blob: d0def7fc2848dd899281b2bb2527f05fa79ec7a9 [file] [log] [blame] [edit]
/*
* Generic process-grouping system.
*
* Based originally on the cpuset system, extracted by Paul Menage
* Copyright (C) 2006 Google, Inc
*
* Notifications support
* Copyright (C) 2009 Nokia Corporation
* Author: Kirill A. Shutemov
*
* Copyright notices from the original cpuset code:
* --------------------------------------------------
* Copyright (C) 2003 BULL SA.
* Copyright (C) 2004-2006 Silicon Graphics, Inc.
*
* Portions derived from Patrick Mochel's sysfs code.
* sysfs is Copyright (c) 2001-3 Patrick Mochel
*
* 2003-10-10 Written by Simon Derr.
* 2003-10-22 Updates by Stephen Hemminger.
* 2004 May-July Rework by Paul Jackson.
* ---------------------------------------------------
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file COPYING in the main directory of the Linux
* distribution for more details.
*/
#include <linux/cgroup.h>
#include <linux/cred.h>
#include <linux/ctype.h>
#include <linux/errno.h>
#include <linux/init_task.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
#include <linux/rcupdate.h>
#include <linux/sched.h>
#include <linux/backing-dev.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/magic.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/sort.h>
#include <linux/kmod.h>
#include <linux/module.h>
#include <linux/delayacct.h>
#include <linux/cgroupstats.h>
#include <linux/hashtable.h>
#include <linux/namei.h>
#include <linux/pid_namespace.h>
#include <linux/idr.h>
#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
#include <linux/eventfd.h>
#include <linux/poll.h>
#include <linux/flex_array.h> /* used in cgroup_attach_task */
#include <linux/kthread.h>
#include <linux/atomic.h>
/* css deactivation bias, makes css->refcnt negative to deny new trygets */
#define CSS_DEACT_BIAS INT_MIN
/*
* cgroup_mutex is the master lock. Any modification to cgroup or its
* hierarchy must be performed while holding it.
*
* cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
* cgroupfs_root of any cgroup hierarchy - subsys list, flags,
* release_agent_path and so on. Modifying requires both cgroup_mutex and
* cgroup_root_mutex. Readers can acquire either of the two. This is to
* break the following locking order cycle.
*
* A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
* B. namespace_sem -> cgroup_mutex
*
* B happens only through cgroup_show_options() and using cgroup_root_mutex
* breaks it.
*/
#ifdef CONFIG_PROVE_RCU
DEFINE_MUTEX(cgroup_mutex);
EXPORT_SYMBOL_GPL(cgroup_mutex); /* only for task_subsys_state_check() */
#else
static DEFINE_MUTEX(cgroup_mutex);
#endif
static DEFINE_MUTEX(cgroup_root_mutex);
/*
* cgroup destruction makes heavy use of work items and there can be a lot
* of concurrent destructions. Use a separate workqueue so that cgroup
* destruction work items don't end up filling up max_active of system_wq
* which may lead to deadlock.
*/
static struct workqueue_struct *cgroup_destroy_wq;
/*
* Generate an array of cgroup subsystem pointers. At boot time, this is
* populated with the built in subsystems, and modular subsystems are
* registered after that. The mutable section of this array is protected by
* cgroup_mutex.
*/
#define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
#define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
#include <linux/cgroup_subsys.h>
};
/*
* The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
* subsystems that are otherwise unattached - it never has more than a
* single cgroup, and all tasks are part of that cgroup.
*/
static struct cgroupfs_root rootnode;
/*
* cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
*/
struct cfent {
struct list_head node;
struct dentry *dentry;
struct cftype *type;
/* file xattrs */
struct simple_xattrs xattrs;
};
/*
* CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
* cgroup_subsys->use_id != 0.
*/
#define CSS_ID_MAX (65535)
struct css_id {
/*
* The css to which this ID points. This pointer is set to valid value
* after cgroup is populated. If cgroup is removed, this will be NULL.
* This pointer is expected to be RCU-safe because destroy()
* is called after synchronize_rcu(). But for safe use, css_tryget()
* should be used for avoiding race.
*/
struct cgroup_subsys_state __rcu *css;
/*
* ID of this css.
*/
unsigned short id;
/*
* Depth in hierarchy which this ID belongs to.
*/
unsigned short depth;
/*
* ID is freed by RCU. (and lookup routine is RCU safe.)
*/
struct rcu_head rcu_head;
/*
* Hierarchy of CSS ID belongs to.
*/
unsigned short stack[0]; /* Array of Length (depth+1) */
};
/*
* cgroup_event represents events which userspace want to receive.
*/
struct cgroup_event {
/*
* Cgroup which the event belongs to.
*/
struct cgroup *cgrp;
/*
* Control file which the event associated.
*/
struct cftype *cft;
/*
* eventfd to signal userspace about the event.
*/
struct eventfd_ctx *eventfd;
/*
* Each of these stored in a list by the cgroup.
*/
struct list_head list;
/*
* All fields below needed to unregister event when
* userspace closes eventfd.
*/
poll_table pt;
wait_queue_head_t *wqh;
wait_queue_t wait;
struct work_struct remove;
};
/* The list of hierarchy roots */
static LIST_HEAD(roots);
static int root_count;
static DEFINE_IDA(hierarchy_ida);
static int next_hierarchy_id;
static DEFINE_SPINLOCK(hierarchy_id_lock);
/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
#define dummytop (&rootnode.top_cgroup)
static struct cgroup_name root_cgroup_name = { .name = "/" };
/* This flag indicates whether tasks in the fork and exit paths should
* check for fork/exit handlers to call. This avoids us having to do
* extra work in the fork/exit path if none of the subsystems need to
* be called.
*/
static int need_forkexit_callback __read_mostly;
static int cgroup_destroy_locked(struct cgroup *cgrp);
static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
struct cftype cfts[], bool is_add);
static int css_unbias_refcnt(int refcnt)
{
return refcnt >= 0 ? refcnt : refcnt - CSS_DEACT_BIAS;
}
/* the current nr of refs, always >= 0 whether @css is deactivated or not */
static int css_refcnt(struct cgroup_subsys_state *css)
{
int v = atomic_read(&css->refcnt);
return css_unbias_refcnt(v);
}
/* convenient tests for these bits */
inline int cgroup_is_removed(const struct cgroup *cgrp)
{
return test_bit(CGRP_REMOVED, &cgrp->flags);
}
/**
* cgroup_is_descendant - test ancestry
* @cgrp: the cgroup to be tested
* @ancestor: possible ancestor of @cgrp
*
* Test whether @cgrp is a descendant of @ancestor. It also returns %true
* if @cgrp == @ancestor. This function is safe to call as long as @cgrp
* and @ancestor are accessible.
*/
bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
{
while (cgrp) {
if (cgrp == ancestor)
return true;
cgrp = cgrp->parent;
}
return false;
}
EXPORT_SYMBOL_GPL(cgroup_is_descendant);
static int cgroup_is_releasable(const struct cgroup *cgrp)
{
const int bits =
(1 << CGRP_RELEASABLE) |
(1 << CGRP_NOTIFY_ON_RELEASE);
return (cgrp->flags & bits) == bits;
}
static int notify_on_release(const struct cgroup *cgrp)
{
return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
}
/*
* for_each_subsys() allows you to iterate on each subsystem attached to
* an active hierarchy
*/
#define for_each_subsys(_root, _ss) \
list_for_each_entry(_ss, &_root->subsys_list, sibling)
/* for_each_active_root() allows you to iterate across the active hierarchies */
#define for_each_active_root(_root) \
list_for_each_entry(_root, &roots, root_list)
static inline struct cgroup *__d_cgrp(struct dentry *dentry)
{
return dentry->d_fsdata;
}
static inline struct cfent *__d_cfe(struct dentry *dentry)
{
return dentry->d_fsdata;
}
static inline struct cftype *__d_cft(struct dentry *dentry)
{
return __d_cfe(dentry)->type;
}
/**
* cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
* @cgrp: the cgroup to be checked for liveness
*
* On success, returns true; the mutex should be later unlocked. On
* failure returns false with no lock held.
*/
static bool cgroup_lock_live_group(struct cgroup *cgrp)
{
mutex_lock(&cgroup_mutex);
if (cgroup_is_removed(cgrp)) {
mutex_unlock(&cgroup_mutex);
return false;
}
return true;
}
/* the list of cgroups eligible for automatic release. Protected by
* release_list_lock */
static LIST_HEAD(release_list);
static DEFINE_RAW_SPINLOCK(release_list_lock);
static void cgroup_release_agent(struct work_struct *work);
static DECLARE_WORK(release_agent_work, cgroup_release_agent);
static void check_for_release(struct cgroup *cgrp);
/* Link structure for associating css_set objects with cgroups */
struct cg_cgroup_link {
/*
* List running through cg_cgroup_links associated with a
* cgroup, anchored on cgroup->css_sets
*/
struct list_head cgrp_link_list;
struct cgroup *cgrp;
/*
* List running through cg_cgroup_links pointing at a
* single css_set object, anchored on css_set->cg_links
*/
struct list_head cg_link_list;
struct css_set *cg;
};
/* The default css_set - used by init and its children prior to any
* hierarchies being mounted. It contains a pointer to the root state
* for each subsystem. Also used to anchor the list of css_sets. Not
* reference-counted, to improve performance when child cgroups
* haven't been created.
*/
static struct css_set init_css_set;
static struct cg_cgroup_link init_css_set_link;
static int cgroup_init_idr(struct cgroup_subsys *ss,
struct cgroup_subsys_state *css);
/* css_set_lock protects the list of css_set objects, and the
* chain of tasks off each css_set. Nests outside task->alloc_lock
* due to cgroup_iter_start() */
static DEFINE_RWLOCK(css_set_lock);
static int css_set_count;
/*
* hash table for cgroup groups. This improves the performance to find
* an existing css_set. This hash doesn't (currently) take into
* account cgroups in empty hierarchies.
*/
#define CSS_SET_HASH_BITS 7
static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
{
int i;
unsigned long key = 0UL;
for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
key += (unsigned long)css[i];
key = (key >> 16) ^ key;
return key;
}
/* We don't maintain the lists running through each css_set to its
* task until after the first call to cgroup_iter_start(). This
* reduces the fork()/exit() overhead for people who have cgroups
* compiled into their kernel but not actually in use */
static int use_task_css_set_links __read_mostly;
static void __put_css_set(struct css_set *cg, int taskexit)
{
struct cg_cgroup_link *link;
struct cg_cgroup_link *saved_link;
/*
* Ensure that the refcount doesn't hit zero while any readers
* can see it. Similar to atomic_dec_and_lock(), but for an
* rwlock
*/
if (atomic_add_unless(&cg->refcount, -1, 1))
return;
write_lock(&css_set_lock);
if (!atomic_dec_and_test(&cg->refcount)) {
write_unlock(&css_set_lock);
return;
}
/* This css_set is dead. unlink it and release cgroup refcounts */
hash_del(&cg->hlist);
css_set_count--;
list_for_each_entry_safe(link, saved_link, &cg->cg_links,
cg_link_list) {
struct cgroup *cgrp = link->cgrp;
list_del(&link->cg_link_list);
list_del(&link->cgrp_link_list);
/*
* We may not be holding cgroup_mutex, and if cgrp->count is
* dropped to 0 the cgroup can be destroyed at any time, hence
* rcu_read_lock is used to keep it alive.
*/
rcu_read_lock();
if (atomic_dec_and_test(&cgrp->count) &&
notify_on_release(cgrp)) {
if (taskexit)
set_bit(CGRP_RELEASABLE, &cgrp->flags);
check_for_release(cgrp);
}
rcu_read_unlock();
kfree(link);
}
write_unlock(&css_set_lock);
kfree_rcu(cg, rcu_head);
}
/*
* refcounted get/put for css_set objects
*/
static inline void get_css_set(struct css_set *cg)
{
atomic_inc(&cg->refcount);
}
static inline void put_css_set(struct css_set *cg)
{
__put_css_set(cg, 0);
}
static inline void put_css_set_taskexit(struct css_set *cg)
{
__put_css_set(cg, 1);
}
/*
* compare_css_sets - helper function for find_existing_css_set().
* @cg: candidate css_set being tested
* @old_cg: existing css_set for a task
* @new_cgrp: cgroup that's being entered by the task
* @template: desired set of css pointers in css_set (pre-calculated)
*
* Returns true if "cg" matches "old_cg" except for the hierarchy
* which "new_cgrp" belongs to, for which it should match "new_cgrp".
*/
static bool compare_css_sets(struct css_set *cg,
struct css_set *old_cg,
struct cgroup *new_cgrp,
struct cgroup_subsys_state *template[])
{
struct list_head *l1, *l2;
if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
/* Not all subsystems matched */
return false;
}
/*
* Compare cgroup pointers in order to distinguish between
* different cgroups in heirarchies with no subsystems. We
* could get by with just this check alone (and skip the
* memcmp above) but on most setups the memcmp check will
* avoid the need for this more expensive check on almost all
* candidates.
*/
l1 = &cg->cg_links;
l2 = &old_cg->cg_links;
while (1) {
struct cg_cgroup_link *cgl1, *cgl2;
struct cgroup *cg1, *cg2;
l1 = l1->next;
l2 = l2->next;
/* See if we reached the end - both lists are equal length. */
if (l1 == &cg->cg_links) {
BUG_ON(l2 != &old_cg->cg_links);
break;
} else {
BUG_ON(l2 == &old_cg->cg_links);
}
/* Locate the cgroups associated with these links. */
cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
cg1 = cgl1->cgrp;
cg2 = cgl2->cgrp;
/* Hierarchies should be linked in the same order. */
BUG_ON(cg1->root != cg2->root);
/*
* If this hierarchy is the hierarchy of the cgroup
* that's changing, then we need to check that this
* css_set points to the new cgroup; if it's any other
* hierarchy, then this css_set should point to the
* same cgroup as the old css_set.
*/
if (cg1->root == new_cgrp->root) {
if (cg1 != new_cgrp)
return false;
} else {
if (cg1 != cg2)
return false;
}
}
return true;
}
/*
* find_existing_css_set() is a helper for
* find_css_set(), and checks to see whether an existing
* css_set is suitable.
*
* oldcg: the cgroup group that we're using before the cgroup
* transition
*
* cgrp: the cgroup that we're moving into
*
* template: location in which to build the desired set of subsystem
* state objects for the new cgroup group
*/
static struct css_set *find_existing_css_set(
struct css_set *oldcg,
struct cgroup *cgrp,
struct cgroup_subsys_state *template[])
{
int i;
struct cgroupfs_root *root = cgrp->root;
struct css_set *cg;
unsigned long key;
/*
* Build the set of subsystem state objects that we want to see in the
* new css_set. while subsystems can change globally, the entries here
* won't change, so no need for locking.
*/
for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
if (root->subsys_mask & (1UL << i)) {
/* Subsystem is in this hierarchy. So we want
* the subsystem state from the new
* cgroup */
template[i] = cgrp->subsys[i];
} else {
/* Subsystem is not in this hierarchy, so we
* don't want to change the subsystem state */
template[i] = oldcg->subsys[i];
}
}
key = css_set_hash(template);
hash_for_each_possible(css_set_table, cg, hlist, key) {
if (!compare_css_sets(cg, oldcg, cgrp, template))
continue;
/* This css_set matches what we need */
return cg;
}
/* No existing cgroup group matched */
return NULL;
}
static void free_cg_links(struct list_head *tmp)
{
struct cg_cgroup_link *link;
struct cg_cgroup_link *saved_link;
list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
list_del(&link->cgrp_link_list);
kfree(link);
}
}
/*
* allocate_cg_links() allocates "count" cg_cgroup_link structures
* and chains them on tmp through their cgrp_link_list fields. Returns 0 on
* success or a negative error
*/
static int allocate_cg_links(int count, struct list_head *tmp)
{
struct cg_cgroup_link *link;
int i;
INIT_LIST_HEAD(tmp);
for (i = 0; i < count; i++) {
link = kmalloc(sizeof(*link), GFP_KERNEL);
if (!link) {
free_cg_links(tmp);
return -ENOMEM;
}
list_add(&link->cgrp_link_list, tmp);
}
return 0;
}
/**
* link_css_set - a helper function to link a css_set to a cgroup
* @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
* @cg: the css_set to be linked
* @cgrp: the destination cgroup
*/
static void link_css_set(struct list_head *tmp_cg_links,
struct css_set *cg, struct cgroup *cgrp)
{
struct cg_cgroup_link *link;
BUG_ON(list_empty(tmp_cg_links));
link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
cgrp_link_list);
link->cg = cg;
link->cgrp = cgrp;
atomic_inc(&cgrp->count);
list_move(&link->cgrp_link_list, &cgrp->css_sets);
/*
* Always add links to the tail of the list so that the list
* is sorted by order of hierarchy creation
*/
list_add_tail(&link->cg_link_list, &cg->cg_links);
}
/*
* find_css_set() takes an existing cgroup group and a
* cgroup object, and returns a css_set object that's
* equivalent to the old group, but with the given cgroup
* substituted into the appropriate hierarchy. Must be called with
* cgroup_mutex held
*/
static struct css_set *find_css_set(
struct css_set *oldcg, struct cgroup *cgrp)
{
struct css_set *res;
struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
struct list_head tmp_cg_links;
struct cg_cgroup_link *link;
unsigned long key;
/* First see if we already have a cgroup group that matches
* the desired set */
read_lock(&css_set_lock);
res = find_existing_css_set(oldcg, cgrp, template);
if (res)
get_css_set(res);
read_unlock(&css_set_lock);
if (res)
return res;
res = kmalloc(sizeof(*res), GFP_KERNEL);
if (!res)
return NULL;
/* Allocate all the cg_cgroup_link objects that we'll need */
if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
kfree(res);
return NULL;
}
atomic_set(&res->refcount, 1);
INIT_LIST_HEAD(&res->cg_links);
INIT_LIST_HEAD(&res->tasks);
INIT_HLIST_NODE(&res->hlist);
/* Copy the set of subsystem state objects generated in
* find_existing_css_set() */
memcpy(res->subsys, template, sizeof(res->subsys));
write_lock(&css_set_lock);
/* Add reference counts and links from the new css_set. */
list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
struct cgroup *c = link->cgrp;
if (c->root == cgrp->root)
c = cgrp;
link_css_set(&tmp_cg_links, res, c);
}
BUG_ON(!list_empty(&tmp_cg_links));
css_set_count++;
/* Add this cgroup group to the hash table */
key = css_set_hash(res->subsys);
hash_add(css_set_table, &res->hlist, key);
write_unlock(&css_set_lock);
return res;
}
/*
* Return the cgroup for "task" from the given hierarchy. Must be
* called with cgroup_mutex held.
*/
static struct cgroup *task_cgroup_from_root(struct task_struct *task,
struct cgroupfs_root *root)
{
struct css_set *css;
struct cgroup *res = NULL;
BUG_ON(!mutex_is_locked(&cgroup_mutex));
read_lock(&css_set_lock);
/*
* No need to lock the task - since we hold cgroup_mutex the
* task can't change groups, so the only thing that can happen
* is that it exits and its css is set back to init_css_set.
*/
css = task->cgroups;
if (css == &init_css_set) {
res = &root->top_cgroup;
} else {
struct cg_cgroup_link *link;
list_for_each_entry(link, &css->cg_links, cg_link_list) {
struct cgroup *c = link->cgrp;
if (c->root == root) {
res = c;
break;
}
}
}
read_unlock(&css_set_lock);
BUG_ON(!res);
return res;
}
/*
* There is one global cgroup mutex. We also require taking
* task_lock() when dereferencing a task's cgroup subsys pointers.
* See "The task_lock() exception", at the end of this comment.
*
* A task must hold cgroup_mutex to modify cgroups.
*
* Any task can increment and decrement the count field without lock.
* So in general, code holding cgroup_mutex can't rely on the count
* field not changing. However, if the count goes to zero, then only
* cgroup_attach_task() can increment it again. Because a count of zero
* means that no tasks are currently attached, therefore there is no
* way a task attached to that cgroup can fork (the other way to
* increment the count). So code holding cgroup_mutex can safely
* assume that if the count is zero, it will stay zero. Similarly, if
* a task holds cgroup_mutex on a cgroup with zero count, it
* knows that the cgroup won't be removed, as cgroup_rmdir()
* needs that mutex.
*
* The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
* (usually) take cgroup_mutex. These are the two most performance
* critical pieces of code here. The exception occurs on cgroup_exit(),
* when a task in a notify_on_release cgroup exits. Then cgroup_mutex
* is taken, and if the cgroup count is zero, a usermode call made
* to the release agent with the name of the cgroup (path relative to
* the root of cgroup file system) as the argument.
*
* A cgroup can only be deleted if both its 'count' of using tasks
* is zero, and its list of 'children' cgroups is empty. Since all
* tasks in the system use _some_ cgroup, and since there is always at
* least one task in the system (init, pid == 1), therefore, top_cgroup
* always has either children cgroups and/or using tasks. So we don't
* need a special hack to ensure that top_cgroup cannot be deleted.
*
* The task_lock() exception
*
* The need for this exception arises from the action of
* cgroup_attach_task(), which overwrites one task's cgroup pointer with
* another. It does so using cgroup_mutex, however there are
* several performance critical places that need to reference
* task->cgroup without the expense of grabbing a system global
* mutex. Therefore except as noted below, when dereferencing or, as
* in cgroup_attach_task(), modifying a task's cgroup pointer we use
* task_lock(), which acts on a spinlock (task->alloc_lock) already in
* the task_struct routinely used for such matters.
*
* P.S. One more locking exception. RCU is used to guard the
* update of a tasks cgroup pointer by cgroup_attach_task()
*/
/*
* A couple of forward declarations required, due to cyclic reference loop:
* cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
* cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
* -> cgroup_mkdir.
*/
static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
static struct dentry *cgroup_lookup(struct inode *, struct dentry *, unsigned int);
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
unsigned long subsys_mask);
static const struct inode_operations cgroup_dir_inode_operations;
static const struct file_operations proc_cgroupstats_operations;
static struct backing_dev_info cgroup_backing_dev_info = {
.name = "cgroup",
.capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
};
static int alloc_css_id(struct cgroup_subsys *ss,
struct cgroup *parent, struct cgroup *child);
static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
{
struct inode *inode = new_inode(sb);
if (inode) {
inode->i_ino = get_next_ino();
inode->i_mode = mode;
inode->i_uid = current_fsuid();
inode->i_gid = current_fsgid();
inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
}
return inode;
}
static struct cgroup_name *cgroup_alloc_name(struct dentry *dentry)
{
struct cgroup_name *name;
name = kmalloc(sizeof(*name) + dentry->d_name.len + 1, GFP_KERNEL);
if (!name)
return NULL;
strcpy(name->name, dentry->d_name.name);
return name;
}
static void cgroup_free_fn(struct work_struct *work)
{
struct cgroup *cgrp = container_of(work, struct cgroup, free_work);
struct cgroup_subsys *ss;
mutex_lock(&cgroup_mutex);
/*
* Release the subsystem state objects.
*/
for_each_subsys(cgrp->root, ss)
ss->css_free(cgrp);
cgrp->root->number_of_cgroups--;
mutex_unlock(&cgroup_mutex);
/*
* We get a ref to the parent's dentry, and put the ref when
* this cgroup is being freed, so it's guaranteed that the
* parent won't be destroyed before its children.
*/
dput(cgrp->parent->dentry);
ida_simple_remove(&cgrp->root->cgroup_ida, cgrp->id);
/*
* Drop the active superblock reference that we took when we
* created the cgroup. This will free cgrp->root, if we are
* holding the last reference to @sb.
*/
deactivate_super(cgrp->root->sb);
/*
* if we're getting rid of the cgroup, refcount should ensure
* that there are no pidlists left.
*/
BUG_ON(!list_empty(&cgrp->pidlists));
simple_xattrs_free(&cgrp->xattrs);
kfree(rcu_dereference_raw(cgrp->name));
kfree(cgrp);
}
static void cgroup_free_rcu(struct rcu_head *head)
{
struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
queue_work(cgroup_destroy_wq, &cgrp->free_work);
}
static void cgroup_diput(struct dentry *dentry, struct inode *inode)
{
/* is dentry a directory ? if so, kfree() associated cgroup */
if (S_ISDIR(inode->i_mode)) {
struct cgroup *cgrp = dentry->d_fsdata;
BUG_ON(!(cgroup_is_removed(cgrp)));
call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
} else {
struct cfent *cfe = __d_cfe(dentry);
struct cgroup *cgrp = dentry->d_parent->d_fsdata;
WARN_ONCE(!list_empty(&cfe->node) &&
cgrp != &cgrp->root->top_cgroup,
"cfe still linked for %s\n", cfe->type->name);
simple_xattrs_free(&cfe->xattrs);
kfree(cfe);
}
iput(inode);
}
static int cgroup_delete(const struct dentry *d)
{
return 1;
}
static void remove_dir(struct dentry *d)
{
struct dentry *parent = dget(d->d_parent);
d_delete(d);
simple_rmdir(parent->d_inode, d);
dput(parent);
}
static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
{
struct cfent *cfe;
lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
lockdep_assert_held(&cgroup_mutex);
/*
* If we're doing cleanup due to failure of cgroup_create(),
* the corresponding @cfe may not exist.
*/
list_for_each_entry(cfe, &cgrp->files, node) {
struct dentry *d = cfe->dentry;
if (cft && cfe->type != cft)
continue;
dget(d);
d_delete(d);
simple_unlink(cgrp->dentry->d_inode, d);
list_del_init(&cfe->node);
dput(d);
break;
}
}
/**
* cgroup_clear_directory - selective removal of base and subsystem files
* @dir: directory containing the files
* @base_files: true if the base files should be removed
* @subsys_mask: mask of the subsystem ids whose files should be removed
*/
static void cgroup_clear_directory(struct dentry *dir, bool base_files,
unsigned long subsys_mask)
{
struct cgroup *cgrp = __d_cgrp(dir);
struct cgroup_subsys *ss;
for_each_subsys(cgrp->root, ss) {
struct cftype_set *set;
if (!test_bit(ss->subsys_id, &subsys_mask))
continue;
list_for_each_entry(set, &ss->cftsets, node)
cgroup_addrm_files(cgrp, NULL, set->cfts, false);
}
if (base_files) {
while (!list_empty(&cgrp->files))
cgroup_rm_file(cgrp, NULL);
}
}
/*
* NOTE : the dentry must have been dget()'ed
*/
static void cgroup_d_remove_dir(struct dentry *dentry)
{
struct dentry *parent;
struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
cgroup_clear_directory(dentry, true, root->subsys_mask);
parent = dentry->d_parent;
spin_lock(&parent->d_lock);
spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
list_del_init(&dentry->d_u.d_child);
spin_unlock(&dentry->d_lock);
spin_unlock(&parent->d_lock);
remove_dir(dentry);
}
/*
* Call with cgroup_mutex held. Drops reference counts on modules, including
* any duplicate ones that parse_cgroupfs_options took. If this function
* returns an error, no reference counts are touched.
*/
static int rebind_subsystems(struct cgroupfs_root *root,
unsigned long final_subsys_mask)
{
unsigned long added_mask, removed_mask;
struct cgroup *cgrp = &root->top_cgroup;
int i;
BUG_ON(!mutex_is_locked(&cgroup_mutex));
BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
removed_mask = root->actual_subsys_mask & ~final_subsys_mask;
added_mask = final_subsys_mask & ~root->actual_subsys_mask;
/* Check that any added subsystems are currently free */
for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
unsigned long bit = 1UL << i;
struct cgroup_subsys *ss = subsys[i];
if (!(bit & added_mask))
continue;
/*
* Nobody should tell us to do a subsys that doesn't exist:
* parse_cgroupfs_options should catch that case and refcounts
* ensure that subsystems won't disappear once selected.
*/
BUG_ON(ss == NULL);
if (ss->root != &rootnode) {
/* Subsystem isn't free */
return -EBUSY;
}
}
/* Currently we don't handle adding/removing subsystems when
* any child cgroups exist. This is theoretically supportable
* but involves complex error handling, so it's being left until
* later */
if (root->number_of_cgroups > 1)
return -EBUSY;
/* Process each subsystem */
for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
struct cgroup_subsys *ss = subsys[i];
unsigned long bit = 1UL << i;
if (bit & added_mask) {
/* We're binding this subsystem to this hierarchy */
BUG_ON(ss == NULL);
BUG_ON(cgrp->subsys[i]);
BUG_ON(!dummytop->subsys[i]);
BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
cgrp->subsys[i] = dummytop->subsys[i];
cgrp->subsys[i]->cgroup = cgrp;
list_move(&ss->sibling, &root->subsys_list);
ss->root = root;
if (ss->bind)
ss->bind(cgrp);
/* refcount was already taken, and we're keeping it */
} else if (bit & removed_mask) {
/* We're removing this subsystem */
BUG_ON(ss == NULL);
BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
if (ss->bind)
ss->bind(dummytop);
dummytop->subsys[i]->cgroup = dummytop;
cgrp->subsys[i] = NULL;
subsys[i]->root = &rootnode;
list_move(&ss->sibling, &rootnode.subsys_list);
/* subsystem is now free - drop reference on module */
module_put(ss->module);
} else if (bit & final_subsys_mask) {
/* Subsystem state should already exist */
BUG_ON(ss == NULL);
BUG_ON(!cgrp->subsys[i]);
/*
* a refcount was taken, but we already had one, so
* drop the extra reference.
*/
module_put(ss->module);
#ifdef CONFIG_MODULE_UNLOAD
BUG_ON(ss->module && !module_refcount(ss->module));
#endif
} else {
/* Subsystem state shouldn't exist */
BUG_ON(cgrp->subsys[i]);
}
}
root->subsys_mask = root->actual_subsys_mask = final_subsys_mask;
return 0;
}
static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
{
struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
struct cgroup_subsys *ss;
mutex_lock(&cgroup_root_mutex);
for_each_subsys(root, ss)
seq_printf(seq, ",%s", ss->name);
if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
seq_puts(seq, ",sane_behavior");
if (root->flags & CGRP_ROOT_NOPREFIX)
seq_puts(seq, ",noprefix");
if (root->flags & CGRP_ROOT_XATTR)
seq_puts(seq, ",xattr");
if (strlen(root->release_agent_path))
seq_printf(seq, ",release_agent=%s", root->release_agent_path);
if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
seq_puts(seq, ",clone_children");
if (strlen(root->name))
seq_printf(seq, ",name=%s", root->name);
mutex_unlock(&cgroup_root_mutex);
return 0;
}
struct cgroup_sb_opts {
unsigned long subsys_mask;
unsigned long flags;
char *release_agent;
bool cpuset_clone_children;
char *name;
/* User explicitly requested empty subsystem */
bool none;
struct cgroupfs_root *new_root;
};
/*
* Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
* with cgroup_mutex held to protect the subsys[] array. This function takes
* refcounts on subsystems to be used, unless it returns error, in which case
* no refcounts are taken.
*/
static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
{
char *token, *o = data;
bool all_ss = false, one_ss = false;
unsigned long mask = (unsigned long)-1;
int i;
bool module_pin_failed = false;
BUG_ON(!mutex_is_locked(&cgroup_mutex));
#ifdef CONFIG_CPUSETS
mask = ~(1UL << cpuset_subsys_id);
#endif
memset(opts, 0, sizeof(*opts));
while ((token = strsep(&o, ",")) != NULL) {
if (!*token)
return -EINVAL;
if (!strcmp(token, "none")) {
/* Explicitly have no subsystems */
opts->none = true;
continue;
}
if (!strcmp(token, "all")) {
/* Mutually exclusive option 'all' + subsystem name */
if (one_ss)
return -EINVAL;
all_ss = true;
continue;
}
if (!strcmp(token, "__DEVEL__sane_behavior")) {
opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
continue;
}
if (!strcmp(token, "noprefix")) {
opts->flags |= CGRP_ROOT_NOPREFIX;
continue;
}
if (!strcmp(token, "clone_children")) {
opts->cpuset_clone_children = true;
continue;
}
if (!strcmp(token, "xattr")) {
opts->flags |= CGRP_ROOT_XATTR;
continue;
}
if (!strncmp(token, "release_agent=", 14)) {
/* Specifying two release agents is forbidden */
if (opts->release_agent)
return -EINVAL;
opts->release_agent =
kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
if (!opts->release_agent)
return -ENOMEM;
continue;
}
if (!strncmp(token, "name=", 5)) {
const char *name = token + 5;
/* Can't specify an empty name */
if (!strlen(name))
return -EINVAL;
/* Must match [\w.-]+ */
for (i = 0; i < strlen(name); i++) {
char c = name[i];
if (isalnum(c))
continue;
if ((c == '.') || (c == '-') || (c == '_'))
continue;
return -EINVAL;
}
/* Specifying two names is forbidden */
if (opts->name)
return -EINVAL;
opts->name = kstrndup(name,
MAX_CGROUP_ROOT_NAMELEN - 1,
GFP_KERNEL);
if (!opts->name)
return -ENOMEM;
continue;
}
for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
struct cgroup_subsys *ss = subsys[i];
if (ss == NULL)
continue;
if (strcmp(token, ss->name))
continue;
if (ss->disabled)
continue;
/* Mutually exclusive option 'all' + subsystem name */
if (all_ss)
return -EINVAL;
set_bit(i, &opts->subsys_mask);
one_ss = true;
break;
}
if (i == CGROUP_SUBSYS_COUNT)
return -ENOENT;
}
/*
* If the 'all' option was specified select all the subsystems,
* otherwise if 'none', 'name=' and a subsystem name options
* were not specified, let's default to 'all'
*/
if (all_ss || (!one_ss && !opts->none && !opts->name)) {
for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
struct cgroup_subsys *ss = subsys[i];
if (ss == NULL)
continue;
if (ss->disabled)
continue;
set_bit(i, &opts->subsys_mask);
}
}
/* Consistency checks */
if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
if (opts->flags & CGRP_ROOT_NOPREFIX) {
pr_err("cgroup: sane_behavior: noprefix is not allowed\n");
return -EINVAL;
}
if (opts->cpuset_clone_children) {
pr_err("cgroup: sane_behavior: clone_children is not allowed\n");
return -EINVAL;
}
}
/*
* Option noprefix was introduced just for backward compatibility
* with the old cpuset, so we allow noprefix only if mounting just
* the cpuset subsystem.
*/
if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
return -EINVAL;
/* Can't specify "none" and some subsystems */
if (opts->subsys_mask && opts->none)
return -EINVAL;
/*
* We either have to specify by name or by subsystems. (So all
* empty hierarchies must have a name).
*/
if (!opts->subsys_mask && !opts->name)
return -EINVAL;
/*
* Grab references on all the modules we'll need, so the subsystems
* don't dance around before rebind_subsystems attaches them. This may
* take duplicate reference counts on a subsystem that's already used,
* but rebind_subsystems handles this case.
*/
for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
unsigned long bit = 1UL << i;
if (!(bit & opts->subsys_mask))
continue;
if (!try_module_get(subsys[i]->module)) {
module_pin_failed = true;
break;
}
}
if (module_pin_failed) {
/*
* oops, one of the modules was going away. this means that we
* raced with a module_delete call, and to the user this is
* essentially a "subsystem doesn't exist" case.
*/
for (i--; i >= 0; i--) {
/* drop refcounts only on the ones we took */
unsigned long bit = 1UL << i;
if (!(bit & opts->subsys_mask))
continue;
module_put(subsys[i]->module);
}
return -ENOENT;
}
return 0;
}
static void drop_parsed_module_refcounts(unsigned long subsys_mask)
{
int i;
for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
unsigned long bit = 1UL << i;
if (!(bit & subsys_mask))
continue;
module_put(subsys[i]->module);
}
}
static int cgroup_remount(struct super_block *sb, int *flags, char *data)
{
int ret = 0;
struct cgroupfs_root *root = sb->s_fs_info;
struct cgroup *cgrp = &root->top_cgroup;
struct cgroup_sb_opts opts;
unsigned long added_mask, removed_mask;
if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
pr_err("cgroup: sane_behavior: remount is not allowed\n");
return -EINVAL;
}
mutex_lock(&cgrp->dentry->d_inode->i_mutex);
mutex_lock(&cgroup_mutex);
mutex_lock(&cgroup_root_mutex);
/* See what subsystems are wanted */
ret = parse_cgroupfs_options(data, &opts);
if (ret)
goto out_unlock;
if (opts.subsys_mask != root->actual_subsys_mask || opts.release_agent)
pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
task_tgid_nr(current), current->comm);
added_mask = opts.subsys_mask & ~root->subsys_mask;
removed_mask = root->subsys_mask & ~opts.subsys_mask;
/* Don't allow flags or name to change at remount */
if (opts.flags != root->flags ||
(opts.name && strcmp(opts.name, root->name))) {
ret = -EINVAL;
drop_parsed_module_refcounts(opts.subsys_mask);
goto out_unlock;
}
/*
* Clear out the files of subsystems that should be removed, do
* this before rebind_subsystems, since rebind_subsystems may
* change this hierarchy's subsys_list.
*/
cgroup_clear_directory(cgrp->dentry, false, removed_mask);
ret = rebind_subsystems(root, opts.subsys_mask);
if (ret) {
/* rebind_subsystems failed, re-populate the removed files */
cgroup_populate_dir(cgrp, false, removed_mask);
drop_parsed_module_refcounts(opts.subsys_mask);
goto out_unlock;
}
/* re-populate subsystem files */
cgroup_populate_dir(cgrp, false, added_mask);
if (opts.release_agent)
strcpy(root->release_agent_path, opts.release_agent);
out_unlock:
kfree(opts.release_agent);
kfree(opts.name);
mutex_unlock(&cgroup_root_mutex);
mutex_unlock(&cgroup_mutex);
mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
return ret;
}
static const struct super_operations cgroup_ops = {
.statfs = simple_statfs,
.drop_inode = generic_delete_inode,
.show_options = cgroup_show_options,
.remount_fs = cgroup_remount,
};
static void init_cgroup_housekeeping(struct cgroup *cgrp)
{
INIT_LIST_HEAD(&cgrp->sibling);
INIT_LIST_HEAD(&cgrp->children);
INIT_LIST_HEAD(&cgrp->files);
INIT_LIST_HEAD(&cgrp->css_sets);
INIT_LIST_HEAD(&cgrp->allcg_node);
INIT_LIST_HEAD(&cgrp->release_list);
INIT_LIST_HEAD(&cgrp->pidlists);
INIT_WORK(&cgrp->free_work, cgroup_free_fn);
mutex_init(&cgrp->pidlist_mutex);
INIT_LIST_HEAD(&cgrp->event_list);
spin_lock_init(&cgrp->event_list_lock);
simple_xattrs_init(&cgrp->xattrs);
}
static void init_cgroup_root(struct cgroupfs_root *root)
{
struct cgroup *cgrp = &root->top_cgroup;
INIT_LIST_HEAD(&root->subsys_list);
INIT_LIST_HEAD(&root->root_list);
INIT_LIST_HEAD(&root->allcg_list);
root->number_of_cgroups = 1;
cgrp->root = root;
cgrp->name = &root_cgroup_name;
init_cgroup_housekeeping(cgrp);
list_add_tail(&cgrp->allcg_node, &root->allcg_list);
}
static bool init_root_id(struct cgroupfs_root *root)
{
int ret = 0;
do {
if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
return false;
spin_lock(&hierarchy_id_lock);
/* Try to allocate the next unused ID */
ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
&root->hierarchy_id);
if (ret == -ENOSPC)
/* Try again starting from 0 */
ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
if (!ret) {
next_hierarchy_id = root->hierarchy_id + 1;
} else if (ret != -EAGAIN) {
/* Can only get here if the 31-bit IDR is full ... */
BUG_ON(ret);
}
spin_unlock(&hierarchy_id_lock);
} while (ret);
return true;
}
static int cgroup_test_super(struct super_block *sb, void *data)
{
struct cgroup_sb_opts *opts = data;
struct cgroupfs_root *root = sb->s_fs_info;
/* If we asked for a name then it must match */
if (opts->name && strcmp(opts->name, root->name))
return 0;
/*
* If we asked for subsystems (or explicitly for no
* subsystems) then they must match
*/
if ((opts->subsys_mask || opts->none)
&& (opts->subsys_mask != root->subsys_mask))
return 0;
return 1;
}
static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
{
struct cgroupfs_root *root;
if (!opts->subsys_mask && !opts->none)
return NULL;
root = kzalloc(sizeof(*root), GFP_KERNEL);
if (!root)
return ERR_PTR(-ENOMEM);
if (!init_root_id(root)) {
kfree(root);
return ERR_PTR(-ENOMEM);
}
init_cgroup_root(root);
root->subsys_mask = opts->subsys_mask;
root->flags = opts->flags;
ida_init(&root->cgroup_ida);
if (opts->release_agent)
strcpy(root->release_agent_path, opts->release_agent);
if (opts->name)
strcpy(root->name, opts->name);
if (opts->cpuset_clone_children)
set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
return root;
}
static void cgroup_drop_root(struct cgroupfs_root *root)
{
if (!root)
return;
BUG_ON(!root->hierarchy_id);
spin_lock(&hierarchy_id_lock);
ida_remove(&hierarchy_ida, root->hierarchy_id);
spin_unlock(&hierarchy_id_lock);
ida_destroy(&root->cgroup_ida);
kfree(root);
}
static int cgroup_set_super(struct super_block *sb, void *data)
{
int ret;
struct cgroup_sb_opts *opts = data;
/* If we don't have a new root, we can't set up a new sb */
if (!opts->new_root)
return -EINVAL;
BUG_ON(!opts->subsys_mask && !opts->none);
ret = set_anon_super(sb, NULL);
if (ret)
return ret;
sb->s_fs_info = opts->new_root;
opts->new_root->sb = sb;
sb->s_blocksize = PAGE_CACHE_SIZE;
sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
sb->s_magic = CGROUP_SUPER_MAGIC;
sb->s_op = &cgroup_ops;
return 0;
}
static int cgroup_get_rootdir(struct super_block *sb)
{
static const struct dentry_operations cgroup_dops = {
.d_iput = cgroup_diput,
.d_delete = cgroup_delete,
};
struct inode *inode =
cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
if (!inode)
return -ENOMEM;
inode->i_fop = &simple_dir_operations;
inode->i_op = &cgroup_dir_inode_operations;
/* directories start off with i_nlink == 2 (for "." entry) */
inc_nlink(inode);
sb->s_root = d_make_root(inode);
if (!sb->s_root)
return -ENOMEM;
/* for everything else we want ->d_op set */
sb->s_d_op = &cgroup_dops;
return 0;
}
static struct dentry *cgroup_mount(struct file_system_type *fs_type,
int flags, const char *unused_dev_name,
void *data)
{
struct cgroup_sb_opts opts;
struct cgroupfs_root *root;
int ret = 0;
struct super_block *sb;
struct cgroupfs_root *new_root;
struct inode *inode;
/* First find the desired set of subsystems */
mutex_lock(&cgroup_mutex);
ret = parse_cgroupfs_options(data, &opts);
mutex_unlock(&cgroup_mutex);
if (ret)
goto out_err;
/*
* Allocate a new cgroup root. We may not need it if we're
* reusing an existing hierarchy.
*/
new_root = cgroup_root_from_opts(&opts);
if (IS_ERR(new_root)) {
ret = PTR_ERR(new_root);
goto drop_modules;
}
opts.new_root = new_root;
/* Locate an existing or new sb for this hierarchy */
sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
if (IS_ERR(sb)) {
ret = PTR_ERR(sb);
cgroup_drop_root(opts.new_root);
goto drop_modules;
}
root = sb->s_fs_info;
BUG_ON(!root);
if (root == opts.new_root) {
/* We used the new root structure, so this is a new hierarchy */
struct list_head tmp_cg_links;
struct cgroup *root_cgrp = &root->top_cgroup;
struct cgroupfs_root *existing_root;
const struct cred *cred;
int i;
struct css_set *cg;
BUG_ON(sb->s_root != NULL);
ret = cgroup_get_rootdir(sb);
if (ret)
goto drop_new_super;
inode = sb->s_root->d_inode;
mutex_lock(&inode->i_mutex);
mutex_lock(&cgroup_mutex);
mutex_lock(&cgroup_root_mutex);
/* Check for name clashes with existing mounts */
ret = -EBUSY;
if (strlen(root->name))
for_each_active_root(existing_root)
if (!strcmp(existing_root->name, root->name))
goto unlock_drop;
/*
* We're accessing css_set_count without locking
* css_set_lock here, but that's OK - it can only be
* increased by someone holding cgroup_lock, and
* that's us. The worst that can happen is that we
* have some link structures left over
*/
ret = allocate_cg_links(css_set_count, &tmp_cg_links);
if (ret)
goto unlock_drop;
ret = rebind_subsystems(root, root->subsys_mask);
if (ret == -EBUSY) {
free_cg_links(&tmp_cg_links);
goto unlock_drop;
}
/*
* There must be no failure case after here, since rebinding
* takes care of subsystems' refcounts, which are explicitly
* dropped in the failure exit path.
*/
/* EBUSY should be the only error here */
BUG_ON(ret);
list_add(&root->root_list, &roots);
root_count++;
sb->s_root->d_fsdata = root_cgrp;
root->top_cgroup.dentry = sb->s_root;
/* Link the top cgroup in this hierarchy into all
* the css_set objects */
write_lock(&css_set_lock);
hash_for_each(css_set_table, i, cg, hlist)
link_css_set(&tmp_cg_links, cg, root_cgrp);
write_unlock(&css_set_lock);
free_cg_links(&tmp_cg_links);
BUG_ON(!list_empty(&root_cgrp->children));
BUG_ON(root->number_of_cgroups != 1);
cred = override_creds(&init_cred);
cgroup_populate_dir(root_cgrp, true, root->subsys_mask);
revert_creds(cred);
mutex_unlock(&cgroup_root_mutex);
mutex_unlock(&cgroup_mutex);
mutex_unlock(&inode->i_mutex);
} else {
/*
* We re-used an existing hierarchy - the new root (if
* any) is not needed
*/
cgroup_drop_root(opts.new_root);
if (root->flags != opts.flags) {
if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
ret = -EINVAL;
goto drop_new_super;
} else {
pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
}
}
/* no subsys rebinding, so refcounts don't change */
drop_parsed_module_refcounts(opts.subsys_mask);
}
kfree(opts.release_agent);
kfree(opts.name);
return dget(sb->s_root);
unlock_drop:
mutex_unlock(&cgroup_root_mutex);
mutex_unlock(&cgroup_mutex);
mutex_unlock(&inode->i_mutex);
drop_new_super:
deactivate_locked_super(sb);
drop_modules:
drop_parsed_module_refcounts(opts.subsys_mask);
out_err:
kfree(opts.release_agent);
kfree(opts.name);
return ERR_PTR(ret);
}
static void cgroup_kill_sb(struct super_block *sb) {
struct cgroupfs_root *root = sb->s_fs_info;
struct cgroup *cgrp = &root->top_cgroup;
int ret;
struct cg_cgroup_link *link;
struct cg_cgroup_link *saved_link;
BUG_ON(!root);
BUG_ON(root->number_of_cgroups != 1);
BUG_ON(!list_empty(&cgrp->children));
mutex_lock(&cgroup_mutex);
mutex_lock(&cgroup_root_mutex);
/* Rebind all subsystems back to the default hierarchy */
ret = rebind_subsystems(root, 0);
/* Shouldn't be able to fail ... */
BUG_ON(ret);
/*
* Release all the links from css_sets to this hierarchy's
* root cgroup
*/
write_lock(&css_set_lock);
list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
cgrp_link_list) {
list_del(&link->cg_link_list);
list_del(&link->cgrp_link_list);
kfree(link);
}
write_unlock(&css_set_lock);
if (!list_empty(&root->root_list)) {
list_del(&root->root_list);
root_count--;
}
mutex_unlock(&cgroup_root_mutex);
mutex_unlock(&cgroup_mutex);
simple_xattrs_free(&cgrp->xattrs);
kill_litter_super(sb);
cgroup_drop_root(root);
}
static struct file_system_type cgroup_fs_type = {
.name = "cgroup",
.mount = cgroup_mount,
.kill_sb = cgroup_kill_sb,
};
static struct kobject *cgroup_kobj;
/**
* cgroup_path - generate the path of a cgroup
* @cgrp: the cgroup in question
* @buf: the buffer to write the path into
* @buflen: the length of the buffer
*
* Writes path of cgroup into buf. Returns 0 on success, -errno on error.
*
* We can't generate cgroup path using dentry->d_name, as accessing
* dentry->name must be protected by irq-unsafe dentry->d_lock or parent
* inode's i_mutex, while on the other hand cgroup_path() can be called
* with some irq-safe spinlocks held.
*/
int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
{
int ret = -ENAMETOOLONG;
char *start;
if (!cgrp->parent) {
if (strlcpy(buf, "/", buflen) >= buflen)
return -ENAMETOOLONG;
return 0;
}
start = buf + buflen - 1;
*start = '\0';
rcu_read_lock();
do {
const char *name = cgroup_name(cgrp);
int len;
len = strlen(name);
if ((start -= len) < buf)
goto out;
memcpy(start, name, len);
if (--start < buf)
goto out;
*start = '/';
cgrp = cgrp->parent;
} while (cgrp->parent);
ret = 0;
memmove(buf, start, buf + buflen - start);
out:
rcu_read_unlock();
return ret;
}
EXPORT_SYMBOL_GPL(cgroup_path);
/*
* Control Group taskset
*/
struct task_and_cgroup {
struct task_struct *task;
struct cgroup *cgrp;
struct css_set *cg;
};
struct cgroup_taskset {
struct task_and_cgroup single;
struct flex_array *tc_array;
int tc_array_len;
int idx;
struct cgroup *cur_cgrp;
};
/**
* cgroup_taskset_first - reset taskset and return the first task
* @tset: taskset of interest
*
* @tset iteration is initialized and the first task is returned.
*/
struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
{
if (tset->tc_array) {
tset->idx = 0;
return cgroup_taskset_next(tset);
} else {
tset->cur_cgrp = tset->single.cgrp;
return tset->single.task;
}
}
EXPORT_SYMBOL_GPL(cgroup_taskset_first);
/**
* cgroup_taskset_next - iterate to the next task in taskset
* @tset: taskset of interest
*
* Return the next task in @tset. Iteration must have been initialized
* with cgroup_taskset_first().
*/
struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
{
struct task_and_cgroup *tc;
if (!tset->tc_array || tset->idx >= tset->tc_array_len)
return NULL;
tc = flex_array_get(tset->tc_array, tset->idx++);
tset->cur_cgrp = tc->cgrp;
return tc->task;
}
EXPORT_SYMBOL_GPL(cgroup_taskset_next);
/**
* cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
* @tset: taskset of interest
*
* Return the cgroup for the current (last returned) task of @tset. This
* function must be preceded by either cgroup_taskset_first() or
* cgroup_taskset_next().
*/
struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
{
return tset->cur_cgrp;
}
EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
/**
* cgroup_taskset_size - return the number of tasks in taskset
* @tset: taskset of interest
*/
int cgroup_taskset_size(struct cgroup_taskset *tset)
{
return tset->tc_array ? tset->tc_array_len : 1;
}
EXPORT_SYMBOL_GPL(cgroup_taskset_size);
/*
* cgroup_task_migrate - move a task from one cgroup to another.
*
* Must be called with cgroup_mutex and threadgroup locked.
*/
static void cgroup_task_migrate(struct cgroup *oldcgrp,
struct task_struct *tsk, struct css_set *newcg)
{
struct css_set *oldcg;
/*
* We are synchronized through threadgroup_lock() against PF_EXITING
* setting such that we can't race against cgroup_exit() changing the
* css_set to init_css_set and dropping the old one.
*/
WARN_ON_ONCE(tsk->flags & PF_EXITING);
oldcg = tsk->cgroups;
task_lock(tsk);
rcu_assign_pointer(tsk->cgroups, newcg);
task_unlock(tsk);
/* Update the css_set linked lists if we're using them */
write_lock(&css_set_lock);
if (!list_empty(&tsk->cg_list))
list_move(&tsk->cg_list, &newcg->tasks);
write_unlock(&css_set_lock);
/*
* We just gained a reference on oldcg by taking it from the task. As
* trading it for newcg is protected by cgroup_mutex, we're safe to drop
* it here; it will be freed under RCU.
*/
set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
put_css_set(oldcg);
}
/**
* cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
* @cgrp: the cgroup to attach to
* @tsk: the task or the leader of the threadgroup to be attached
* @threadgroup: attach the whole threadgroup?
*
* Call holding cgroup_mutex and the group_rwsem of the leader. Will take
* task_lock of @tsk or each thread in the threadgroup individually in turn.
*/
static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
bool threadgroup)
{
int retval, i, group_size;
struct cgroup_subsys *ss, *failed_ss = NULL;
struct cgroupfs_root *root = cgrp->root;
/* threadgroup list cursor and array */
struct task_struct *leader = tsk;
struct task_and_cgroup *tc;
struct flex_array *group;
struct cgroup_taskset tset = { };
/*
* step 0: in order to do expensive, possibly blocking operations for
* every thread, we cannot iterate the thread group list, since it needs
* rcu or tasklist locked. instead, build an array of all threads in the
* group - group_rwsem prevents new threads from appearing, and if
* threads exit, this will just be an over-estimate.
*/
if (threadgroup)
group_size = get_nr_threads(tsk);
else
group_size = 1;
/* flex_array supports very large thread-groups better than kmalloc. */
group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
if (!group)
return -ENOMEM;
/* pre-allocate to guarantee space while iterating in rcu read-side. */
retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
if (retval)
goto out_free_group_list;
i = 0;
/*
* Prevent freeing of tasks while we take a snapshot. Tasks that are
* already PF_EXITING could be freed from underneath us unless we
* take an rcu_read_lock.
*/
rcu_read_lock();
do {
struct task_and_cgroup ent;
/* @tsk either already exited or can't exit until the end */
if (tsk->flags & PF_EXITING)
goto next;
/* as per above, nr_threads may decrease, but not increase. */
BUG_ON(i >= group_size);
ent.task = tsk;
ent.cgrp = task_cgroup_from_root(tsk, root);
/* nothing to do if this task is already in the cgroup */
if (ent.cgrp == cgrp)
goto next;
/*
* saying GFP_ATOMIC has no effect here because we did prealloc
* earlier, but it's good form to communicate our expectations.
*/
retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
BUG_ON(retval != 0);
i++;
next:
if (!threadgroup)
break;
} while_each_thread(leader, tsk);
rcu_read_unlock();
/* remember the number of threads in the array for later. */
group_size = i;
tset.tc_array = group;
tset.tc_array_len = group_size;
/* methods shouldn't be called if no task is actually migrating */
retval = 0;
if (!group_size)
goto out_free_group_list;
/*
* step 1: check that we can legitimately attach to the cgroup.
*/
for_each_subsys(root, ss) {
if (ss->can_attach) {
retval = ss->can_attach(cgrp, &tset);
if (retval) {
failed_ss = ss;
goto out_cancel_attach;
}
}
}
/*
* step 2: make sure css_sets exist for all threads to be migrated.
* we use find_css_set, which allocates a new one if necessary.
*/
for (i = 0; i < group_size; i++) {
tc = flex_array_get(group, i);
tc->cg = find_css_set(tc->task->cgroups, cgrp);
if (!tc->cg) {
retval = -ENOMEM;
goto out_put_css_set_refs;
}
}
/*
* step 3: now that we're guaranteed success wrt the css_sets,
* proceed to move all tasks to the new cgroup. There are no
* failure cases after here, so this is the commit point.
*/
for (i = 0; i < group_size; i++) {
tc = flex_array_get(group, i);
cgroup_task_migrate(tc->cgrp, tc->task, tc->cg);
}
/* nothing is sensitive to fork() after this point. */
/*
* step 4: do subsystem attach callbacks.
*/
for_each_subsys(root, ss) {
if (ss->attach)
ss->attach(cgrp, &tset);
}
/*
* step 5: success! and cleanup
*/
retval = 0;
out_put_css_set_refs:
if (retval) {
for (i = 0; i < group_size; i++) {
tc = flex_array_get(group, i);
if (!tc->cg)
break;
put_css_set(tc->cg);
}
}
out_cancel_attach:
if (retval) {
for_each_subsys(root, ss) {
if (ss == failed_ss)
break;
if (ss->cancel_attach)
ss->cancel_attach(cgrp, &tset);
}
}
out_free_group_list:
flex_array_free(group);
return retval;
}
/*
* Find the task_struct of the task to attach by vpid and pass it along to the
* function to attach either it or all tasks in its threadgroup. Will lock
* cgroup_mutex and threadgroup; may take task_lock of task.
*/
static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
{
struct task_struct *tsk;
const struct cred *cred = current_cred(), *tcred;
int ret;
if (!cgroup_lock_live_group(cgrp))
return -ENODEV;
retry_find_task:
rcu_read_lock();
if (pid) {
tsk = find_task_by_vpid(pid);
if (!tsk) {
rcu_read_unlock();
ret= -ESRCH;
goto out_unlock_cgroup;
}
/*
* even if we're attaching all tasks in the thread group, we
* only need to check permissions on one of them.
*/
tcred = __task_cred(tsk);
if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
!uid_eq(cred->euid, tcred->uid) &&
!uid_eq(cred->euid, tcred->suid)) {
rcu_read_unlock();
ret = -EACCES;
goto out_unlock_cgroup;
}
} else
tsk = current;
if (threadgroup)
tsk = tsk->group_leader;
/*
* Workqueue threads may acquire PF_NO_SETAFFINITY and become
* trapped in a cpuset, or RT worker may be born in a cgroup
* with no rt_runtime allocated. Just say no.
*/
if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
ret = -EINVAL;
rcu_read_unlock();
goto out_unlock_cgroup;
}
get_task_struct(tsk);
rcu_read_unlock();
threadgroup_lock(tsk);
if (threadgroup) {
if (!thread_group_leader(tsk)) {
/*
* a race with de_thread from another thread's exec()
* may strip us of our leadership, if this happens,
* there is no choice but to throw this task away and
* try again; this is
* "double-double-toil-and-trouble-check locking".
*/
threadgroup_unlock(tsk);
put_task_struct(tsk);
goto retry_find_task;
}
}
ret = cgroup_attach_task(cgrp, tsk, threadgroup);
threadgroup_unlock(tsk);
put_task_struct(tsk);
out_unlock_cgroup:
mutex_unlock(&cgroup_mutex);
return ret;
}
/**
* cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
* @from: attach to all cgroups of a given task
* @tsk: the task to be attached
*/
int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
{
struct cgroupfs_root *root;
int retval = 0;
mutex_lock(&cgroup_mutex);
for_each_active_root(root) {
struct cgroup *from_cg = task_cgroup_from_root(from, root);
retval = cgroup_attach_task(from_cg, tsk, false);
if (retval)
break;
}
mutex_unlock(&cgroup_mutex);
return retval;
}
EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
{
return attach_task_by_pid(cgrp, pid, false);
}
static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
{
return attach_task_by_pid(cgrp, tgid, true);
}
static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
const char *buffer)
{
BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
if (strlen(buffer) >= PATH_MAX)
return -EINVAL;
if (!cgroup_lock_live_group(cgrp))
return -ENODEV;
mutex_lock(&cgroup_root_mutex);
strcpy(cgrp->root->release_agent_path, buffer);
mutex_unlock(&cgroup_root_mutex);
mutex_unlock(&cgroup_mutex);
return 0;
}
static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
struct seq_file *seq)
{
if (!cgroup_lock_live_group(cgrp))
return -ENODEV;
seq_puts(seq, cgrp->root->release_agent_path);
seq_putc(seq, '\n');
mutex_unlock(&cgroup_mutex);
return 0;
}
static int cgroup_sane_behavior_show(struct cgroup *cgrp, struct cftype *cft,
struct seq_file *seq)
{
seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
return 0;
}
/* A buffer size big enough for numbers or short strings */
#define CGROUP_LOCAL_BUFFER_SIZE 64
static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
struct file *file,
const char __user *userbuf,
size_t nbytes, loff_t *unused_ppos)
{
char buffer[CGROUP_LOCAL_BUFFER_SIZE];
int retval = 0;
char *end;
if (!nbytes)
return -EINVAL;
if (nbytes >= sizeof(buffer))
return -E2BIG;
if (copy_from_user(buffer, userbuf, nbytes))
return -EFAULT;
buffer[nbytes] = 0; /* nul-terminate */
if (cft->write_u64) {
u64 val = simple_strtoull(strstrip(buffer), &end, 0);
if (*end)
return -EINVAL;
retval = cft->write_u64(cgrp, cft, val);
} else {
s64 val = simple_strtoll(strstrip(buffer), &end, 0);
if (*end)
return -EINVAL;
retval = cft->write_s64(cgrp, cft, val);
}
if (!retval)
retval = nbytes;
return retval;
}
static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
struct file *file,
const char __user *userbuf,
size_t nbytes, loff_t *unused_ppos)
{
char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
int retval = 0;
size_t max_bytes = cft->max_write_len;
char *buffer = local_buffer;
if (!max_bytes)
max_bytes = sizeof(local_buffer) - 1;
if (nbytes >= max_bytes)
return -E2BIG;
/* Allocate a dynamic buffer if we need one */
if (nbytes >= sizeof(local_buffer)) {
buffer = kmalloc(nbytes + 1, GFP_KERNEL);
if (buffer == NULL)
return -ENOMEM;
}
if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
retval = -EFAULT;
goto out;
}
buffer[nbytes] = 0; /* nul-terminate */
retval = cft->write_string(cgrp, cft, strstrip(buffer));
if (!retval)
retval = nbytes;
out:
if (buffer != local_buffer)
kfree(buffer);
return retval;
}
static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
size_t nbytes, loff_t *ppos)
{
struct cftype *cft = __d_cft(file->f_dentry);
struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
if (cgroup_is_removed(cgrp))
return -ENODEV;
if (cft->write)
return cft->write(cgrp, cft, file, buf, nbytes, ppos);
if (cft->write_u64 || cft->write_s64)
return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
if (cft->write_string)
return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
if (cft->trigger) {
int ret = cft->trigger(cgrp, (unsigned int)cft->private);
return ret ? ret : nbytes;
}
return -EINVAL;
}
static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
struct file *file,
char __user *buf, size_t nbytes,
loff_t *ppos)
{
char tmp[CGROUP_LOCAL_BUFFER_SIZE];
u64 val = cft->read_u64(cgrp, cft);
int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}
static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
struct file *file,
char __user *buf, size_t nbytes,
loff_t *ppos)
{
char tmp[CGROUP_LOCAL_BUFFER_SIZE];
s64 val = cft->read_s64(cgrp, cft);
int len = sprintf(tmp, "%lld\n", (long long) val);
return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}
static ssize_t cgroup_file_read(struct file *file, char __user *buf,
size_t nbytes, loff_t *ppos)
{
struct cftype *cft = __d_cft(file->f_dentry);
struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
if (cgroup_is_removed(cgrp))
return -ENODEV;
if (cft->read)
return cft->read(cgrp, cft, file, buf, nbytes, ppos);
if (cft->read_u64)
return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
if (cft->read_s64)
return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
return -EINVAL;
}
/*
* seqfile ops/methods for returning structured data. Currently just
* supports string->u64 maps, but can be extended in future.
*/
struct cgroup_seqfile_state {
struct cftype *cft;
struct cgroup *cgroup;
};
static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
{
struct seq_file *sf = cb->state;
return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
}
static int cgroup_seqfile_show(struct seq_file *m, void *arg)
{
struct cgroup_seqfile_state *state = m->private;
struct cftype *cft = state->cft;
if (cft->read_map) {
struct cgroup_map_cb cb = {
.fill = cgroup_map_add,
.state = m,
};
return cft->read_map(state->cgroup, cft, &cb);
}
return cft->read_seq_string(state->cgroup, cft, m);
}
static int cgroup_seqfile_release(struct inode *inode, struct file *file)
{
struct seq_file *seq = file->private_data;
kfree(seq->private);
return single_release(inode, file);
}
static const struct file_operations cgroup_seqfile_operations = {
.read = seq_read,
.write = cgroup_file_write,
.llseek = seq_lseek,
.release = cgroup_seqfile_release,
};
static int cgroup_file_open(struct inode *inode, struct file *file)
{
int err;
struct cftype *cft;
err = generic_file_open(inode, file);
if (err)
return err;
cft = __d_cft(file->f_dentry);
if (cft->read_map || cft->read_seq_string) {
struct cgroup_seqfile_state *state =
kzalloc(sizeof(*state), GFP_USER);
if (!state)
return -ENOMEM;
state->cft = cft;
state->cgroup = __d_cgrp(file->f_dentry->d_parent);
file->f_op = &cgroup_seqfile_operations;
err = single_open(file, cgroup_seqfile_show, state);
if (err < 0)
kfree(state);
} else if (cft->open)
err = cft->open(inode, file);
else
err = 0;
return err;
}
static int cgroup_file_release(struct inode *inode, struct file *file)
{
struct cftype *cft = __d_cft(file->f_dentry);
if (cft->release)
return cft->release(inode, file);
return 0;
}
/*
* cgroup_rename - Only allow simple rename of directories in place.
*/
static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
struct inode *new_dir, struct dentry *new_dentry)
{
int ret;
struct cgroup_name *name, *old_name;
struct cgroup *cgrp;
/*
* It's convinient to use parent dir's i_mutex to protected
* cgrp->name.
*/
lockdep_assert_held(&old_dir->i_mutex);
if (!S_ISDIR(old_dentry->d_inode->i_mode))
return -ENOTDIR;
if (new_dentry->d_inode)
return -EEXIST;
if (old_dir != new_dir)
return -EIO;
cgrp = __d_cgrp(old_dentry);
name = cgroup_alloc_name(new_dentry);
if (!name)
return -ENOMEM;
ret = simple_rename(old_dir, old_dentry, new_dir, new_dentry);
if (ret) {
kfree(name);
return ret;
}
old_name = cgrp->name;
rcu_assign_pointer(cgrp->name, name);
kfree_rcu(old_name, rcu_head);
return 0;
}
static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
{
if (S_ISDIR(dentry->d_inode->i_mode))
return &__d_cgrp(dentry)->xattrs;
else
return &__d_cfe(dentry)->xattrs;
}
static inline int xattr_enabled(struct dentry *dentry)
{
struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
return root->flags & CGRP_ROOT_XATTR;
}
static bool is_valid_xattr(const char *name)
{
if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
!strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
return true;
return false;
}
static int cgroup_setxattr(struct dentry *dentry, const char *name,
const void *val, size_t size, int flags)
{
if (!xattr_enabled(dentry))
return -EOPNOTSUPP;
if (!is_valid_xattr(name))
return -EINVAL;
return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
}
static int cgroup_removexattr(struct dentry *dentry, const char *name)
{
if (!xattr_enabled(dentry))
return -EOPNOTSUPP;
if (!is_valid_xattr(name))
return -EINVAL;
return simple_xattr_remove(__d_xattrs(dentry), name);
}
static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
void *buf, size_t size)
{
if (!xattr_enabled(dentry))
return -EOPNOTSUPP;
if (!is_valid_xattr(name))
return -EINVAL;
return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
}
static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
{
if (!xattr_enabled(dentry))
return -EOPNOTSUPP;
return simple_xattr_list(__d_xattrs(dentry), buf, size);
}
static const struct file_operations cgroup_file_operations = {
.read = cgroup_file_read,
.write = cgroup_file_write,
.llseek = generic_file_llseek,
.open = cgroup_file_open,
.release = cgroup_file_release,
};
static const struct inode_operations cgroup_file_inode_operations = {
.setxattr = cgroup_setxattr,
.getxattr = cgroup_getxattr,
.listxattr = cgroup_listxattr,
.removexattr = cgroup_removexattr,
};
static const struct inode_operations cgroup_dir_inode_operations = {
.lookup = cgroup_lookup,
.mkdir = cgroup_mkdir,
.rmdir = cgroup_rmdir,
.rename = cgroup_rename,
.setxattr = cgroup_setxattr,
.getxattr = cgroup_getxattr,
.listxattr = cgroup_listxattr,
.removexattr = cgroup_removexattr,
};
static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
{
if (dentry->d_name.len > NAME_MAX)
return ERR_PTR(-ENAMETOOLONG);
d_add(dentry, NULL);
return NULL;
}
/*
* Check if a file is a control file
*/
static inline struct cftype *__file_cft(struct file *file)
{
if (file_inode(file)->i_fop != &cgroup_file_operations)
return ERR_PTR(-EINVAL);
return __d_cft(file->f_dentry);
}
static int cgroup_create_file(struct dentry *dentry, umode_t mode,
struct super_block *sb)
{
struct inode *inode;
if (!dentry)
return -ENOENT;
if (dentry->d_inode)
return -EEXIST;
inode = cgroup_new_inode(mode, sb);
if (!inode)
return -ENOMEM;
if (S_ISDIR(mode)) {
inode->i_op = &cgroup_dir_inode_operations;
inode->i_fop = &simple_dir_operations;
/* start off with i_nlink == 2 (for "." entry) */
inc_nlink(inode);
inc_nlink(dentry->d_parent->d_inode);
/*
* Control reaches here with cgroup_mutex held.
* @inode->i_mutex should nest outside cgroup_mutex but we
* want to populate it immediately without releasing
* cgroup_mutex. As @inode isn't visible to anyone else
* yet, trylock will always succeed without affecting
* lockdep checks.
*/
WARN_ON_ONCE(!mutex_trylock(&inode->i_mutex));
} else if (S_ISREG(mode)) {
inode->i_size = 0;
inode->i_fop = &cgroup_file_operations;
inode->i_op = &cgroup_file_inode_operations;
}
d_instantiate(dentry, inode);
dget(dentry); /* Extra count - pin the dentry in core */
return 0;
}
/**
* cgroup_file_mode - deduce file mode of a control file
* @cft: the control file in question
*
* returns cft->mode if ->mode is not 0
* returns S_IRUGO|S_IWUSR if it has both a read and a write handler
* returns S_IRUGO if it has only a read handler
* returns S_IWUSR if it has only a write hander
*/
static umode_t cgroup_file_mode(const struct cftype *cft)
{
umode_t mode = 0;
if (cft->mode)
return cft->mode;
if (cft->read || cft->read_u64 || cft->read_s64 ||
cft->read_map || cft->read_seq_string)
mode |= S_IRUGO;
if (cft->write || cft->write_u64 || cft->write_s64 ||
cft->write_string || cft->trigger)
mode |= S_IWUSR;
return mode;
}
static int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys,
struct cftype *cft)
{
struct dentry *dir = cgrp->dentry;
struct cgroup *parent = __d_cgrp(dir);
struct dentry *dentry;
struct cfent *cfe;
int error;
umode_t mode;
char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
if (subsys && !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
strcpy(name, subsys->name);
strcat(name, ".");
}
strcat(name, cft->name);
BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
if (!cfe)
return -ENOMEM;
dentry = lookup_one_len(name, dir, strlen(name));
if (IS_ERR(dentry)) {
error = PTR_ERR(dentry);
goto out;
}
cfe->type = (void *)cft;
cfe->dentry = dentry;
dentry->d_fsdata = cfe;
simple_xattrs_init(&cfe->xattrs);
mode = cgroup_file_mode(cft);
error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
if (!error) {
list_add_tail(&cfe->node, &parent->files);
cfe = NULL;
}
dput(dentry);
out:
kfree(cfe);
return error;
}
static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
struct cftype cfts[], bool is_add)
{
struct cftype *cft;
int err, ret = 0;
for (cft = cfts; cft->name[0] != '\0'; cft++) {
/* does cft->flags tell us to skip this file on @cgrp? */
if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
continue;
if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
continue;
if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
continue;
if (is_add) {
err = cgroup_add_file(cgrp, subsys, cft);
if (err)
pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
cft->name, err);
ret = err;
} else {
cgroup_rm_file(cgrp, cft);
}
}
return ret;
}
static DEFINE_MUTEX(cgroup_cft_mutex);
static void cgroup_cfts_prepare(void)
__acquires(&cgroup_cft_mutex) __acquires(&cgroup_mutex)
{
/*
* Thanks to the entanglement with vfs inode locking, we can't walk
* the existing cgroups under cgroup_mutex and create files.
* Instead, we increment reference on all cgroups and build list of
* them using @cgrp->cft_q_node. Grab cgroup_cft_mutex to ensure
* exclusive access to the field.
*/
mutex_lock(&cgroup_cft_mutex);
mutex_lock(&cgroup_mutex);
}
static void cgroup_cfts_commit(struct cgroup_subsys *ss,
struct cftype *cfts, bool is_add)
__releases(&cgroup_mutex) __releases(&cgroup_cft_mutex)
{
LIST_HEAD(pending);
struct cgroup *cgrp, *n;
struct super_block *sb = ss->root->sb;
/* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
if (cfts && ss->root != &rootnode &&
atomic_inc_not_zero(&sb->s_active)) {
list_for_each_entry(cgrp, &ss->root->allcg_list, allcg_node) {
dget(cgrp->dentry);
list_add_tail(&cgrp->cft_q_node, &pending);
}
} else {
sb = NULL;
}
mutex_unlock(&cgroup_mutex);
/*
* All new cgroups will see @cfts update on @ss->cftsets. Add/rm
* files for all cgroups which were created before.
*/
list_for_each_entry_safe(cgrp, n, &pending, cft_q_node) {
struct inode *inode = cgrp->dentry->d_inode;
mutex_lock(&inode->i_mutex);
mutex_lock(&cgroup_mutex);
if (!cgroup_is_removed(cgrp))
cgroup_addrm_files(cgrp, ss, cfts, is_add);
mutex_unlock(&cgroup_mutex);
mutex_unlock(&inode->i_mutex);
list_del_init(&cgrp->cft_q_node);
dput(cgrp->dentry);
}
if (sb)
deactivate_super(sb);
mutex_unlock(&cgroup_cft_mutex);
}
/**
* cgroup_add_cftypes - add an array of cftypes to a subsystem
* @ss: target cgroup subsystem
* @cfts: zero-length name terminated array of cftypes
*
* Register @cfts to @ss. Files described by @cfts are created for all
* existing cgroups to which @ss is attached and all future cgroups will
* have them too. This function can be called anytime whether @ss is
* attached or not.
*
* Returns 0 on successful registration, -errno on failure. Note that this
* function currently returns 0 as long as @cfts registration is successful
* even if some file creation attempts on existing cgroups fail.
*/
int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
{
struct cftype_set *set;
set = kzalloc(sizeof(*set), GFP_KERNEL);
if (!set)
return -ENOMEM;
cgroup_cfts_prepare();
set->cfts = cfts;
list_add_tail(&set->node, &ss->cftsets);
cgroup_cfts_commit(ss, cfts, true);
return 0;
}
EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
/**
* cgroup_rm_cftypes - remove an array of cftypes from a subsystem
* @ss: target cgroup subsystem
* @cfts: zero-length name terminated array of cftypes
*
* Unregister @cfts from @ss. Files described by @cfts are removed from
* all existing cgroups to which @ss is attached and all future cgroups
* won't have them either. This function can be called anytime whether @ss
* is attached or not.
*
* Returns 0 on successful unregistration, -ENOENT if @cfts is not
* registered with @ss.
*/
int cgroup_rm_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
{
struct cftype_set *set;
cgroup_cfts_prepare();
list_for_each_entry(set, &ss->cftsets, node) {
if (set->cfts == cfts) {
list_del_init(&set->node);
cgroup_cfts_commit(ss, cfts, false);
return 0;
}
}
cgroup_cfts_commit(ss, NULL, false);
return -ENOENT;
}
/**
* cgroup_task_count - count the number of tasks in a cgroup.
* @cgrp: the cgroup in question
*
* Return the number of tasks in the cgroup.
*/
int cgroup_task_count(const struct cgroup *cgrp)
{
int count = 0;
struct cg_cgroup_link *link;
read_lock(&css_set_lock);
list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
count += atomic_read(&link->cg->refcount);
}
read_unlock(&css_set_lock);
return count;
}
/*
* Advance a list_head iterator. The iterator should be positioned at
* the start of a css_set
*/
static void cgroup_advance_iter(struct cgroup *cgrp,
struct cgroup_iter *it)
{
struct list_head *l = it->cg_link;
struct cg_cgroup_link *link;
struct css_set *cg;
/* Advance to the next non-empty css_set */
do {
l = l->next;
if (l == &cgrp->css_sets) {
it->cg_link = NULL;
return;
}
link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
cg = link->cg;
} while (list_empty(&cg->tasks));
it->cg_link = l;
it->task = cg->tasks.next;
}
/*
* To reduce the fork() overhead for systems that are not actually
* using their cgroups capability, we don't maintain the lists running
* through each css_set to its tasks until we see the list actually
* used - in other words after the first call to cgroup_iter_start().
*/
static void cgroup_enable_task_cg_lists(void)
{
struct task_struct *p, *g;
write_lock(&css_set_lock);
use_task_css_set_links = 1;
/*
* We need tasklist_lock because RCU is not safe against
* while_each_thread(). Besides, a forking task that has passed
* cgroup_post_fork() without seeing use_task_css_set_links = 1
* is not guaranteed to have its child immediately visible in the
* tasklist if we walk through it with RCU.
*/
read_lock(&tasklist_lock);
do_each_thread(g, p) {
task_lock(p);
/*
* We should check if the process is exiting, otherwise
* it will race with cgroup_exit() in that the list
* entry won't be deleted though the process has exited.
*/
if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
list_add(&p->cg_list, &p->cgroups->tasks);
task_unlock(p);
} while_each_thread(g, p);
read_unlock(&tasklist_lock);
write_unlock(&css_set_lock);
}
/**
* cgroup_next_descendant_pre - find the next descendant for pre-order walk
* @pos: the current position (%NULL to initiate traversal)
* @cgroup: cgroup whose descendants to walk
*
* To be used by cgroup_for_each_descendant_pre(). Find the next
* descendant to visit for pre-order traversal of @cgroup's descendants.
*/
struct cgroup *cgroup_next_descendant_pre(struct cgroup *pos,
struct cgroup *cgroup)
{
struct cgroup *next;
WARN_ON_ONCE(!rcu_read_lock_held());
/* if first iteration, pretend we just visited @cgroup */
if (!pos)
pos = cgroup;
/* visit the first child if exists */
next = list_first_or_null_rcu(&pos->children, struct cgroup, sibling);
if (next)
return next;
/* no child, visit my or the closest ancestor's next sibling */
while (pos != cgroup) {
next = list_entry_rcu(pos->sibling.next, struct cgroup,
sibling);
if (&next->sibling != &pos->parent->children)
return next;
pos = pos->parent;
}
return NULL;
}
EXPORT_SYMBOL_GPL(cgroup_next_descendant_pre);
/**
* cgroup_rightmost_descendant - return the rightmost descendant of a cgroup
* @pos: cgroup of interest
*
* Return the rightmost descendant of @pos. If there's no descendant,
* @pos is returned. This can be used during pre-order traversal to skip
* subtree of @pos.
*/
struct cgroup *cgroup_rightmost_descendant(struct cgroup *pos)
{
struct cgroup *last, *tmp;
WARN_ON_ONCE(!rcu_read_lock_held());
do {
last = pos;
/* ->prev isn't RCU safe, walk ->next till the end */
pos = NULL;
list_for_each_entry_rcu(tmp, &last->children, sibling)
pos = tmp;
} while (pos);
return last;
}
EXPORT_SYMBOL_GPL(cgroup_rightmost_descendant);
static struct cgroup *cgroup_leftmost_descendant(struct cgroup *pos)
{
struct cgroup *last;
do {
last = pos;
pos = list_first_or_null_rcu(&pos->children, struct cgroup,
sibling);
} while (pos);
return last;
}
/**
* cgroup_next_descendant_post - find the next descendant for post-order walk
* @pos: the current position (%NULL to initiate traversal)
* @cgroup: cgroup whose descendants to walk
*
* To be used by cgroup_for_each_descendant_post(). Find the next
* descendant to visit for post-order traversal of @cgroup's descendants.
*/
struct cgroup *cgroup_next_descendant_post(struct cgroup *pos,
struct cgroup *cgroup)
{
struct cgroup *next;
WARN_ON_ONCE(!rcu_read_lock_held());
/* if first iteration, visit the leftmost descendant */
if (!pos) {
next = cgroup_leftmost_descendant(cgroup);
return next != cgroup ? next : NULL;
}
/* if there's an unvisited sibling, visit its leftmost descendant */
next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
if (&next->sibling != &pos->parent->children)
return cgroup_leftmost_descendant(next);
/* no sibling left, visit parent */
next = pos->parent;
return next != cgroup ? next : NULL;
}
EXPORT_SYMBOL_GPL(cgroup_next_descendant_post);
void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
__acquires(css_set_lock)
{
/*
* The first time anyone tries to iterate across a cgroup,
* we need to enable the list linking each css_set to its
* tasks, and fix up all existing tasks.
*/
if (!use_task_css_set_links)
cgroup_enable_task_cg_lists();
read_lock(&css_set_lock);
it->cg_link = &cgrp->css_sets;
cgroup_advance_iter(cgrp, it);
}
struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
struct cgroup_iter *it)
{
struct task_struct *res;
struct list_head *l = it->task;
struct cg_cgroup_link *link;
/* If the iterator cg is NULL, we have no tasks */
if (!it->cg_link)
return NULL;
res = list_entry(l, struct task_struct, cg_list);
/* Advance iterator to find next entry */
l = l->next;
link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
if (l == &link->cg->tasks) {
/* We reached the end of this task list - move on to
* the next cg_cgroup_link */
cgroup_advance_iter(cgrp, it);
} else {
it->task = l;
}
return res;
}
void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
__releases(css_set_lock)
{
read_unlock(&css_set_lock);
}
static inline int started_after_time(struct task_struct *t1,
struct timespec *time,
struct task_struct *t2)
{
int start_diff = timespec_compare(&t1->start_time, time);
if (start_diff > 0) {
return 1;
} else if (start_diff < 0) {
return 0;
} else {
/*
* Arbitrarily, if two processes started at the same
* time, we'll say that the lower pointer value
* started first. Note that t2 may have exited by now
* so this may not be a valid pointer any longer, but
* that's fine - it still serves to distinguish
* between two tasks started (effectively) simultaneously.
*/
return t1 > t2;
}
}
/*
* This function is a callback from heap_insert() and is used to order
* the heap.
* In this case we order the heap in descending task start time.
*/
static inline int started_after(void *p1, void *p2)
{
struct task_struct *t1 = p1;
struct task_struct *t2 = p2;
return started_after_time(t1, &t2->start_time, t2);
}
/**
* cgroup_scan_tasks - iterate though all the tasks in a cgroup
* @scan: struct cgroup_scanner containing arguments for the scan
*
* Arguments include pointers to callback functions test_task() and
* process_task().
* Iterate through all the tasks in a cgroup, calling test_task() for each,
* and if it returns true, call process_task() for it also.
* The test_task pointer may be NULL, meaning always true (select all tasks).
* Effectively duplicates cgroup_iter_{start,next,end}()
* but does not lock css_set_lock for the call to process_task().
* The struct cgroup_scanner may be embedded in any structure of the caller's
* creation.
* It is guaranteed that process_task() will act on every task that
* is a member of the cgroup for the duration of this call. This
* function may or may not call process_task() for tasks that exit
* or move to a different cgroup during the call, or are forked or
* move into the cgroup during the call.
*
* Note that test_task() may be called with locks held, and may in some
* situations be called multiple times for the same task, so it should
* be cheap.
* If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
* pre-allocated and will be used for heap operations (and its "gt" member will
* be overwritten), else a temporary heap will be used (allocation of which
* may cause this function to fail).
*/
int cgroup_scan_tasks(struct cgroup_scanner *scan)
{
int retval, i;
struct cgroup_iter it;
struct task_struct *p, *dropped;
/* Never dereference latest_task, since it's not refcounted */
struct task_struct *latest_task = NULL;
struct ptr_heap tmp_heap;
struct ptr_heap *heap;
struct timespec latest_time = { 0, 0 };
if (scan->heap) {
/* The caller supplied our heap and pre-allocated its memory */
heap = scan->heap;
heap->gt = &started_after;
} else {
/* We need to allocate our own heap memory */
heap = &tmp_heap;
retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
if