blob: 9d8114c4ecfaf87e4c6bf5c6910fffe92ce35af0 [file] [log] [blame] [edit]
/*
* Copyright (c) 2011 The Chromium OS Authors.
*
* SPDX-License-Identifier: GPL-2.0+
*/
/* Tegra clock control functions */
#ifndef _TEGRA_CLOCK_H_
#define _TEGRA_CLOCK_H_
/* Set of oscillator frequencies supported in the internal API. */
enum clock_osc_freq {
/* All in MHz, so 13_0 is 13.0MHz */
CLOCK_OSC_FREQ_13_0,
CLOCK_OSC_FREQ_19_2,
CLOCK_OSC_FREQ_12_0,
CLOCK_OSC_FREQ_26_0,
CLOCK_OSC_FREQ_COUNT,
};
/*
* Note that no Tegra clock register actually uses all of bits 31:28 as
* the mux field. Rather, bits 30:28, 29:28, or 28 are used. However, in
* those cases, nothing is stored in the bits about the mux field, so it's
* safe to pretend that the mux field extends all the way to the end of the
* register. As such, the U-Boot clock driver is currently a bit lazy, and
* doesn't distinguish between 31:28, 30:28, 29:28 and 28; it just lumps
* them all together and pretends they're all 31:28.
*/
enum {
MASK_BITS_31_30,
MASK_BITS_31_29,
MASK_BITS_31_28,
};
#include <asm/arch/clock-tables.h>
/* PLL stabilization delay in usec */
#define CLOCK_PLL_STABLE_DELAY_US 300
/* return the current oscillator clock frequency */
enum clock_osc_freq clock_get_osc_freq(void);
/**
* Start PLL using the provided configuration parameters.
*
* @param id clock id
* @param divm input divider
* @param divn feedback divider
* @param divp post divider 2^n
* @param cpcon charge pump setup control
* @param lfcon loop filter setup control
*
* @returns monotonic time in us that the PLL will be stable
*/
unsigned long clock_start_pll(enum clock_id id, u32 divm, u32 divn,
u32 divp, u32 cpcon, u32 lfcon);
/**
* Set PLL output frequency
*
* @param clkid clock id
* @param pllout pll output id
* @param rate desired output rate
*
* @return 0 if ok, -1 on error (invalid clock id or no suitable divider)
*/
int clock_set_pllout(enum clock_id clkid, enum pll_out_id pllout,
unsigned rate);
/**
* Read low-level parameters of a PLL.
*
* @param id clock id to read (note: USB is not supported)
* @param divm returns input divider
* @param divn returns feedback divider
* @param divp returns post divider 2^n
* @param cpcon returns charge pump setup control
* @param lfcon returns loop filter setup control
*
* @returns 0 if ok, -1 on error (invalid clock id)
*/
int clock_ll_read_pll(enum clock_id clkid, u32 *divm, u32 *divn,
u32 *divp, u32 *cpcon, u32 *lfcon);
/*
* Enable a clock
*
* @param id clock id
*/
void clock_enable(enum periph_id clkid);
/*
* Disable a clock
*
* @param id clock id
*/
void clock_disable(enum periph_id clkid);
/*
* Set whether a clock is enabled or disabled.
*
* @param id clock id
* @param enable 1 to enable, 0 to disable
*/
void clock_set_enable(enum periph_id clkid, int enable);
/**
* Reset a peripheral. This puts it in reset, waits for a delay, then takes
* it out of reset and waits for th delay again.
*
* @param periph_id peripheral to reset
* @param us_delay time to delay in microseconds
*/
void reset_periph(enum periph_id periph_id, int us_delay);
/**
* Put a peripheral into or out of reset.
*
* @param periph_id peripheral to reset
* @param enable 1 to put into reset, 0 to take out of reset
*/
void reset_set_enable(enum periph_id periph_id, int enable);
/* CLK_RST_CONTROLLER_RST_CPU_CMPLX_SET/CLR_0 */
enum crc_reset_id {
/* Things we can hold in reset for each CPU */
crc_rst_cpu = 1,
crc_rst_de = 1 << 4, /* What is de? */
crc_rst_watchdog = 1 << 8,
crc_rst_debug = 1 << 12,
};
/**
* Put parts of the CPU complex into or out of reset.\
*
* @param cpu cpu number (0 or 1 on Tegra2, 0-3 on Tegra3)
* @param which which parts of the complex to affect (OR of crc_reset_id)
* @param reset 1 to assert reset, 0 to de-assert
*/
void reset_cmplx_set_enable(int cpu, int which, int reset);
/**
* Set the source for a peripheral clock. This plus the divisor sets the
* clock rate. You need to look up the datasheet to see the meaning of the
* source parameter as it changes for each peripheral.
*
* Warning: This function is only for use pre-relocation. Please use
* clock_start_periph_pll() instead.
*
* @param periph_id peripheral to adjust
* @param source source clock (0, 1, 2 or 3)
*/
void clock_ll_set_source(enum periph_id periph_id, unsigned source);
/**
* Set the source and divisor for a peripheral clock. This sets the
* clock rate. You need to look up the datasheet to see the meaning of the
* source parameter as it changes for each peripheral.
*
* Warning: This function is only for use pre-relocation. Please use
* clock_start_periph_pll() instead.
*
* @param periph_id peripheral to adjust
* @param source source clock (0, 1, 2 or 3)
* @param divisor divisor value to use
*/
void clock_ll_set_source_divisor(enum periph_id periph_id, unsigned source,
unsigned divisor);
/**
* Start a peripheral PLL clock at the given rate. This also resets the
* peripheral.
*
* @param periph_id peripheral to start
* @param parent PLL id of required parent clock
* @param rate Required clock rate in Hz
* @return rate selected in Hz, or -1U if something went wrong
*/
unsigned clock_start_periph_pll(enum periph_id periph_id,
enum clock_id parent, unsigned rate);
/**
* Returns the rate of a peripheral clock in Hz. Since the caller almost
* certainly knows the parent clock (having just set it) we require that
* this be passed in so we don't need to work it out.
*
* @param periph_id peripheral to start
* @param parent PLL id of parent clock (used to calculate rate, you
* must know this!)
* @return clock rate of peripheral in Hz
*/
unsigned long clock_get_periph_rate(enum periph_id periph_id,
enum clock_id parent);
/**
* Adjust peripheral PLL clock to the given rate. This does not reset the
* peripheral. If a second stage divisor is not available, pass NULL for
* extra_div. If it is available, then this parameter will return the
* divisor selected (which will be a power of 2 from 1 to 256).
*
* @param periph_id peripheral to start
* @param parent PLL id of required parent clock
* @param rate Required clock rate in Hz
* @param extra_div value for the second-stage divisor (NULL if one is
not available)
* @return rate selected in Hz, or -1U if something went wrong
*/
unsigned clock_adjust_periph_pll_div(enum periph_id periph_id,
enum clock_id parent, unsigned rate, int *extra_div);
/**
* Returns the clock rate of a specified clock, in Hz.
*
* @param parent PLL id of clock to check
* @return rate of clock in Hz
*/
unsigned clock_get_rate(enum clock_id clkid);
/**
* Start up a UART using low-level calls
*
* Prior to relocation clock_start_periph_pll() cannot be called. This
* function provides a way to set up a UART using low-level calls which
* do not require BSS.
*
* @param periph_id Peripheral ID of UART to enable (e,g, PERIPH_ID_UART1)
*/
void clock_ll_start_uart(enum periph_id periph_id);
/**
* Decode a peripheral ID from a device tree node.
*
* This works by looking up the peripheral's 'clocks' node and reading out
* the second cell, which is the clock number / peripheral ID.
*
* @param blob FDT blob to use
* @param node Node to look at
* @return peripheral ID, or PERIPH_ID_NONE if none
*/
enum periph_id clock_decode_periph_id(const void *blob, int node);
/**
* Checks if the oscillator bypass is enabled (XOBP bit)
*
* @return 1 if bypass is enabled, 0 if not
*/
int clock_get_osc_bypass(void);
/*
* Checks that clocks are valid and prints a warning if not
*
* @return 0 if ok, -1 on error
*/
int clock_verify(void);
/* Initialize the clocks */
void clock_init(void);
/* Initialize the PLLs */
void clock_early_init(void);
/* Returns a pointer to the clock source register for a peripheral */
u32 *get_periph_source_reg(enum periph_id periph_id);
/**
* Given a peripheral ID and the required source clock, this returns which
* value should be programmed into the source mux for that peripheral.
*
* There is special code here to handle the one source type with 5 sources.
*
* @param periph_id peripheral to start
* @param source PLL id of required parent clock
* @param mux_bits Set to number of bits in mux register: 2 or 4
* @param divider_bits Set to number of divider bits (8 or 16)
* @return mux value (0-4, or -1 if not found)
*/
int get_periph_clock_source(enum periph_id periph_id,
enum clock_id parent, int *mux_bits, int *divider_bits);
/*
* Convert a device tree clock ID to our peripheral ID. They are mostly
* the same but we are very cautious so we check that a valid clock ID is
* provided.
*
* @param clk_id Clock ID according to tegra30 device tree binding
* @return peripheral ID, or PERIPH_ID_NONE if the clock ID is invalid
*/
enum periph_id clk_id_to_periph_id(int clk_id);
/**
* Set the output frequency you want for each PLL clock.
* PLL output frequencies are programmed by setting their N, M and P values.
* The governing equations are:
* VCO = (Fi / m) * n, Fo = VCO / (2^p)
* where Fo is the output frequency from the PLL.
* Example: Set the output frequency to 216Mhz(Fo) with 12Mhz OSC(Fi)
* 216Mhz = ((12Mhz / m) * n) / (2^p) so n=432,m=12,p=1
* Please see Tegra TRM section 5.3 to get the detail for PLL Programming
*
* @param n PLL feedback divider(DIVN)
* @param m PLL input divider(DIVN)
* @param p post divider(DIVP)
* @param cpcon base PLL charge pump(CPCON)
* @return 0 if ok, -1 on error (the requested PLL is incorrect and cannot
* be overriden), 1 if PLL is already correct
*/
int clock_set_rate(enum clock_id clkid, u32 n, u32 m, u32 p, u32 cpcon);
/* return 1 if a peripheral ID is in range */
#define clock_type_id_isvalid(id) ((id) >= 0 && \
(id) < CLOCK_TYPE_COUNT)
/* return 1 if a periphc_internal_id is in range */
#define periphc_internal_id_isvalid(id) ((id) >= 0 && \
(id) < PERIPHC_COUNT)
/* SoC-specific TSC init */
void arch_timer_init(void);
void tegra30_set_up_pllp(void);
#endif /* _TEGRA_CLOCK_H_ */