blob: 35ed15644063f53cd84916c6752df1926d7c9a92 [file] [log] [blame] [edit]
/* -*- Mode: c; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 8 -*-
libparted - a library for manipulating disk partitions
disk_amiga.c - libparted module to manipulate amiga RDB partition tables.
Copyright (C) 2000, 2001, 2004, 2007 Free Software Foundation, Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
Contributor: Sven Luther <luther@debian.org>
*/
#include <config.h>
#include <parted/parted.h>
#include <parted/debug.h>
#include <parted/endian.h>
#if ENABLE_NLS
# include <libintl.h>
# define _(String) dgettext (PACKAGE, String)
#else
# define _(String) (String)
#endif /* ENABLE_NLS */
/* String manipulation */
static void _amiga_set_bstr (const char *cstr, char *bstr, int maxsize) {
int size = strlen (cstr);
int i;
if (size >= maxsize) return;
bstr[0] = size;
for (i = 0; i<size; i++) bstr[i+1] = cstr[i];
}
static const char * _amiga_get_bstr (char * bstr) {
char * cstr = bstr + 1;
int size = bstr[0];
cstr[size] = '\0';
return cstr;
}
#define IDNAME_RIGIDDISK (uint32_t)0x5244534B /* 'RDSK' */
#define IDNAME_BADBLOCK (uint32_t)0x42414442 /* 'BADB' */
#define IDNAME_PARTITION (uint32_t)0x50415254 /* 'PART' */
#define IDNAME_FILESYSHEADER (uint32_t)0x46534844 /* 'FSHD' */
#define IDNAME_LOADSEG (uint32_t)0x4C534547 /* 'LSEG' */
#define IDNAME_BOOT (uint32_t)0x424f4f54 /* 'BOOT' */
#define IDNAME_FREE (uint32_t)0xffffffff
static const char *
_amiga_block_id (uint32_t id) {
switch (id) {
case IDNAME_RIGIDDISK :
return "RDSK";
case IDNAME_BADBLOCK :
return "BADB";
case IDNAME_PARTITION :
return "PART";
case IDNAME_FILESYSHEADER :
return "FSHD";
case IDNAME_LOADSEG :
return "LSEG";
case IDNAME_BOOT :
return "BOOT";
case IDNAME_FREE :
return "<free>";
default :
return "<unknown>";
}
}
struct AmigaIds {
uint32_t ID;
struct AmigaIds *next;
};
static struct AmigaIds *
_amiga_add_id (uint32_t id, struct AmigaIds *ids) {
struct AmigaIds *newid;
if ((newid=ped_malloc(sizeof (struct AmigaIds)))==NULL)
return 0;
newid->ID = id;
newid->next = ids;
return newid;
}
static void
_amiga_free_ids (struct AmigaIds *ids) {
struct AmigaIds *current, *next;
for (current = ids; current != NULL; current = next) {
next = current->next;
ped_free (current);
}
}
static int
_amiga_id_in_list (uint32_t id, struct AmigaIds *ids) {
struct AmigaIds *current;
for (current = ids; current != NULL; current = current->next) {
if (id == current->ID)
return 1;
}
return 0;
}
struct AmigaBlock {
uint32_t amiga_ID; /* Identifier 32 bit word */
uint32_t amiga_SummedLongss; /* Size of the structure for checksums */
int32_t amiga_ChkSum; /* Checksum of the structure */
};
#define AMIGA(pos) ((struct AmigaBlock *)(pos))
static int
_amiga_checksum (struct AmigaBlock *blk) {
uint32_t *rdb = (uint32_t *) blk;
uint32_t sum;
int i, end;
sum = PED_BE32_TO_CPU (rdb[0]);
end = PED_BE32_TO_CPU (rdb[1]);
if (end > PED_SECTOR_SIZE_DEFAULT) end = PED_SECTOR_SIZE_DEFAULT;
for (i = 1; i < end; i++) sum += PED_BE32_TO_CPU (rdb[i]);
return sum;
}
static void
_amiga_calculate_checksum (struct AmigaBlock *blk) {
blk->amiga_ChkSum = PED_CPU_TO_BE32(
PED_BE32_TO_CPU(blk->amiga_ChkSum) -
_amiga_checksum((struct AmigaBlock *) blk));
return;
}
static struct AmigaBlock *
_amiga_read_block (const PedDevice *dev, struct AmigaBlock *blk,
PedSector block, struct AmigaIds *ids)
{
if (!ped_device_read (dev, blk, block, 1))
return NULL;
if (ids && !_amiga_id_in_list(PED_BE32_TO_CPU(blk->amiga_ID), ids))
return NULL;
if (_amiga_checksum (blk) != 0) {
switch (ped_exception_throw(PED_EXCEPTION_ERROR,
PED_EXCEPTION_FIX | PED_EXCEPTION_IGNORE | PED_EXCEPTION_CANCEL,
_("%s : Bad checksum on block %llu of type %s."),
__func__, block, _amiga_block_id(PED_BE32_TO_CPU(blk->amiga_ID))))
{
case PED_EXCEPTION_CANCEL :
return NULL;
case PED_EXCEPTION_FIX :
_amiga_calculate_checksum(AMIGA(blk));
if (!ped_device_write ((PedDevice*)dev, blk, block, 1))
return NULL;
case PED_EXCEPTION_IGNORE :
case PED_EXCEPTION_UNHANDLED :
default :
return blk;
}
}
return blk;
}
struct RigidDiskBlock {
uint32_t rdb_ID; /* Identifier 32 bit word : 'RDSK' */
uint32_t rdb_SummedLongs; /* Size of the structure for checksums */
int32_t rdb_ChkSum; /* Checksum of the structure */
uint32_t rdb_HostID; /* SCSI Target ID of host, not really used */
uint32_t rdb_BlockBytes; /* Size of disk blocks */
uint32_t rdb_Flags; /* RDB Flags */
/* block list heads */
uint32_t rdb_BadBlockList; /* Bad block list */
uint32_t rdb_PartitionList; /* Partition list */
uint32_t rdb_FileSysHeaderList; /* File system header list */
uint32_t rdb_DriveInit; /* Drive specific init code */
uint32_t rdb_BootBlockList; /* Amiga OS 4 Boot Blocks */
uint32_t rdb_Reserved1[5]; /* Unused word, need to be set to $ffffffff */
/* physical drive characteristics */
uint32_t rdb_Cylinders; /* Number of the cylinders of the drive */
uint32_t rdb_Sectors; /* Number of sectors of the drive */
uint32_t rdb_Heads; /* Number of heads of the drive */
uint32_t rdb_Interleave; /* Interleave */
uint32_t rdb_Park; /* Head parking cylinder */
uint32_t rdb_Reserved2[3]; /* Unused word, need to be set to $ffffffff */
uint32_t rdb_WritePreComp; /* Starting cylinder of write precompensation */
uint32_t rdb_ReducedWrite; /* Starting cylinder of reduced write current */
uint32_t rdb_StepRate; /* Step rate of the drive */
uint32_t rdb_Reserved3[5]; /* Unused word, need to be set to $ffffffff */
/* logical drive characteristics */
uint32_t rdb_RDBBlocksLo; /* low block of range reserved for hardblocks */
uint32_t rdb_RDBBlocksHi; /* high block of range for these hardblocks */
uint32_t rdb_LoCylinder; /* low cylinder of partitionable disk area */
uint32_t rdb_HiCylinder; /* high cylinder of partitionable data area */
uint32_t rdb_CylBlocks; /* number of blocks available per cylinder */
uint32_t rdb_AutoParkSeconds; /* zero for no auto park */
uint32_t rdb_HighRDSKBlock; /* highest block used by RDSK */
/* (not including replacement bad blocks) */
uint32_t rdb_Reserved4;
/* drive identification */
char rdb_DiskVendor[8];
char rdb_DiskProduct[16];
char rdb_DiskRevision[4];
char rdb_ControllerVendor[8];
char rdb_ControllerProduct[16];
char rdb_ControllerRevision[4];
uint32_t rdb_Reserved5[10];
};
#define RDSK(pos) ((struct RigidDiskBlock *)(pos))
#define AMIGA_RDB_NOT_FOUND ((uint32_t)0xffffffff)
#define RDB_LOCATION_LIMIT 16
#define AMIGA_MAX_PARTITIONS 128
#define MAX_RDB_BLOCK (RDB_LOCATION_LIMIT + 2 * AMIGA_MAX_PARTITIONS + 2)
static uint32_t
_amiga_find_rdb (const PedDevice *dev, struct RigidDiskBlock *rdb) {
int i;
struct AmigaIds *ids;
ids = _amiga_add_id (IDNAME_RIGIDDISK, NULL);
for (i = 0; i<RDB_LOCATION_LIMIT; i++) {
if (!_amiga_read_block (dev, AMIGA(rdb), i, ids)) {
continue;
}
if (PED_BE32_TO_CPU (rdb->rdb_ID) == IDNAME_RIGIDDISK) {
_amiga_free_ids (ids);
return i;
}
}
_amiga_free_ids (ids);
return AMIGA_RDB_NOT_FOUND;
}
struct PartitionBlock {
uint32_t pb_ID; /* Identifier 32 bit word : 'PART' */
uint32_t pb_SummedLongs; /* Size of the structure for checksums */
int32_t pb_ChkSum; /* Checksum of the structure */
uint32_t pb_HostID; /* SCSI Target ID of host, not really used */
uint32_t pb_Next; /* Block number of the next PartitionBlock */
uint32_t pb_Flags; /* Part Flags (NOMOUNT and BOOTABLE) */
uint32_t pb_Reserved1[2];
uint32_t pb_DevFlags; /* Preferred flags for OpenDevice */
char pb_DriveName[32]; /* Preferred DOS device name: BSTR form */
uint32_t pb_Reserved2[15];
uint32_t de_TableSize; /* Size of Environment vector */
/* Size of the blocks in 32 bit words, usually 128 */
uint32_t de_SizeBlock;
uint32_t de_SecOrg; /* Not used; must be 0 */
uint32_t de_Surfaces; /* Number of heads (surfaces) */
/* Disk sectors per block, used with SizeBlock, usually 1 */
uint32_t de_SectorPerBlock;
uint32_t de_BlocksPerTrack; /* Blocks per track. drive specific */
uint32_t de_Reserved; /* DOS reserved blocks at start of partition. */
uint32_t de_PreAlloc; /* DOS reserved blocks at end of partition */
uint32_t de_Interleave; /* Not used, usually 0 */
uint32_t de_LowCyl; /* First cylinder of the partition */
uint32_t de_HighCyl; /* Last cylinder of the partition */
uint32_t de_NumBuffers; /* Initial # DOS of buffers. */
uint32_t de_BufMemType; /* Type of mem to allocate for buffers */
uint32_t de_MaxTransfer; /* Max number of bytes to transfer at a time */
uint32_t de_Mask; /* Address Mask to block out certain memory */
int32_t de_BootPri; /* Boot priority for autoboot */
uint32_t de_DosType; /* Dostype of the file system */
uint32_t de_Baud; /* Baud rate for serial handler */
uint32_t de_Control; /* Control word for handler/filesystem */
uint32_t de_BootBlocks; /* Number of blocks containing boot code */
uint32_t pb_EReserved[12];
};
#define PART(pos) ((struct PartitionBlock *)(pos))
#define PBFB_BOOTABLE 0 /* this partition is intended to be bootable */
#define PBFF_BOOTABLE 1L /* (expected directories and files exist) */
#define PBFB_NOMOUNT 1 /* do not mount this partition (e.g. manually */
#define PBFF_NOMOUNT 2L /* mounted, but space reserved here) */
#define PBFB_RAID 2 /* this partition is intended to be part of */
#define PBFF_RAID 4L /* a RAID array */
#define PBFB_LVM 3 /* this partition is intended to be part of */
#define PBFF_LVM 8L /* a LVM volume group */
struct LinkedBlock {
uint32_t lk_ID; /* Identifier 32 bit word */
uint32_t lk_SummedLongs; /* Size of the structure for checksums */
int32_t lk_ChkSum; /* Checksum of the structure */
uint32_t pb_HostID; /* SCSI Target ID of host, not really used */
uint32_t lk_Next; /* Block number of the next PartitionBlock */
};
struct Linked2Block {
uint32_t lk2_ID; /* Identifier 32 bit word */
uint32_t lk2_SummedLongs; /* Size of the structure for checksums */
int32_t lk2_ChkSum; /* Checksum of the structure */
uint32_t lk2_HostID; /* SCSI Target ID of host, not really used */
uint32_t lk2_Next; /* Block number of the next PartitionBlock */
uint32_t lk2_Reverved[13];
uint32_t lk2_Linked; /* Secondary linked list */
};
#define LINK_END (uint32_t)0xffffffff
#define LNK(pos) ((struct LinkedBlock *)(pos))
#define LNK2(pos) ((struct Linked2Block *)(pos))
static PedDiskType amiga_disk_type;
static int
amiga_probe (const PedDevice *dev)
{
struct RigidDiskBlock *rdb;
uint32_t found;
PED_ASSERT(dev != NULL, return 0);
if ((rdb=RDSK(ped_malloc(dev->sector_size)))==NULL)
return 0;
found = _amiga_find_rdb (dev, rdb);
ped_free (rdb);
return (found == AMIGA_RDB_NOT_FOUND ? 0 : 1);
}
static PedDisk*
amiga_alloc (const PedDevice* dev)
{
PedDisk *disk;
struct RigidDiskBlock *rdb;
PedSector cyl_size;
int highest_cylinder, highest_block;
PED_ASSERT(dev != NULL, return NULL);
cyl_size = dev->hw_geom.sectors * dev->hw_geom.heads;
if (!(disk = _ped_disk_alloc (dev, &amiga_disk_type)))
return NULL;
if (!(disk->disk_specific = ped_malloc (PED_SECTOR_SIZE_DEFAULT))) {
ped_free (disk);
return NULL;
}
rdb = disk->disk_specific;
memset(rdb, 0, sizeof(struct RigidDiskBlock));
rdb->rdb_ID = PED_CPU_TO_BE32 (IDNAME_RIGIDDISK);
rdb->rdb_SummedLongs = PED_CPU_TO_BE32 (64);
rdb->rdb_HostID = PED_CPU_TO_BE32 (0);
rdb->rdb_BlockBytes = PED_CPU_TO_BE32 (PED_SECTOR_SIZE_DEFAULT);
rdb->rdb_Flags = PED_CPU_TO_BE32 (0);
/* Block lists */
rdb->rdb_BadBlockList = PED_CPU_TO_BE32 (LINK_END);
rdb->rdb_PartitionList = PED_CPU_TO_BE32 (LINK_END);
rdb->rdb_FileSysHeaderList = PED_CPU_TO_BE32 (LINK_END);
rdb->rdb_DriveInit = PED_CPU_TO_BE32 (LINK_END);
rdb->rdb_BootBlockList = PED_CPU_TO_BE32 (LINK_END);
/* Physical drive characteristics */
rdb->rdb_Cylinders = PED_CPU_TO_BE32 (dev->hw_geom.cylinders);
rdb->rdb_Sectors = PED_CPU_TO_BE32 (dev->hw_geom.sectors);
rdb->rdb_Heads = PED_CPU_TO_BE32 (dev->hw_geom.heads);
rdb->rdb_Interleave = PED_CPU_TO_BE32 (0);
rdb->rdb_Park = PED_CPU_TO_BE32 (dev->hw_geom.cylinders);
rdb->rdb_WritePreComp = PED_CPU_TO_BE32 (dev->hw_geom.cylinders);
rdb->rdb_ReducedWrite = PED_CPU_TO_BE32 (dev->hw_geom.cylinders);
rdb->rdb_StepRate = PED_CPU_TO_BE32 (0);
highest_cylinder = 1 + MAX_RDB_BLOCK / cyl_size;
highest_block = highest_cylinder * cyl_size - 1;
/* Logical driver characteristics */
rdb->rdb_RDBBlocksLo = PED_CPU_TO_BE32 (0);
rdb->rdb_RDBBlocksHi = PED_CPU_TO_BE32 (highest_block);
rdb->rdb_LoCylinder = PED_CPU_TO_BE32 (highest_cylinder);
rdb->rdb_HiCylinder = PED_CPU_TO_BE32 (dev->hw_geom.cylinders -1);
rdb->rdb_CylBlocks = PED_CPU_TO_BE32 (cyl_size);
rdb->rdb_AutoParkSeconds = PED_CPU_TO_BE32 (0);
/* rdb_HighRDSKBlock will only be set when writing */
rdb->rdb_HighRDSKBlock = PED_CPU_TO_BE32 (0);
/* Driver identification */
_amiga_set_bstr("", rdb->rdb_DiskVendor, 8);
_amiga_set_bstr(dev->model, rdb->rdb_DiskProduct, 16);
_amiga_set_bstr("", rdb->rdb_DiskRevision, 4);
_amiga_set_bstr("", rdb->rdb_ControllerVendor, 8);
_amiga_set_bstr("", rdb->rdb_ControllerProduct, 16);
_amiga_set_bstr("", rdb->rdb_ControllerRevision, 4);
/* And calculate the checksum */
_amiga_calculate_checksum ((struct AmigaBlock *) rdb);
return disk;
}
static PedDisk*
amiga_duplicate (const PedDisk* disk)
{
PedDisk* new_disk;
struct RigidDiskBlock * new_rdb;
struct RigidDiskBlock * old_rdb;
PED_ASSERT(disk != NULL, return NULL);
PED_ASSERT(disk->dev != NULL, return NULL);
PED_ASSERT(disk->disk_specific != NULL, return NULL);
old_rdb = (struct RigidDiskBlock *) disk->disk_specific;
if (!(new_disk = ped_disk_new_fresh (disk->dev, &amiga_disk_type)))
return NULL;
new_rdb = (struct RigidDiskBlock *) new_disk->disk_specific;
memcpy (new_rdb, old_rdb, 256);
return new_disk;
}
static void
amiga_free (PedDisk* disk)
{
PED_ASSERT(disk != NULL, return);
PED_ASSERT(disk->disk_specific != NULL, return);
ped_free (disk->disk_specific);
_ped_disk_free (disk);
}
#ifndef DISCOVER_ONLY
static int
amiga_clobber (PedDevice* dev)
{
struct RigidDiskBlock *rdb;
uint32_t i;
int result = 0;
PED_ASSERT(dev != NULL, return 0);
if ((rdb=RDSK(ped_malloc(PED_SECTOR_SIZE_DEFAULT)))==NULL)
return 0;
while ((i = _amiga_find_rdb (dev, rdb)) != AMIGA_RDB_NOT_FOUND) {
rdb->rdb_ID = PED_CPU_TO_BE32 (0);
result = ped_device_write (dev, (void*) rdb, i, 1);
}
ped_free (rdb);
return result;
}
#endif /* !DISCOVER_ONLY */
static int
_amiga_loop_check (uint32_t block, uint32_t * blocklist, uint32_t max)
{
uint32_t i;
for (i = 0; i < max; i++)
if (block == blocklist[i]) {
/* We are looping, let's stop. */
return 1;
}
blocklist[max] = block;
return 0;
}
/* We have already allocated a rdb, we are now reading it from the disk */
static int
amiga_read (PedDisk* disk)
{
struct RigidDiskBlock *rdb;
struct PartitionBlock *partition;
uint32_t partblock;
uint32_t partlist[AMIGA_MAX_PARTITIONS];
PedSector cylblocks;
int i;
PED_ASSERT(disk != NULL, return 0);
PED_ASSERT(disk->dev != NULL, return 0);
PED_ASSERT(disk->dev->sector_size % PED_SECTOR_SIZE_DEFAULT == 0,
return 0);
PED_ASSERT(disk->disk_specific != NULL, return 0);
rdb = RDSK(disk->disk_specific);
if (_amiga_find_rdb (disk->dev, rdb) == AMIGA_RDB_NOT_FOUND) {
ped_exception_throw(PED_EXCEPTION_ERROR, PED_EXCEPTION_CANCEL,
_("%s : Didn't find rdb block, should never happen."), __func__);
return 0;
}
/* Let's copy the rdb read geometry to the dev */
/* FIXME: should this go into disk->dev->bios_geom instead? */
disk->dev->hw_geom.cylinders = PED_BE32_TO_CPU (rdb->rdb_Cylinders);
disk->dev->hw_geom.heads = PED_BE32_TO_CPU (rdb->rdb_Heads);
disk->dev->hw_geom.sectors = PED_BE32_TO_CPU (rdb->rdb_Sectors);
cylblocks = (PedSector) PED_BE32_TO_CPU (rdb->rdb_Heads) *
(PedSector) PED_BE32_TO_CPU (rdb->rdb_Sectors);
/* Remove all partitions in the former in memory table */
ped_disk_delete_all (disk);
/* Let's allocate a partition block */
if (!(partition = ped_malloc (disk->dev->sector_size)))
return 0;
/* We initialize the hardblock free list to detect loops */
for (i = 0; i < AMIGA_MAX_PARTITIONS; i++) partlist[i] = LINK_END;
for (i = 1, partblock = PED_BE32_TO_CPU(rdb->rdb_PartitionList);
i < AMIGA_MAX_PARTITIONS && partblock != LINK_END;
i++, partblock = PED_BE32_TO_CPU(partition->pb_Next))
{
PedPartition *part;
PedSector start, end;
PedConstraint *constraint_exact;
/* Let's look for loops in the partition table */
if (_amiga_loop_check(partblock, partlist, i)) {
break;
}
/* Let's allocate and read a partition block to get its geometry*/
if (!_amiga_read_block (disk->dev, AMIGA(partition),
(PedSector)partblock, NULL)) {
ped_free(partition);
return 0;
}
start = ((PedSector) PED_BE32_TO_CPU (partition->de_LowCyl))
* cylblocks;
end = (((PedSector) PED_BE32_TO_CPU (partition->de_HighCyl))
+ 1) * cylblocks - 1;
/* We can now construct a new partition */
if (!(part = ped_partition_new (disk, 0, NULL, start, end))) {
ped_free(partition);
return 0;
}
/* And copy over the partition block */
memcpy(part->disk_specific, partition, 256);
part->num = i;
part->type = 0;
/* Let's probe what file system is present on the disk */
part->fs_type = ped_file_system_probe (&part->geom);
constraint_exact = ped_constraint_exact (&part->geom);
if (!ped_disk_add_partition (disk, part, constraint_exact)) {
ped_partition_destroy(part);
ped_free(partition);
return 0;
}
ped_constraint_destroy (constraint_exact);
}
return 1;
}
static int
_amiga_find_free_blocks(const PedDisk *disk, uint32_t *table,
struct LinkedBlock *block, uint32_t first, uint32_t type)
{
PedSector next;
PED_ASSERT(disk != NULL, return 0);
PED_ASSERT(disk->dev != NULL, return 0);
for (next = first; next != LINK_END; next = PED_BE32_TO_CPU(block->lk_Next)) {
if (table[next] != IDNAME_FREE) {
switch (ped_exception_throw(PED_EXCEPTION_ERROR,
PED_EXCEPTION_FIX | PED_EXCEPTION_IGNORE | PED_EXCEPTION_CANCEL,
_("%s : Loop detected at block %d."), __func__, next))
{
case PED_EXCEPTION_CANCEL :
return 0;
case PED_EXCEPTION_FIX :
/* TODO : Need to add fixing code */
case PED_EXCEPTION_IGNORE :
case PED_EXCEPTION_UNHANDLED :
default :
return 1;
}
}
if (!_amiga_read_block (disk->dev, AMIGA(block), next, NULL)) {
return 0;
}
if (PED_BE32_TO_CPU(block->lk_ID) != type) {
switch (ped_exception_throw(PED_EXCEPTION_ERROR,
PED_EXCEPTION_CANCEL,
_("%s : The %s list seems bad at block %s."),
__func__, _amiga_block_id(PED_BE32_TO_CPU(block->lk_ID)), next))
{
/* TODO : to more subtile things here */
case PED_EXCEPTION_CANCEL :
case PED_EXCEPTION_UNHANDLED :
default :
return 0;
}
}
table[next] = type;
if (PED_BE32_TO_CPU(block->lk_ID) == IDNAME_FILESYSHEADER) {
if (_amiga_find_free_blocks(disk, table, block,
PED_BE32_TO_CPU(LNK2(block)->lk2_Linked),
IDNAME_LOADSEG) == 0) return 0;
}
}
return 1;
}
static uint32_t
_amiga_next_free_block(uint32_t *table, uint32_t start, uint32_t type) {
int i;
for (i = start; table[i] != type && table[i] != IDNAME_FREE; i++);
return i;
}
static PedPartition *
_amiga_next_real_partition(const PedDisk *disk, PedPartition *part) {
PedPartition *next;
for (next = ped_disk_next_partition (disk, part);
next != NULL && !ped_partition_is_active (next);
next = ped_disk_next_partition (disk, next));
return next;
}
#ifndef DISCOVER_ONLY
static int
amiga_write (const PedDisk* disk)
{
struct RigidDiskBlock *rdb;
struct LinkedBlock *block;
struct PartitionBlock *partition;
PedPartition *part, *next_part;
PedSector cylblocks, first_hb, last_hb, last_used_hb;
uint32_t * table;
uint32_t i;
uint32_t rdb_num, part_num, block_num, next_num;
PED_ASSERT (disk != NULL, return 0);
PED_ASSERT (disk->dev != NULL, return 0);
PED_ASSERT (disk->disk_specific != NULL, return 0);
if (!(rdb = ped_malloc (PED_SECTOR_SIZE_DEFAULT)))
return 0;
/* Let's read the rdb */
if ((rdb_num = _amiga_find_rdb (disk->dev, rdb)) == AMIGA_RDB_NOT_FOUND) {
rdb_num = 2;
} else {
memcpy (RDSK(disk->disk_specific), rdb, PED_SECTOR_SIZE_DEFAULT);
}
ped_free (rdb);
rdb = RDSK(disk->disk_specific);
cylblocks = (PedSector) PED_BE32_TO_CPU (rdb->rdb_Heads) *
(PedSector) PED_BE32_TO_CPU (rdb->rdb_Sectors);
first_hb = (PedSector) PED_BE32_TO_CPU (rdb->rdb_RDBBlocksLo);
last_hb = (PedSector) PED_BE32_TO_CPU (rdb->rdb_RDBBlocksHi);
last_used_hb = (PedSector) PED_BE32_TO_CPU (rdb->rdb_HighRDSKBlock);
/* let's allocate a free block table and initialize it */
if (!(table = ped_malloc ((last_hb - first_hb + 1) * sizeof(uint32_t))))
return 0;
memset(table, 0xff, (last_hb - first_hb + 1) * sizeof(uint32_t));
for (i = 0; i<=rdb_num; i++) table[i] = IDNAME_RIGIDDISK;
/* Let's allocate a partition block */
if (!(block = ped_malloc (PED_SECTOR_SIZE_DEFAULT))) {
ped_free (table);
return 0;
}
/* And fill the free block table */
if (_amiga_find_free_blocks(disk, table, block,
PED_BE32_TO_CPU (rdb->rdb_BadBlockList), IDNAME_BADBLOCK) == 0)
{
ped_exception_throw(PED_EXCEPTION_ERROR,
PED_EXCEPTION_CANCEL,
_("%s : Failed to list bad blocks."), __func__);
goto error_free_table;
}
if (_amiga_find_free_blocks(disk, table, block,
PED_BE32_TO_CPU (rdb->rdb_PartitionList), IDNAME_PARTITION) == 0)
{
ped_exception_throw(PED_EXCEPTION_ERROR,
PED_EXCEPTION_CANCEL,
_("%s : Failed to list partition blocks."), __func__);
goto error_free_table;
}
if (_amiga_find_free_blocks(disk, table, block,
PED_BE32_TO_CPU (rdb->rdb_FileSysHeaderList), IDNAME_FILESYSHEADER) == 0)
{
ped_exception_throw(PED_EXCEPTION_ERROR,
PED_EXCEPTION_CANCEL,
_("%s : Failed to list file system blocks."), __func__);
goto error_free_table;
}
if (_amiga_find_free_blocks(disk, table, block,
PED_BE32_TO_CPU (rdb->rdb_BootBlockList), IDNAME_BOOT) == 0)
{
ped_exception_throw(PED_EXCEPTION_ERROR,
PED_EXCEPTION_CANCEL,
_("%s : Failed to list boot blocks."), __func__);
goto error_free_table;
}
block_num = next_num = part_num = _amiga_next_free_block(table, rdb_num+1,
IDNAME_PARTITION);
part = _amiga_next_real_partition(disk, NULL);
rdb->rdb_PartitionList = PED_CPU_TO_BE32(part ? part_num : LINK_END);
for (; part != NULL; part = next_part, block_num = next_num) {
PED_ASSERT(part->disk_specific != NULL, return 0);
PED_ASSERT(part->geom.start % cylblocks == 0, return 0);
PED_ASSERT((part->geom.end + 1) % cylblocks == 0, return 0);
next_part = _amiga_next_real_partition(disk, part);
next_num = _amiga_next_free_block(table, block_num+1, IDNAME_PARTITION);
partition = PART(part->disk_specific);
if (next_part == NULL)
partition->pb_Next = PED_CPU_TO_BE32(LINK_END);
else
partition->pb_Next = PED_CPU_TO_BE32(next_num);
partition->de_LowCyl = PED_CPU_TO_BE32(part->geom.start/cylblocks);
partition->de_HighCyl = PED_CPU_TO_BE32((part->geom.end+1)/cylblocks-1);
_amiga_calculate_checksum(AMIGA(partition));
if (!ped_device_write (disk->dev, (void*) partition, block_num, 1)) {
ped_exception_throw(PED_EXCEPTION_ERROR,
PED_EXCEPTION_CANCEL,
_("Failed to write partition block at %d."),
block_num);
goto error_free_table;
/* WARNING : If we fail here, we stop everything,
* and the partition table is lost. A better
* solution should be found, using the second
* half of the hardblocks to not overwrite the
* old partition table. It becomes problematic
* if we use more than half of the hardblocks. */
}
}
if (block_num > PED_BE32_TO_CPU (rdb->rdb_HighRDSKBlock))
rdb->rdb_HighRDSKBlock = PED_CPU_TO_BE32(block_num);
_amiga_calculate_checksum(AMIGA(rdb));
if (!ped_device_write (disk->dev, (void*) disk->disk_specific, rdb_num, 1))
goto error_free_table;
ped_free (table);
ped_free (block);
return ped_device_sync (disk->dev);
error_free_table:
ped_free (table);
ped_free (block);
return 0;
}
#endif /* !DISCOVER_ONLY */
static PedPartition*
amiga_partition_new (const PedDisk* disk, PedPartitionType part_type,
const PedFileSystemType* fs_type,
PedSector start, PedSector end)
{
PedPartition *part;
PedDevice *dev;
PedSector cyl;
struct PartitionBlock *partition;
struct RigidDiskBlock *rdb;
PED_ASSERT(disk != NULL, return NULL);
PED_ASSERT(disk->dev != NULL, return NULL);
PED_ASSERT(disk->disk_specific != NULL, return NULL);
dev = disk->dev;
cyl = (PedSector) (dev->hw_geom.sectors * dev->hw_geom.heads);
rdb = RDSK(disk->disk_specific);
if (!(part = _ped_partition_alloc (disk, part_type, fs_type, start, end)))
return NULL;
if (ped_partition_is_active (part)) {
if (!(part->disk_specific = ped_malloc (PED_SECTOR_SIZE_DEFAULT))) {
ped_free (part);
return NULL;
}
partition = PART(part->disk_specific);
memset(partition, 0, sizeof(struct PartitionBlock));
partition->pb_ID = PED_CPU_TO_BE32(IDNAME_PARTITION);
partition->pb_SummedLongs = PED_CPU_TO_BE32(64);
partition->pb_HostID = rdb->rdb_HostID;
partition->pb_Flags = PED_CPU_TO_BE32(0);
/* TODO : use a scheme including the device name and the
* partition number, if it is possible */
_amiga_set_bstr("dhx", partition->pb_DriveName, 32);
partition->de_TableSize = PED_CPU_TO_BE32(19);
partition->de_SizeBlock = PED_CPU_TO_BE32(128);
partition->de_SecOrg = PED_CPU_TO_BE32(0);
partition->de_Surfaces = PED_CPU_TO_BE32(dev->hw_geom.heads);
partition->de_SectorPerBlock = PED_CPU_TO_BE32(1);
partition->de_BlocksPerTrack
= PED_CPU_TO_BE32(dev->hw_geom.sectors);
partition->de_Reserved = PED_CPU_TO_BE32(2);
partition->de_PreAlloc = PED_CPU_TO_BE32(0);
partition->de_Interleave = PED_CPU_TO_BE32(0);
partition->de_LowCyl = PED_CPU_TO_BE32(start/cyl);
partition->de_HighCyl = PED_CPU_TO_BE32((end+1)/cyl-1);
partition->de_NumBuffers = PED_CPU_TO_BE32(30);
partition->de_BufMemType = PED_CPU_TO_BE32(0);
partition->de_MaxTransfer = PED_CPU_TO_BE32(0x7fffffff);
partition->de_Mask = PED_CPU_TO_BE32(0xffffffff);
partition->de_BootPri = PED_CPU_TO_BE32(0);
partition->de_DosType = PED_CPU_TO_BE32(0x4c4e5800);
partition->de_Baud = PED_CPU_TO_BE32(0);
partition->de_Control = PED_CPU_TO_BE32(0);
partition->de_BootBlocks = PED_CPU_TO_BE32(0);
} else {
part->disk_specific = NULL;
}
return part;
}
static PedPartition*
amiga_partition_duplicate (const PedPartition* part)
{
PedPartition *new_part;
struct PartitionBlock *new_amiga_part;
struct PartitionBlock *old_amiga_part;
PED_ASSERT(part != NULL, return NULL);
PED_ASSERT(part->disk != NULL, return NULL);
PED_ASSERT(part->disk_specific != NULL, return NULL);
old_amiga_part = (struct PartitionBlock *) part->disk_specific;
new_part = ped_partition_new (part->disk, part->type,
part->fs_type, part->geom.start,
part->geom.end);
if (!new_part)
return NULL;
new_amiga_part = (struct PartitionBlock *) new_part->disk_specific;
memcpy (new_amiga_part, old_amiga_part, 256);
return new_part;
}
static void
amiga_partition_destroy (PedPartition* part)
{
PED_ASSERT (part != NULL, return);
if (ped_partition_is_active (part)) {
PED_ASSERT (part->disk_specific != NULL, return);
ped_free (part->disk_specific);
}
_ped_partition_free (part);
}
static int
amiga_partition_set_system (PedPartition* part,
const PedFileSystemType* fs_type)
{
struct PartitionBlock *partition;
PED_ASSERT (part != NULL, return 0);
PED_ASSERT (part->disk_specific != NULL, return 0);
partition = PART(part->disk_specific);
part->fs_type = fs_type;
if (!fs_type)
partition->de_DosType = PED_CPU_TO_BE32(0x4c4e5800); /* 'LNX\0' */
else if (!strcmp (fs_type->name, "ext2"))
partition->de_DosType = PED_CPU_TO_BE32(0x4c4e5800); /* 'LNX\0' */
else if (!strcmp (fs_type->name, "ext3"))
partition->de_DosType = PED_CPU_TO_BE32(0x45585403); /* 'EXT\3' */
else if (!strcmp (fs_type->name, "linux-swap"))
partition->de_DosType = PED_CPU_TO_BE32(0x53575000); /* 'SWP\0' */
else if (!strcmp (fs_type->name, "fat16"))
partition->de_DosType = PED_CPU_TO_BE32(0x46415400); /* 'FAT\0' */
else if (!strcmp (fs_type->name, "fat32"))
partition->de_DosType = PED_CPU_TO_BE32(0x46415401); /* 'FAT\1'*/
else if (!strcmp (fs_type->name, "hfs"))
partition->de_DosType = PED_CPU_TO_BE32(0x48465300); /* 'HFS\0' */
else if (!strcmp (fs_type->name, "jfs"))
partition->de_DosType = PED_CPU_TO_BE32(0x4a465300); /* 'JFS\0' */
else if (!strcmp (fs_type->name, "ntfs"))
partition->de_DosType = PED_CPU_TO_BE32(0x4e544653); /* 'NTFS' */
else if (!strcmp (fs_type->name, "reiserfs"))
partition->de_DosType = PED_CPU_TO_BE32(0x52465300); /* 'RFS\0' */
else if (!strcmp (fs_type->name, "sun-ufs"))
partition->de_DosType = PED_CPU_TO_BE32(0x53554653); /* 'SUFS' */
else if (!strcmp (fs_type->name, "hp-ufs"))
partition->de_DosType = PED_CPU_TO_BE32(0x48554653); /* 'HUFS' */
else if (!strcmp (fs_type->name, "xfs"))
partition->de_DosType = PED_CPU_TO_BE32(0x58465300); /* 'XFS\0' */
else
partition->de_DosType = PED_CPU_TO_BE32(0x00000000); /* unknown */
return 1;
}
static int
amiga_partition_set_flag (PedPartition* part, PedPartitionFlag flag, int state)
{
struct PartitionBlock *partition;
PED_ASSERT (part != NULL, return 0);
PED_ASSERT (part->disk_specific != NULL, return 0);
partition = PART(part->disk_specific);
switch (flag) {
case PED_PARTITION_BOOT:
if (state) partition->pb_Flags |= PED_CPU_TO_BE32(PBFF_BOOTABLE);
else partition->pb_Flags &= ~(PED_CPU_TO_BE32(PBFF_BOOTABLE));
return 1;
case PED_PARTITION_HIDDEN:
if (state) partition->pb_Flags |= PED_CPU_TO_BE32(PBFF_NOMOUNT);
else partition->pb_Flags &= ~(PED_CPU_TO_BE32(PBFF_NOMOUNT));
return 1;
case PED_PARTITION_RAID:
if (state) partition->pb_Flags |= PED_CPU_TO_BE32(PBFF_RAID);
else partition->pb_Flags &= ~(PED_CPU_TO_BE32(PBFF_RAID));
return 1;
case PED_PARTITION_LVM:
if (state) partition->pb_Flags |= PED_CPU_TO_BE32(PBFF_LVM);
else partition->pb_Flags &= ~(PED_CPU_TO_BE32(PBFF_LVM));
return 1;
default:
return 0;
}
}
static int
amiga_partition_get_flag (const PedPartition* part, PedPartitionFlag flag)
{
struct PartitionBlock *partition;
PED_ASSERT (part != NULL, return 0);
PED_ASSERT (part->disk_specific != NULL, return 0);
partition = PART(part->disk_specific);
switch (flag) {
case PED_PARTITION_BOOT:
return (partition->pb_Flags & PED_CPU_TO_BE32(PBFF_BOOTABLE));
case PED_PARTITION_HIDDEN:
return (partition->pb_Flags & PED_CPU_TO_BE32(PBFF_NOMOUNT));
case PED_PARTITION_RAID:
return (partition->pb_Flags & PED_CPU_TO_BE32(PBFF_RAID));
case PED_PARTITION_LVM:
return (partition->pb_Flags & PED_CPU_TO_BE32(PBFF_LVM));
default:
return 0;
}
}
static int
amiga_partition_is_flag_available (const PedPartition* part,
PedPartitionFlag flag)
{
switch (flag) {
case PED_PARTITION_BOOT:
case PED_PARTITION_HIDDEN:
case PED_PARTITION_RAID:
case PED_PARTITION_LVM:
return 1;
default:
return 0;
}
}
static void
amiga_partition_set_name (PedPartition* part, const char* name)
{
struct PartitionBlock *partition;
PED_ASSERT (part != NULL, return);
PED_ASSERT (part->disk_specific != NULL, return);
partition = PART(part->disk_specific);
_amiga_set_bstr(name, partition->pb_DriveName, 32);
}
static const char*
amiga_partition_get_name (const PedPartition* part)
{
struct PartitionBlock *partition;
PED_ASSERT (part != NULL, return 0);
PED_ASSERT (part->disk_specific != NULL, return 0);
partition = PART(part->disk_specific);
return _amiga_get_bstr(partition->pb_DriveName);
}
static PedConstraint*
_amiga_get_constraint (const PedDisk *disk)
{
PedDevice *dev = disk->dev;
PedAlignment start_align, end_align;
PedGeometry max_geom;
PedSector cyl_size = dev->hw_geom.sectors * dev->hw_geom.heads;
if (!ped_alignment_init(&start_align, 0, cyl_size))
return NULL;
if (!ped_alignment_init(&end_align, -1, cyl_size))
return NULL;
if (!ped_geometry_init(&max_geom, dev, MAX_RDB_BLOCK + 1,
dev->length - MAX_RDB_BLOCK - 1))
return NULL;
return ped_constraint_new (&start_align, &end_align,
&max_geom, &max_geom, 1, dev->length);
}
static int
amiga_partition_align (PedPartition* part, const PedConstraint* constraint)
{
PED_ASSERT (part != NULL, return 0);
PED_ASSERT (part->disk != NULL, return 0);
if (_ped_partition_attempt_align (part, constraint,
_amiga_get_constraint (part->disk)))
return 1;
#ifndef DISCOVER_ONLY
ped_exception_throw (PED_EXCEPTION_ERROR, PED_EXCEPTION_CANCEL,
_("Unable to satisfy all constraints on the partition."));
#endif
return 0;
}
static int
amiga_partition_enumerate (PedPartition* part)
{
int i;
PedPartition* p;
PED_ASSERT (part != NULL, return 0);
PED_ASSERT (part->disk != NULL, return 0);
/* never change the partition numbers */
if (part->num != -1)
return 1;
for (i = 1; i <= AMIGA_MAX_PARTITIONS; i++) {
p = ped_disk_get_partition (part->disk, i);
if (!p) {
part->num = i;
return 1;
}
}
/* failed to allocate a number */
#ifndef DISCOVER_ONLY
ped_exception_throw (PED_EXCEPTION_ERROR, PED_EXCEPTION_CANCEL,
_("Unable to allocate a partition number."));
#endif
return 0;
}
static int
amiga_alloc_metadata (PedDisk* disk)
{
PedPartition* new_part;
PedConstraint* constraint_any = NULL;
PED_ASSERT (disk != NULL, goto error);
PED_ASSERT (disk->dev != NULL, goto error);
constraint_any = ped_constraint_any (disk->dev);
/* Allocate space for the RDB */
new_part = ped_partition_new (disk, PED_PARTITION_METADATA, NULL,
0, MAX_RDB_BLOCK);
if (!new_part)
goto error;
if (!ped_disk_add_partition (disk, new_part, constraint_any)) {
ped_partition_destroy (new_part);
goto error;
}
ped_constraint_destroy (constraint_any);
return 1;
error:
ped_constraint_destroy (constraint_any);
return 0;
}
static int
amiga_get_max_primary_partition_count (const PedDisk* disk)
{
return AMIGA_MAX_PARTITIONS;
}
static PedDiskOps amiga_disk_ops = {
probe: amiga_probe,
#ifndef DISCOVER_ONLY
clobber: amiga_clobber,
#else
clobber: NULL,
#endif
alloc: amiga_alloc,
duplicate: amiga_duplicate,
free: amiga_free,
read: amiga_read,
#ifndef DISCOVER_ONLY
write: amiga_write,
#else
write: NULL,
#endif
partition_new: amiga_partition_new,
partition_duplicate: amiga_partition_duplicate,
partition_destroy: amiga_partition_destroy,
partition_set_system: amiga_partition_set_system,
partition_set_flag: amiga_partition_set_flag,
partition_get_flag: amiga_partition_get_flag,
partition_is_flag_available:
amiga_partition_is_flag_available,
partition_set_name: amiga_partition_set_name,
partition_get_name: amiga_partition_get_name,
partition_align: amiga_partition_align,
partition_enumerate: amiga_partition_enumerate,
alloc_metadata: amiga_alloc_metadata,
get_max_primary_partition_count:
amiga_get_max_primary_partition_count
};
static PedDiskType amiga_disk_type = {
next: NULL,
name: "amiga",
ops: &amiga_disk_ops,
features: PED_DISK_TYPE_PARTITION_NAME
};
void
ped_disk_amiga_init ()
{
PED_ASSERT (sizeof (struct AmigaBlock) != 3, return);
PED_ASSERT (sizeof (struct RigidDiskBlock) != 64, return);
PED_ASSERT (sizeof (struct PartitionBlock) != 64, return);
PED_ASSERT (sizeof (struct LinkedBlock) != 5, return);
PED_ASSERT (sizeof (struct Linked2Block) != 18, return);
ped_disk_type_register (&amiga_disk_type);
}
void
ped_disk_amiga_done ()
{
ped_disk_type_unregister (&amiga_disk_type);
}