads)+(hd->ctx->macpads_Bsize);
memcpy ( ipad, key, keylen );
memcpy ( opad, key, keylen );
for (i=0; i < hd->ctx->macpads_Bsize; i++ )
{
ipad[i] ^= 0x36;
opad[i] ^= 0x5c;
}
gcry_free (helpkey);
return GPG_ERR_NO_ERROR;
}
gcry_error_t
gcry_md_ctl (gcry_md_hd_t hd, int cmd, void *buffer, size_t buflen)
{
gcry_err_code_t rc = 0;
switch (cmd)
{
case GCRYCTL_FINALIZE:
md_final (hd);
break;
case GCRYCTL_SET_KEY:
rc = gcry_err_code (gcry_md_setkey (hd, buffer, buflen));
break;
case GCRYCTL_START_DUMP:
md_start_debug (hd, buffer);
break;
case GCRYCTL_STOP_DUMP:
md_stop_debug ( hd );
break;
default:
rc = GPG_ERR_INV_OP;
}
return gcry_error (rc);
}
gcry_error_t
gcry_md_setkey (gcry_md_hd_t hd, const void *key, size_t keylen)
{
gcry_err_code_t rc = GPG_ERR_NO_ERROR;
if (!hd->ctx->macpads)
rc = GPG_ERR_CONFLICT;
else
{
rc = prepare_macpads (hd, key, keylen);
if (! rc)
gcry_md_reset (hd);
}
return gcry_error (rc);
}
/* The new debug interface. If SUFFIX is a string it creates an debug
file for the context HD. IF suffix is NULL, the file is closed and
debugging is stopped. */
void
gcry_md_debug (gcry_md_hd_t hd, const char *suffix)
{
if (suffix)
md_start_debug (hd, suffix);
else
md_stop_debug (hd);
}
/****************
* if ALGO is null get the digest for the used algo (which should be only one)
*/
static byte *
md_read( gcry_md_hd_t a, int algo )
{
GcryDigestEntry *r = a->ctx->list;
if (! algo)
{
/* Return the first algorithm. */
if (r)
{
if (r->next)
log_debug ("more than one algorithm in md_read(0)\n");
return r->digest->read( &r->context.c );
}
}
else
{
for (r = a->ctx->list; r; r = r->next)
if (r->module->mod_id == algo)
return r->digest->read (&r->context.c);
}
BUG();
return NULL;
}
/*
* Read out the complete digest, this function implictly finalizes
* the hash.
*/
byte *
gcry_md_read (gcry_md_hd_t hd, int algo)
{
/* This function is expected to always return a digest, thus we
can't return an error which we actually should do in
non-operational state. */
gcry_md_ctl (hd, GCRYCTL_FINALIZE, NULL, 0);
return md_read (hd, algo);
}
/*
* Read out an intermediate digest. Not yet functional.
*/
gcry_err_code_t
gcry_md_get (gcry_md_hd_t hd, int algo, byte *buffer, int buflen)
{
(void)hd;
(void)algo;
(void)buffer;
(void)buflen;
/*md_digest ... */
fips_signal_error ("unimplemented function called");
return GPG_ERR_INTERNAL;
}
/*
* Shortcut function to hash a buffer with a given algo. The only
* guaranteed supported algorithms are RIPE-MD160 and SHA-1. The
* supplied digest buffer must be large enough to store the resulting
* hash. No error is returned, the function will abort on an invalid
* algo. DISABLED_ALGOS are ignored here. */
void
gcry_md_hash_buffer (int algo, void *digest,
const void *buffer, size_t length)
{
if (algo == GCRY_MD_SHA1)
_gcry_sha1_hash_buffer (digest, buffer, length);
else if (algo == GCRY_MD_RMD160 && !fips_mode () )
_gcry_rmd160_hash_buffer (digest, buffer, length);
else
{
/* For the others we do not have a fast function, so we use the
normal functions. */
gcry_md_hd_t h;
gpg_err_code_t err;
if (algo == GCRY_MD_MD5 && fips_mode ())
{
_gcry_inactivate_fips_mode ("MD5 used");
if (_gcry_enforced_fips_mode () )
{
/* We should never get to here because we do not register
MD5 in enforced fips mode. */
_gcry_fips_noreturn ();
}
}
err = md_open (&h, algo, 0, 0);
if (err)
log_bug ("gcry_md_open failed for algo %d: %s",
algo, gpg_strerror (gcry_error(err)));
md_write (h, (byte *) buffer, length);
md_final (h);
memcpy (digest, md_read (h, algo), md_digest_length (algo));
md_close (h);
}
}
static int
md_get_algo (gcry_md_hd_t a)
{
GcryDigestEntry *r = a->ctx->list;
if (r && r->next)
{
fips_signal_error ("possible usage error");
log_error ("WARNING: more than one algorithm in md_get_algo()\n");
}
return r ? r->module->mod_id : 0;
}
int
gcry_md_get_algo (gcry_md_hd_t hd)
{
return md_get_algo (hd);
}
/****************
* Return the length of the digest
*/
static int
md_digest_length (int algorithm)
{
gcry_module_t digest;
int mdlen = 0;
REGISTER_DEFAULT_DIGESTS;
ath_mutex_lock (&digests_registered_lock);
digest = _gcry_module_lookup_id (digests_registered, algorithm);
if (digest)
{
mdlen = ((gcry_md_spec_t *) digest->spec)->mdlen;
_gcry_module_release (digest);
}
ath_mutex_unlock (&digests_registered_lock);
return mdlen;
}
/****************
* Return the length of the digest in bytes.
* This function will return 0 in case of errors.
*/
unsigned int
gcry_md_get_algo_dlen (int algorithm)
{
return md_digest_length (algorithm);
}
/* Hmmm: add a mode to enumerate the OIDs
* to make g10/sig-check.c more portable */
static const byte *
md_asn_oid (int algorithm, size_t *asnlen, size_t *mdlen)
{
const byte *asnoid = NULL;
gcry_module_t digest;
REGISTER_DEFAULT_DIGESTS;
ath_mutex_lock (&digests_registered_lock);
digest = _gcry_module_lookup_id (digests_registered, algorithm);
if (digest)
{
if (asnlen)
*asnlen = ((gcry_md_spec_t *) digest->spec)->asnlen;
if (mdlen)
*mdlen = ((gcry_md_spec_t *) digest->spec)->mdlen;
asnoid = ((gcry_md_spec_t *) digest->spec)->asnoid;
_gcry_module_release (digest);
}
else
log_bug ("no ASN.1 OID for md algo %d\n", algorithm);
ath_mutex_unlock (&digests_registered_lock);
return asnoid;
}
/****************
* Return information about the given cipher algorithm
* WHAT select the kind of information returned:
* GCRYCTL_TEST_ALGO:
* Returns 0 when the specified algorithm is available for use.
* buffer and nbytes must be zero.
* GCRYCTL_GET_ASNOID:
* Return the ASNOID of the algorithm in buffer. if buffer is NULL, only
* the required length is returned.
*
* Note: Because this function is in most cases used to return an
* integer value, we can make it easier for the caller to just look at
* the return value. The caller will in all cases consult the value
* and thereby detecting whether a error occured or not (i.e. while checking
* the block size)
*/
gcry_error_t
gcry_md_algo_info (int algo, int what, void *buffer, size_t *nbytes)
{
gcry_err_code_t err = GPG_ERR_NO_ERROR;
switch (what)
{
case GCRYCTL_TEST_ALGO:
if (buffer || nbytes)
err = GPG_ERR_INV_ARG;
else
err = check_digest_algo (algo);
break;
case GCRYCTL_GET_ASNOID:
/* We need to check that the algo is available because
md_asn_oid would otherwise raise an assertion. */
err = check_digest_algo (algo);
if (!err)
{
const char unsigned *asn;
size_t asnlen;
asn = md_asn_oid (algo, &asnlen, NULL);
if (buffer && (*nbytes >= asnlen))
{
memcpy (buffer, asn, asnlen);
*nbytes = asnlen;
}
else if (!buffer && nbytes)
*nbytes = asnlen;
else
{
if (buffer)
err = GPG_ERR_TOO_SHORT;
else
err = GPG_ERR_INV_ARG;
}
}
break;
default:
err = GPG_ERR_INV_OP;
}
return gcry_error (err);
}
static void
md_start_debug ( gcry_md_hd_t md, const char *suffix )
{
static int idx=0;
char buf[50];
if (fips_mode ())
return;
if ( md->ctx->debug )
{
log_debug("Oops: md debug already started\n");
return;
}
idx++;
snprintf (buf, DIM(buf)-1, "dbgmd-%05d.%.10s", idx, suffix );
md->ctx->debug = fopen(buf, "w");
if ( !md->ctx->debug )
log_debug("md debug: can't open %s\n", buf );
}
static void
md_stop_debug( gcry_md_hd_t md )
{
if ( md->ctx->debug )
{
if ( md->bufpos )
md_write ( md, NULL, 0 );
fclose (md->ctx->debug);
md->ctx->debug = NULL;
}
#ifdef HAVE_U64_TYPEDEF
{ /* a kludge to pull in the __muldi3 for Solaris */
volatile u32 a = (u32)(ulong)md;
volatile u64 b = 42;
volatile u64 c;
c = a * b;
}
#endif
}
/*
* Return information about the digest handle.
* GCRYCTL_IS_SECURE:
* Returns 1 when the handle works on secured memory
* otherwise 0 is returned. There is no error return.
* GCRYCTL_IS_ALGO_ENABLED:
* Returns 1 if the algo is enabled for that handle.
* The algo must be passed as the address of an int.
*/
gcry_error_t
gcry_md_info (gcry_md_hd_t h, int cmd, void *buffer, size_t *nbytes)
{
gcry_err_code_t err = GPG_ERR_NO_ERROR;
switch (cmd)
{
case GCRYCTL_IS_SECURE:
*nbytes = h->ctx->secure;
break;
case GCRYCTL_IS_ALGO_ENABLED:
{
GcryDigestEntry *r;
int algo;
if ( !buffer || (nbytes && (*nbytes != sizeof (int))))
err = GPG_ERR_INV_ARG;
else
{
algo = *(int*)buffer;
*nbytes = 0;
for(r=h->ctx->list; r; r = r->next ) {
if (r->module->mod_id == algo)
{
*nbytes = 1;
break;
}
}
}
break;
}
default:
err = GPG_ERR_INV_OP;
}
return gcry_error (err);
}
/* Explicitly initialize this module. */
gcry_err_code_t
_gcry_md_init (void)
{
gcry_err_code_t err = GPG_ERR_NO_ERROR;
REGISTER_DEFAULT_DIGESTS;
return err;
}
int
gcry_md_is_secure (gcry_md_hd_t a)
{
size_t value;
if (gcry_md_info (a, GCRYCTL_IS_SECURE, NULL, &value))
value = 1; /* It seems to be better to assume secure memory on
error. */
return value;
}
int
gcry_md_is_enabled (gcry_md_hd_t a, int algo)
{
size_t value;
value = sizeof algo;
if (gcry_md_info (a, GCRYCTL_IS_ALGO_ENABLED, &algo, &value))
value = 0;
return value;
}
/* Get a list consisting of the IDs of the loaded message digest
modules. If LIST is zero, write the number of loaded message
digest modules to LIST_LENGTH and return. If LIST is non-zero, the
first *LIST_LENGTH algorithm IDs are stored in LIST, which must be
of according size. In case there are less message digest modules
than *LIST_LENGTH, *LIST_LENGTH is updated to the correct
number. */
gcry_error_t
gcry_md_list (int *list, int *list_length)
{
gcry_err_code_t err = GPG_ERR_NO_ERROR;
ath_mutex_lock (&digests_registered_lock);
err = _gcry_module_list (digests_registered, list, list_length);
ath_mutex_unlock (&digests_registered_lock);
return err;
}
/* Run the selftests for digest algorithm ALGO with optional reporting
function REPORT. */
gpg_error_t
_gcry_md_selftest (int algo, int extended, selftest_report_func_t report)
{
gcry_module_t module = NULL;
cipher_extra_spec_t *extraspec = NULL;
gcry_err_code_t ec = 0;
REGISTER_DEFAULT_DIGESTS;
ath_mutex_lock (&digests_registered_lock);
module = _gcry_module_lookup_id (digests_registered, algo);
if (module && !(module->flags & FLAG_MODULE_DISABLED))
extraspec = module->extraspec;
ath_mutex_unlock (&digests_registered_lock);
if (extraspec && extraspec->selftest)
ec = extraspec->selftest (algo, extended, report);
else
{
ec = GPG_ERR_DIGEST_ALGO;
if (report)
report ("digest", algo, "module",
module && !(module->flags & FLAG_MODULE_DISABLED)?
"no selftest available" :
module? "algorithm disabled" : "algorithm not found");
}
if (module)
{
ath_mutex_lock (&digests_registered_lock);
_gcry_module_release (module);
ath_mutex_unlock (&digests_registered_lock);
}
return gpg_error (ec);
}