blob: 264ea9c77f6e24a2dcb87c9233cdc7de85460686 [file] [log] [blame] [edit]
/*
* Copyright (C) 2008 RuggedCom, Inc.
* Richard Retanubun <RichardRetanubun@RuggedCom.com>
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
/*
* Problems with CONFIG_SYS_64BIT_LBA:
*
* struct disk_partition.start in include/part.h is sized as ulong.
* When CONFIG_SYS_64BIT_LBA is activated, lbaint_t changes from ulong to uint64_t.
* For now, it is cast back to ulong at assignment.
*
* This limits the maximum size of addressable storage to < 2 Terra Bytes
*/
#include <common.h>
#include <command.h>
#include <ide.h>
#include <malloc.h>
#include "part_efi.h"
#include <linux/ctype.h>
#if defined(CONFIG_CMD_IDE) || \
defined(CONFIG_CMD_SATA) || \
defined(CONFIG_CMD_SCSI) || \
defined(CONFIG_CMD_USB) || \
defined(CONFIG_MMC) || \
defined(CONFIG_SYSTEMACE)
/* Convert char[2] in little endian format to the host format integer
*/
static inline unsigned short le16_to_int(unsigned char *le16)
{
return ((le16[1] << 8) + le16[0]);
}
/* Convert char[4] in little endian format to the host format integer
*/
static inline unsigned long le32_to_int(unsigned char *le32)
{
return ((le32[3] << 24) + (le32[2] << 16) + (le32[1] << 8) + le32[0]);
}
/* Convert char[8] in little endian format to the host format integer
*/
static inline unsigned long long le64_to_int(unsigned char *le64)
{
return (((unsigned long long)le64[7] << 56) +
((unsigned long long)le64[6] << 48) +
((unsigned long long)le64[5] << 40) +
((unsigned long long)le64[4] << 32) +
((unsigned long long)le64[3] << 24) +
((unsigned long long)le64[2] << 16) +
((unsigned long long)le64[1] << 8) +
(unsigned long long)le64[0]);
}
/**
* efi_crc32() - EFI version of crc32 function
* @buf: buffer to calculate crc32 of
* @len - length of buf
*
* Description: Returns EFI-style CRC32 value for @buf
*/
static inline unsigned long efi_crc32(const void *buf, unsigned long len)
{
return crc32(0, buf, len);
}
/*
* Private function prototypes
*/
static int pmbr_part_valid(struct partition *part);
static int is_pmbr_valid(legacy_mbr * mbr);
static int is_gpt_valid(block_dev_desc_t * dev_desc, unsigned long long lba,
gpt_header * pgpt_head, gpt_entry ** pgpt_pte);
static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc,
gpt_header * pgpt_head);
static int is_pte_valid(gpt_entry * pte);
static char *print_efiname(gpt_entry *pte)
{
static char name[PARTNAME_SZ + 1];
int i;
for (i = 0; i < PARTNAME_SZ; i++) {
u8 c;
c = pte->partition_name[i] & 0xff;
c = (c && !isprint(c)) ? '.' : c;
name[i] = c;
}
name[PARTNAME_SZ] = 0;
return name;
}
/*
* Public Functions (include/part.h)
*/
void print_part_efi(block_dev_desc_t * dev_desc)
{
ALLOC_CACHE_ALIGN_BUFFER(gpt_header, gpt_head, 1);
gpt_entry *gpt_pte = NULL;
int i = 0;
if (!dev_desc) {
printf("%s: Invalid Argument(s)\n", __func__);
return;
}
/* This function validates AND fills in the GPT header and PTE */
if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA,
gpt_head, &gpt_pte) != 1) {
printf("%s: *** ERROR: Invalid GPT ***\n", __func__);
return;
}
debug("%s: gpt-entry at %p\n", __func__, gpt_pte);
printf("Part\tName\t\t\tStart LBA\tEnd LBA\n");
for (i = 0; i < le32_to_int(gpt_head->num_partition_entries); i++) {
if (is_pte_valid(&gpt_pte[i])) {
printf("%3d\t%-18s\t0x%08llX\t0x%08llX\n", (i + 1),
print_efiname(&gpt_pte[i]),
le64_to_int(gpt_pte[i].starting_lba),
le64_to_int(gpt_pte[i].ending_lba));
} else {
break; /* Stop at the first non valid PTE */
}
}
/* Remember to free pte */
free(gpt_pte);
return;
}
#ifdef CONFIG_PARTITION_UUIDS
static void uuid_string(unsigned char *uuid, char *str)
{
static const u8 le[16] = {3, 2, 1, 0, 5, 4, 7, 6, 8, 9, 10, 11,
12, 13, 14, 15};
int i;
for (i = 0; i < 16; i++) {
sprintf(str, "%02x", uuid[le[i]]);
str += 2;
switch (i) {
case 3:
case 5:
case 7:
case 9:
*str++ = '-';
break;
}
}
}
#endif
int get_partition_info_efi(block_dev_desc_t * dev_desc, int part,
disk_partition_t * info)
{
ALLOC_CACHE_ALIGN_BUFFER(gpt_header, gpt_head, 1);
gpt_entry *gpt_pte = NULL;
/* "part" argument must be at least 1 */
if (!dev_desc || !info || part < 1) {
printf("%s: Invalid Argument(s)\n", __func__);
return -1;
}
/* This function validates AND fills in the GPT header and PTE */
if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA,
gpt_head, &gpt_pte) != 1) {
printf("%s: *** ERROR: Invalid GPT ***\n", __func__);
return -1;
}
if (part > le32_to_int(gpt_head->num_partition_entries) ||
!is_pte_valid(&gpt_pte[part - 1])) {
printf("%s: *** ERROR: Invalid partition number %d ***\n",
__func__, part);
return -1;
}
/* The ulong casting limits the maximum disk size to 2 TB */
info->start = (ulong) le64_to_int(gpt_pte[part - 1].starting_lba);
/* The ending LBA is inclusive, to calculate size, add 1 to it */
info->size = ((ulong)le64_to_int(gpt_pte[part - 1].ending_lba) + 1)
- info->start;
info->blksz = GPT_BLOCK_SIZE;
sprintf((char *)info->name, "%s",
print_efiname(&gpt_pte[part - 1]));
sprintf((char *)info->type, "U-Boot");
#ifdef CONFIG_PARTITION_UUIDS
uuid_string(gpt_pte[part - 1].unique_partition_guid.b, info->uuid);
#endif
debug("%s: start 0x%lX, size 0x%lX, name %s", __func__,
info->start, info->size, info->name);
/* Remember to free pte */
free(gpt_pte);
return 0;
}
int test_part_efi(block_dev_desc_t * dev_desc)
{
ALLOC_CACHE_ALIGN_BUFFER(legacy_mbr, legacymbr, 1);
/* Read legacy MBR from block 0 and validate it */
if ((dev_desc->block_read(dev_desc->dev, 0, 1, (ulong *)legacymbr) != 1)
|| (is_pmbr_valid(legacymbr) != 1)) {
return -1;
}
return 0;
}
/*
* Private functions
*/
/*
* pmbr_part_valid(): Check for EFI partition signature
*
* Returns: 1 if EFI GPT partition type is found.
*/
static int pmbr_part_valid(struct partition *part)
{
if (part->sys_ind == EFI_PMBR_OSTYPE_EFI_GPT &&
le32_to_int(part->start_sect) == 1UL) {
return 1;
}
return 0;
}
/*
* is_pmbr_valid(): test Protective MBR for validity
*
* Returns: 1 if PMBR is valid, 0 otherwise.
* Validity depends on two things:
* 1) MSDOS signature is in the last two bytes of the MBR
* 2) One partition of type 0xEE is found, checked by pmbr_part_valid()
*/
static int is_pmbr_valid(legacy_mbr * mbr)
{
int i = 0;
if (!mbr || le16_to_int(mbr->signature) != MSDOS_MBR_SIGNATURE) {
return 0;
}
for (i = 0; i < 4; i++) {
if (pmbr_part_valid(&mbr->partition_record[i])) {
return 1;
}
}
return 0;
}
/**
* is_gpt_valid() - tests one GPT header and PTEs for validity
*
* lba is the logical block address of the GPT header to test
* gpt is a GPT header ptr, filled on return.
* ptes is a PTEs ptr, filled on return.
*
* Description: returns 1 if valid, 0 on error.
* If valid, returns pointers to PTEs.
*/
static int is_gpt_valid(block_dev_desc_t * dev_desc, unsigned long long lba,
gpt_header * pgpt_head, gpt_entry ** pgpt_pte)
{
unsigned char crc32_backup[4] = { 0 };
unsigned long calc_crc32;
unsigned long long lastlba;
if (!dev_desc || !pgpt_head) {
printf("%s: Invalid Argument(s)\n", __func__);
return 0;
}
/* Read GPT Header from device */
if (dev_desc->block_read(dev_desc->dev, lba, 1, pgpt_head) != 1) {
printf("*** ERROR: Can't read GPT header ***\n");
return 0;
}
/* Check the GPT header signature */
if (le64_to_int(pgpt_head->signature) != GPT_HEADER_SIGNATURE) {
printf("GUID Partition Table Header signature is wrong:"
"0x%llX != 0x%llX\n",
(unsigned long long)le64_to_int(pgpt_head->signature),
(unsigned long long)GPT_HEADER_SIGNATURE);
return 0;
}
/* Check the GUID Partition Table CRC */
memcpy(crc32_backup, pgpt_head->header_crc32, sizeof(crc32_backup));
memset(pgpt_head->header_crc32, 0, sizeof(pgpt_head->header_crc32));
calc_crc32 = efi_crc32((const unsigned char *)pgpt_head,
le32_to_int(pgpt_head->header_size));
memcpy(pgpt_head->header_crc32, crc32_backup, sizeof(crc32_backup));
if (calc_crc32 != le32_to_int(crc32_backup)) {
printf("GUID Partition Table Header CRC is wrong:"
"0x%08lX != 0x%08lX\n",
le32_to_int(crc32_backup), calc_crc32);
return 0;
}
/* Check that the my_lba entry points to the LBA that contains the GPT */
if (le64_to_int(pgpt_head->my_lba) != lba) {
printf("GPT: my_lba incorrect: %llX != %llX\n",
(unsigned long long)le64_to_int(pgpt_head->my_lba),
(unsigned long long)lba);
return 0;
}
/* Check the first_usable_lba and last_usable_lba are within the disk. */
lastlba = (unsigned long long)dev_desc->lba;
if (le64_to_int(pgpt_head->first_usable_lba) > lastlba) {
printf("GPT: first_usable_lba incorrect: %llX > %llX\n",
le64_to_int(pgpt_head->first_usable_lba), lastlba);
return 0;
}
if (le64_to_int(pgpt_head->last_usable_lba) > lastlba) {
printf("GPT: last_usable_lba incorrect: %llX > %llX\n",
le64_to_int(pgpt_head->last_usable_lba), lastlba);
return 0;
}
debug("GPT: first_usable_lba: %llX last_usable_lba %llX last lba %llX\n",
le64_to_int(pgpt_head->first_usable_lba),
le64_to_int(pgpt_head->last_usable_lba), lastlba);
/* Read and allocate Partition Table Entries */
*pgpt_pte = alloc_read_gpt_entries(dev_desc, pgpt_head);
if (*pgpt_pte == NULL) {
printf("GPT: Failed to allocate memory for PTE\n");
return 0;
}
/* Check the GUID Partition Table Entry Array CRC */
calc_crc32 = efi_crc32((const unsigned char *)*pgpt_pte,
le32_to_int(pgpt_head->num_partition_entries) *
le32_to_int(pgpt_head->sizeof_partition_entry));
if (calc_crc32 != le32_to_int(pgpt_head->partition_entry_array_crc32)) {
printf("GUID Partition Table Entry Array CRC is wrong:"
"0x%08lX != 0x%08lX\n",
le32_to_int(pgpt_head->partition_entry_array_crc32),
calc_crc32);
free(*pgpt_pte);
return 0;
}
/* We're done, all's well */
return 1;
}
/**
* alloc_read_gpt_entries(): reads partition entries from disk
* @dev_desc
* @gpt - GPT header
*
* Description: Returns ptes on success, NULL on error.
* Allocates space for PTEs based on information found in @gpt.
* Notes: remember to free pte when you're done!
*/
static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc,
gpt_header * pgpt_head)
{
size_t count = 0;
gpt_entry *pte = NULL;
if (!dev_desc || !pgpt_head) {
printf("%s: Invalid Argument(s)\n", __func__);
return NULL;
}
count = le32_to_int(pgpt_head->num_partition_entries) *
le32_to_int(pgpt_head->sizeof_partition_entry);
debug("%s: count = %lu * %lu = %u\n", __func__,
le32_to_int(pgpt_head->num_partition_entries),
le32_to_int(pgpt_head->sizeof_partition_entry), count);
/* Allocate memory for PTE, remember to FREE */
if (count != 0) {
pte = memalign(ARCH_DMA_MINALIGN, count);
}
if (count == 0 || pte == NULL) {
printf("%s: ERROR: Can't allocate 0x%X bytes for GPT Entries\n",
__func__, count);
return NULL;
}
/* Read GPT Entries from device */
if (dev_desc->block_read (dev_desc->dev,
(unsigned long)le64_to_int(pgpt_head->partition_entry_lba),
(lbaint_t) (count / GPT_BLOCK_SIZE), pte)
!= (count / GPT_BLOCK_SIZE)) {
printf("*** ERROR: Can't read GPT Entries ***\n");
free(pte);
return NULL;
}
return pte;
}
/**
* is_pte_valid(): validates a single Partition Table Entry
* @gpt_entry - Pointer to a single Partition Table Entry
*
* Description: returns 1 if valid, 0 on error.
*/
static int is_pte_valid(gpt_entry * pte)
{
efi_guid_t unused_guid;
if (!pte) {
printf("%s: Invalid Argument(s)\n", __func__);
return 0;
}
/* Only one validation for now:
* The GUID Partition Type != Unused Entry (ALL-ZERO)
*/
memset(unused_guid.b, 0, sizeof(unused_guid.b));
if (memcmp(pte->partition_type_guid.b, unused_guid.b,
sizeof(unused_guid.b)) == 0) {
debug("%s: Found an unused PTE GUID at 0x%08X\n", __func__,
(unsigned int)pte);
return 0;
} else {
return 1;
}
}
#endif