| #include <linux/types.h> |
| #include <linux/string.h> |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/ctype.h> |
| #include <linux/dmi.h> |
| #include <linux/efi.h> |
| #include <linux/bootmem.h> |
| #include <linux/random.h> |
| #include <asm/dmi.h> |
| #include <asm/unaligned.h> |
| |
| /* |
| * DMI stands for "Desktop Management Interface". It is part |
| * of and an antecedent to, SMBIOS, which stands for System |
| * Management BIOS. See further: http://www.dmtf.org/standards |
| */ |
| static const char dmi_empty_string[] = " "; |
| |
| static u32 dmi_ver __initdata; |
| static u32 dmi_len; |
| static u16 dmi_num; |
| /* |
| * Catch too early calls to dmi_check_system(): |
| */ |
| static int dmi_initialized; |
| |
| /* DMI system identification string used during boot */ |
| static char dmi_ids_string[128] __initdata; |
| |
| static struct dmi_memdev_info { |
| const char *device; |
| const char *bank; |
| u16 handle; |
| } *dmi_memdev; |
| static int dmi_memdev_nr; |
| |
| static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s) |
| { |
| const u8 *bp = ((u8 *) dm) + dm->length; |
| |
| if (s) { |
| s--; |
| while (s > 0 && *bp) { |
| bp += strlen(bp) + 1; |
| s--; |
| } |
| |
| if (*bp != 0) { |
| size_t len = strlen(bp)+1; |
| size_t cmp_len = len > 8 ? 8 : len; |
| |
| if (!memcmp(bp, dmi_empty_string, cmp_len)) |
| return dmi_empty_string; |
| return bp; |
| } |
| } |
| |
| return ""; |
| } |
| |
| static const char * __init dmi_string(const struct dmi_header *dm, u8 s) |
| { |
| const char *bp = dmi_string_nosave(dm, s); |
| char *str; |
| size_t len; |
| |
| if (bp == dmi_empty_string) |
| return dmi_empty_string; |
| |
| len = strlen(bp) + 1; |
| str = dmi_alloc(len); |
| if (str != NULL) |
| strcpy(str, bp); |
| |
| return str; |
| } |
| |
| /* |
| * We have to be cautious here. We have seen BIOSes with DMI pointers |
| * pointing to completely the wrong place for example |
| */ |
| static void dmi_table(u8 *buf, |
| void (*decode)(const struct dmi_header *, void *), |
| void *private_data) |
| { |
| u8 *data = buf; |
| int i = 0; |
| |
| /* |
| * Stop when we have seen all the items the table claimed to have |
| * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS |
| * >= 3.0 only) OR we run off the end of the table (should never |
| * happen but sometimes does on bogus implementations.) |
| */ |
| while ((!dmi_num || i < dmi_num) && |
| (data - buf + sizeof(struct dmi_header)) <= dmi_len) { |
| const struct dmi_header *dm = (const struct dmi_header *)data; |
| |
| /* |
| * We want to know the total length (formatted area and |
| * strings) before decoding to make sure we won't run off the |
| * table in dmi_decode or dmi_string |
| */ |
| data += dm->length; |
| while ((data - buf < dmi_len - 1) && (data[0] || data[1])) |
| data++; |
| if (data - buf < dmi_len - 1) |
| decode(dm, private_data); |
| |
| /* |
| * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0] |
| * For tables behind a 64-bit entry point, we have no item |
| * count and no exact table length, so stop on end-of-table |
| * marker. For tables behind a 32-bit entry point, we have |
| * seen OEM structures behind the end-of-table marker on |
| * some systems, so don't trust it. |
| */ |
| if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE) |
| break; |
| |
| data += 2; |
| i++; |
| } |
| } |
| |
| static phys_addr_t dmi_base; |
| |
| static int __init dmi_walk_early(void (*decode)(const struct dmi_header *, |
| void *)) |
| { |
| u8 *buf; |
| |
| buf = dmi_early_remap(dmi_base, dmi_len); |
| if (buf == NULL) |
| return -1; |
| |
| dmi_table(buf, decode, NULL); |
| |
| add_device_randomness(buf, dmi_len); |
| |
| dmi_early_unmap(buf, dmi_len); |
| return 0; |
| } |
| |
| static int __init dmi_checksum(const u8 *buf, u8 len) |
| { |
| u8 sum = 0; |
| int a; |
| |
| for (a = 0; a < len; a++) |
| sum += buf[a]; |
| |
| return sum == 0; |
| } |
| |
| static const char *dmi_ident[DMI_STRING_MAX]; |
| static LIST_HEAD(dmi_devices); |
| int dmi_available; |
| |
| /* |
| * Save a DMI string |
| */ |
| static void __init dmi_save_ident(const struct dmi_header *dm, int slot, |
| int string) |
| { |
| const char *d = (const char *) dm; |
| const char *p; |
| |
| if (dmi_ident[slot]) |
| return; |
| |
| p = dmi_string(dm, d[string]); |
| if (p == NULL) |
| return; |
| |
| dmi_ident[slot] = p; |
| } |
| |
| static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, |
| int index) |
| { |
| const u8 *d = (u8 *) dm + index; |
| char *s; |
| int is_ff = 1, is_00 = 1, i; |
| |
| if (dmi_ident[slot]) |
| return; |
| |
| for (i = 0; i < 16 && (is_ff || is_00); i++) { |
| if (d[i] != 0x00) |
| is_00 = 0; |
| if (d[i] != 0xFF) |
| is_ff = 0; |
| } |
| |
| if (is_ff || is_00) |
| return; |
| |
| s = dmi_alloc(16*2+4+1); |
| if (!s) |
| return; |
| |
| /* |
| * As of version 2.6 of the SMBIOS specification, the first 3 fields of |
| * the UUID are supposed to be little-endian encoded. The specification |
| * says that this is the defacto standard. |
| */ |
| if (dmi_ver >= 0x020600) |
| sprintf(s, "%pUL", d); |
| else |
| sprintf(s, "%pUB", d); |
| |
| dmi_ident[slot] = s; |
| } |
| |
| static void __init dmi_save_type(const struct dmi_header *dm, int slot, |
| int index) |
| { |
| const u8 *d = (u8 *) dm + index; |
| char *s; |
| |
| if (dmi_ident[slot]) |
| return; |
| |
| s = dmi_alloc(4); |
| if (!s) |
| return; |
| |
| sprintf(s, "%u", *d & 0x7F); |
| dmi_ident[slot] = s; |
| } |
| |
| static void __init dmi_save_one_device(int type, const char *name) |
| { |
| struct dmi_device *dev; |
| |
| /* No duplicate device */ |
| if (dmi_find_device(type, name, NULL)) |
| return; |
| |
| dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1); |
| if (!dev) |
| return; |
| |
| dev->type = type; |
| strcpy((char *)(dev + 1), name); |
| dev->name = (char *)(dev + 1); |
| dev->device_data = NULL; |
| list_add(&dev->list, &dmi_devices); |
| } |
| |
| static void __init dmi_save_devices(const struct dmi_header *dm) |
| { |
| int i, count = (dm->length - sizeof(struct dmi_header)) / 2; |
| |
| for (i = 0; i < count; i++) { |
| const char *d = (char *)(dm + 1) + (i * 2); |
| |
| /* Skip disabled device */ |
| if ((*d & 0x80) == 0) |
| continue; |
| |
| dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1))); |
| } |
| } |
| |
| static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm) |
| { |
| int i, count = *(u8 *)(dm + 1); |
| struct dmi_device *dev; |
| |
| for (i = 1; i <= count; i++) { |
| const char *devname = dmi_string(dm, i); |
| |
| if (devname == dmi_empty_string) |
| continue; |
| |
| dev = dmi_alloc(sizeof(*dev)); |
| if (!dev) |
| break; |
| |
| dev->type = DMI_DEV_TYPE_OEM_STRING; |
| dev->name = devname; |
| dev->device_data = NULL; |
| |
| list_add(&dev->list, &dmi_devices); |
| } |
| } |
| |
| static void __init dmi_save_ipmi_device(const struct dmi_header *dm) |
| { |
| struct dmi_device *dev; |
| void *data; |
| |
| data = dmi_alloc(dm->length); |
| if (data == NULL) |
| return; |
| |
| memcpy(data, dm, dm->length); |
| |
| dev = dmi_alloc(sizeof(*dev)); |
| if (!dev) |
| return; |
| |
| dev->type = DMI_DEV_TYPE_IPMI; |
| dev->name = "IPMI controller"; |
| dev->device_data = data; |
| |
| list_add_tail(&dev->list, &dmi_devices); |
| } |
| |
| static void __init dmi_save_dev_onboard(int instance, int segment, int bus, |
| int devfn, const char *name) |
| { |
| struct dmi_dev_onboard *onboard_dev; |
| |
| onboard_dev = dmi_alloc(sizeof(*onboard_dev) + strlen(name) + 1); |
| if (!onboard_dev) |
| return; |
| |
| onboard_dev->instance = instance; |
| onboard_dev->segment = segment; |
| onboard_dev->bus = bus; |
| onboard_dev->devfn = devfn; |
| |
| strcpy((char *)&onboard_dev[1], name); |
| onboard_dev->dev.type = DMI_DEV_TYPE_DEV_ONBOARD; |
| onboard_dev->dev.name = (char *)&onboard_dev[1]; |
| onboard_dev->dev.device_data = onboard_dev; |
| |
| list_add(&onboard_dev->dev.list, &dmi_devices); |
| } |
| |
| static void __init dmi_save_extended_devices(const struct dmi_header *dm) |
| { |
| const u8 *d = (u8 *) dm + 5; |
| |
| /* Skip disabled device */ |
| if ((*d & 0x80) == 0) |
| return; |
| |
| dmi_save_dev_onboard(*(d+1), *(u16 *)(d+2), *(d+4), *(d+5), |
| dmi_string_nosave(dm, *(d-1))); |
| dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1))); |
| } |
| |
| static void __init count_mem_devices(const struct dmi_header *dm, void *v) |
| { |
| if (dm->type != DMI_ENTRY_MEM_DEVICE) |
| return; |
| dmi_memdev_nr++; |
| } |
| |
| static void __init save_mem_devices(const struct dmi_header *dm, void *v) |
| { |
| const char *d = (const char *)dm; |
| static int nr; |
| |
| if (dm->type != DMI_ENTRY_MEM_DEVICE) |
| return; |
| if (nr >= dmi_memdev_nr) { |
| pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n"); |
| return; |
| } |
| dmi_memdev[nr].handle = get_unaligned(&dm->handle); |
| dmi_memdev[nr].device = dmi_string(dm, d[0x10]); |
| dmi_memdev[nr].bank = dmi_string(dm, d[0x11]); |
| nr++; |
| } |
| |
| void __init dmi_memdev_walk(void) |
| { |
| if (!dmi_available) |
| return; |
| |
| if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) { |
| dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr); |
| if (dmi_memdev) |
| dmi_walk_early(save_mem_devices); |
| } |
| } |
| |
| /* |
| * Process a DMI table entry. Right now all we care about are the BIOS |
| * and machine entries. For 2.5 we should pull the smbus controller info |
| * out of here. |
| */ |
| static void __init dmi_decode(const struct dmi_header *dm, void *dummy) |
| { |
| switch (dm->type) { |
| case 0: /* BIOS Information */ |
| dmi_save_ident(dm, DMI_BIOS_VENDOR, 4); |
| dmi_save_ident(dm, DMI_BIOS_VERSION, 5); |
| dmi_save_ident(dm, DMI_BIOS_DATE, 8); |
| break; |
| case 1: /* System Information */ |
| dmi_save_ident(dm, DMI_SYS_VENDOR, 4); |
| dmi_save_ident(dm, DMI_PRODUCT_NAME, 5); |
| dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6); |
| dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7); |
| dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8); |
| break; |
| case 2: /* Base Board Information */ |
| dmi_save_ident(dm, DMI_BOARD_VENDOR, 4); |
| dmi_save_ident(dm, DMI_BOARD_NAME, 5); |
| dmi_save_ident(dm, DMI_BOARD_VERSION, 6); |
| dmi_save_ident(dm, DMI_BOARD_SERIAL, 7); |
| dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8); |
| break; |
| case 3: /* Chassis Information */ |
| dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4); |
| dmi_save_type(dm, DMI_CHASSIS_TYPE, 5); |
| dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6); |
| dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7); |
| dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8); |
| break; |
| case 10: /* Onboard Devices Information */ |
| dmi_save_devices(dm); |
| break; |
| case 11: /* OEM Strings */ |
| dmi_save_oem_strings_devices(dm); |
| break; |
| case 38: /* IPMI Device Information */ |
| dmi_save_ipmi_device(dm); |
| break; |
| case 41: /* Onboard Devices Extended Information */ |
| dmi_save_extended_devices(dm); |
| } |
| } |
| |
| static int __init print_filtered(char *buf, size_t len, const char *info) |
| { |
| int c = 0; |
| const char *p; |
| |
| if (!info) |
| return c; |
| |
| for (p = info; *p; p++) |
| if (isprint(*p)) |
| c += scnprintf(buf + c, len - c, "%c", *p); |
| else |
| c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff); |
| return c; |
| } |
| |
| static void __init dmi_format_ids(char *buf, size_t len) |
| { |
| int c = 0; |
| const char *board; /* Board Name is optional */ |
| |
| c += print_filtered(buf + c, len - c, |
| dmi_get_system_info(DMI_SYS_VENDOR)); |
| c += scnprintf(buf + c, len - c, " "); |
| c += print_filtered(buf + c, len - c, |
| dmi_get_system_info(DMI_PRODUCT_NAME)); |
| |
| board = dmi_get_system_info(DMI_BOARD_NAME); |
| if (board) { |
| c += scnprintf(buf + c, len - c, "/"); |
| c += print_filtered(buf + c, len - c, board); |
| } |
| c += scnprintf(buf + c, len - c, ", BIOS "); |
| c += print_filtered(buf + c, len - c, |
| dmi_get_system_info(DMI_BIOS_VERSION)); |
| c += scnprintf(buf + c, len - c, " "); |
| c += print_filtered(buf + c, len - c, |
| dmi_get_system_info(DMI_BIOS_DATE)); |
| } |
| |
| /* |
| * Check for DMI/SMBIOS headers in the system firmware image. Any |
| * SMBIOS header must start 16 bytes before the DMI header, so take a |
| * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset |
| * 0. If the DMI header is present, set dmi_ver accordingly (SMBIOS |
| * takes precedence) and return 0. Otherwise return 1. |
| */ |
| static int __init dmi_present(const u8 *buf) |
| { |
| u32 smbios_ver; |
| |
| if (memcmp(buf, "_SM_", 4) == 0 && |
| buf[5] < 32 && dmi_checksum(buf, buf[5])) { |
| smbios_ver = get_unaligned_be16(buf + 6); |
| |
| /* Some BIOS report weird SMBIOS version, fix that up */ |
| switch (smbios_ver) { |
| case 0x021F: |
| case 0x0221: |
| pr_debug("SMBIOS version fixup(2.%d->2.%d)\n", |
| smbios_ver & 0xFF, 3); |
| smbios_ver = 0x0203; |
| break; |
| case 0x0233: |
| pr_debug("SMBIOS version fixup(2.%d->2.%d)\n", 51, 6); |
| smbios_ver = 0x0206; |
| break; |
| } |
| } else { |
| smbios_ver = 0; |
| } |
| |
| buf += 16; |
| |
| if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) { |
| if (smbios_ver) |
| dmi_ver = smbios_ver; |
| else |
| dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F); |
| dmi_num = get_unaligned_le16(buf + 12); |
| dmi_len = get_unaligned_le16(buf + 6); |
| dmi_base = get_unaligned_le32(buf + 8); |
| |
| if (dmi_walk_early(dmi_decode) == 0) { |
| if (smbios_ver) { |
| pr_info("SMBIOS %d.%d present.\n", |
| dmi_ver >> 8, dmi_ver & 0xFF); |
| } else { |
| pr_info("Legacy DMI %d.%d present.\n", |
| dmi_ver >> 8, dmi_ver & 0xFF); |
| } |
| dmi_ver <<= 8; |
| dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string)); |
| printk(KERN_DEBUG "DMI: %s\n", dmi_ids_string); |
| return 0; |
| } |
| } |
| |
| return 1; |
| } |
| |
| /* |
| * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy |
| * 32-bit entry point, there is no embedded DMI header (_DMI_) in here. |
| */ |
| static int __init dmi_smbios3_present(const u8 *buf) |
| { |
| if (memcmp(buf, "_SM3_", 5) == 0 && |
| buf[6] < 32 && dmi_checksum(buf, buf[6])) { |
| dmi_ver = get_unaligned_be32(buf + 6); |
| dmi_ver &= 0xFFFFFF; |
| dmi_num = 0; /* No longer specified */ |
| dmi_len = get_unaligned_le32(buf + 12); |
| dmi_base = get_unaligned_le64(buf + 16); |
| |
| if (dmi_walk_early(dmi_decode) == 0) { |
| pr_info("SMBIOS %d.%d.%d present.\n", |
| dmi_ver >> 16, (dmi_ver >> 8) & 0xFF, |
| dmi_ver & 0xFF); |
| dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string)); |
| pr_debug("DMI: %s\n", dmi_ids_string); |
| return 0; |
| } |
| } |
| return 1; |
| } |
| |
| void __init dmi_scan_machine(void) |
| { |
| char __iomem *p, *q; |
| char buf[32]; |
| |
| if (efi_enabled(EFI_CONFIG_TABLES)) { |
| /* |
| * According to the DMTF SMBIOS reference spec v3.0.0, it is |
| * allowed to define both the 64-bit entry point (smbios3) and |
| * the 32-bit entry point (smbios), in which case they should |
| * either both point to the same SMBIOS structure table, or the |
| * table pointed to by the 64-bit entry point should contain a |
| * superset of the table contents pointed to by the 32-bit entry |
| * point (section 5.2) |
| * This implies that the 64-bit entry point should have |
| * precedence if it is defined and supported by the OS. If we |
| * have the 64-bit entry point, but fail to decode it, fall |
| * back to the legacy one (if available) |
| */ |
| if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) { |
| p = dmi_early_remap(efi.smbios3, 32); |
| if (p == NULL) |
| goto error; |
| memcpy_fromio(buf, p, 32); |
| dmi_early_unmap(p, 32); |
| |
| if (!dmi_smbios3_present(buf)) { |
| dmi_available = 1; |
| goto out; |
| } |
| } |
| if (efi.smbios == EFI_INVALID_TABLE_ADDR) |
| goto error; |
| |
| /* This is called as a core_initcall() because it isn't |
| * needed during early boot. This also means we can |
| * iounmap the space when we're done with it. |
| */ |
| p = dmi_early_remap(efi.smbios, 32); |
| if (p == NULL) |
| goto error; |
| memcpy_fromio(buf, p, 32); |
| dmi_early_unmap(p, 32); |
| |
| if (!dmi_present(buf)) { |
| dmi_available = 1; |
| goto out; |
| } |
| } else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) { |
| p = dmi_early_remap(0xF0000, 0x10000); |
| if (p == NULL) |
| goto error; |
| |
| /* |
| * Iterate over all possible DMI header addresses q. |
| * Maintain the 32 bytes around q in buf. On the |
| * first iteration, substitute zero for the |
| * out-of-range bytes so there is no chance of falsely |
| * detecting an SMBIOS header. |
| */ |
| memset(buf, 0, 16); |
| for (q = p; q < p + 0x10000; q += 16) { |
| memcpy_fromio(buf + 16, q, 16); |
| if (!dmi_smbios3_present(buf) || !dmi_present(buf)) { |
| dmi_available = 1; |
| dmi_early_unmap(p, 0x10000); |
| goto out; |
| } |
| memcpy(buf, buf + 16, 16); |
| } |
| dmi_early_unmap(p, 0x10000); |
| } |
| error: |
| pr_info("DMI not present or invalid.\n"); |
| out: |
| dmi_initialized = 1; |
| } |
| |
| /** |
| * dmi_set_dump_stack_arch_desc - set arch description for dump_stack() |
| * |
| * Invoke dump_stack_set_arch_desc() with DMI system information so that |
| * DMI identifiers are printed out on task dumps. Arch boot code should |
| * call this function after dmi_scan_machine() if it wants to print out DMI |
| * identifiers on task dumps. |
| */ |
| void __init dmi_set_dump_stack_arch_desc(void) |
| { |
| dump_stack_set_arch_desc("%s", dmi_ids_string); |
| } |
| |
| /** |
| * dmi_matches - check if dmi_system_id structure matches system DMI data |
| * @dmi: pointer to the dmi_system_id structure to check |
| */ |
| static bool dmi_matches(const struct dmi_system_id *dmi) |
| { |
| int i; |
| |
| WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n"); |
| |
| for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) { |
| int s = dmi->matches[i].slot; |
| if (s == DMI_NONE) |
| break; |
| if (dmi_ident[s]) { |
| if (!dmi->matches[i].exact_match && |
| strstr(dmi_ident[s], dmi->matches[i].substr)) |
| continue; |
| else if (dmi->matches[i].exact_match && |
| !strcmp(dmi_ident[s], dmi->matches[i].substr)) |
| continue; |
| } |
| |
| /* No match */ |
| return false; |
| } |
| return true; |
| } |
| |
| /** |
| * dmi_is_end_of_table - check for end-of-table marker |
| * @dmi: pointer to the dmi_system_id structure to check |
| */ |
| static bool dmi_is_end_of_table(const struct dmi_system_id *dmi) |
| { |
| return dmi->matches[0].slot == DMI_NONE; |
| } |
| |
| /** |
| * dmi_check_system - check system DMI data |
| * @list: array of dmi_system_id structures to match against |
| * All non-null elements of the list must match |
| * their slot's (field index's) data (i.e., each |
| * list string must be a substring of the specified |
| * DMI slot's string data) to be considered a |
| * successful match. |
| * |
| * Walk the blacklist table running matching functions until someone |
| * returns non zero or we hit the end. Callback function is called for |
| * each successful match. Returns the number of matches. |
| */ |
| int dmi_check_system(const struct dmi_system_id *list) |
| { |
| int count = 0; |
| const struct dmi_system_id *d; |
| |
| for (d = list; !dmi_is_end_of_table(d); d++) |
| if (dmi_matches(d)) { |
| count++; |
| if (d->callback && d->callback(d)) |
| break; |
| } |
| |
| return count; |
| } |
| EXPORT_SYMBOL(dmi_check_system); |
| |
| /** |
| * dmi_first_match - find dmi_system_id structure matching system DMI data |
| * @list: array of dmi_system_id structures to match against |
| * All non-null elements of the list must match |
| * their slot's (field index's) data (i.e., each |
| * list string must be a substring of the specified |
| * DMI slot's string data) to be considered a |
| * successful match. |
| * |
| * Walk the blacklist table until the first match is found. Return the |
| * pointer to the matching entry or NULL if there's no match. |
| */ |
| const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list) |
| { |
| const struct dmi_system_id *d; |
| |
| for (d = list; !dmi_is_end_of_table(d); d++) |
| if (dmi_matches(d)) |
| return d; |
| |
| return NULL; |
| } |
| EXPORT_SYMBOL(dmi_first_match); |
| |
| /** |
| * dmi_get_system_info - return DMI data value |
| * @field: data index (see enum dmi_field) |
| * |
| * Returns one DMI data value, can be used to perform |
| * complex DMI data checks. |
| */ |
| const char *dmi_get_system_info(int field) |
| { |
| return dmi_ident[field]; |
| } |
| EXPORT_SYMBOL(dmi_get_system_info); |
| |
| /** |
| * dmi_name_in_serial - Check if string is in the DMI product serial information |
| * @str: string to check for |
| */ |
| int dmi_name_in_serial(const char *str) |
| { |
| int f = DMI_PRODUCT_SERIAL; |
| if (dmi_ident[f] && strstr(dmi_ident[f], str)) |
| return 1; |
| return 0; |
| } |
| |
| /** |
| * dmi_name_in_vendors - Check if string is in the DMI system or board vendor name |
| * @str: Case sensitive Name |
| */ |
| int dmi_name_in_vendors(const char *str) |
| { |
| static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE }; |
| int i; |
| for (i = 0; fields[i] != DMI_NONE; i++) { |
| int f = fields[i]; |
| if (dmi_ident[f] && strstr(dmi_ident[f], str)) |
| return 1; |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL(dmi_name_in_vendors); |
| |
| /** |
| * dmi_find_device - find onboard device by type/name |
| * @type: device type or %DMI_DEV_TYPE_ANY to match all device types |
| * @name: device name string or %NULL to match all |
| * @from: previous device found in search, or %NULL for new search. |
| * |
| * Iterates through the list of known onboard devices. If a device is |
| * found with a matching @vendor and @device, a pointer to its device |
| * structure is returned. Otherwise, %NULL is returned. |
| * A new search is initiated by passing %NULL as the @from argument. |
| * If @from is not %NULL, searches continue from next device. |
| */ |
| const struct dmi_device *dmi_find_device(int type, const char *name, |
| const struct dmi_device *from) |
| { |
| const struct list_head *head = from ? &from->list : &dmi_devices; |
| struct list_head *d; |
| |
| for (d = head->next; d != &dmi_devices; d = d->next) { |
| const struct dmi_device *dev = |
| list_entry(d, struct dmi_device, list); |
| |
| if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) && |
| ((name == NULL) || (strcmp(dev->name, name) == 0))) |
| return dev; |
| } |
| |
| return NULL; |
| } |
| EXPORT_SYMBOL(dmi_find_device); |
| |
| /** |
| * dmi_get_date - parse a DMI date |
| * @field: data index (see enum dmi_field) |
| * @yearp: optional out parameter for the year |
| * @monthp: optional out parameter for the month |
| * @dayp: optional out parameter for the day |
| * |
| * The date field is assumed to be in the form resembling |
| * [mm[/dd]]/yy[yy] and the result is stored in the out |
| * parameters any or all of which can be omitted. |
| * |
| * If the field doesn't exist, all out parameters are set to zero |
| * and false is returned. Otherwise, true is returned with any |
| * invalid part of date set to zero. |
| * |
| * On return, year, month and day are guaranteed to be in the |
| * range of [0,9999], [0,12] and [0,31] respectively. |
| */ |
| bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp) |
| { |
| int year = 0, month = 0, day = 0; |
| bool exists; |
| const char *s, *y; |
| char *e; |
| |
| s = dmi_get_system_info(field); |
| exists = s; |
| if (!exists) |
| goto out; |
| |
| /* |
| * Determine year first. We assume the date string resembles |
| * mm/dd/yy[yy] but the original code extracted only the year |
| * from the end. Keep the behavior in the spirit of no |
| * surprises. |
| */ |
| y = strrchr(s, '/'); |
| if (!y) |
| goto out; |
| |
| y++; |
| year = simple_strtoul(y, &e, 10); |
| if (y != e && year < 100) { /* 2-digit year */ |
| year += 1900; |
| if (year < 1996) /* no dates < spec 1.0 */ |
| year += 100; |
| } |
| if (year > 9999) /* year should fit in %04d */ |
| year = 0; |
| |
| /* parse the mm and dd */ |
| month = simple_strtoul(s, &e, 10); |
| if (s == e || *e != '/' || !month || month > 12) { |
| month = 0; |
| goto out; |
| } |
| |
| s = e + 1; |
| day = simple_strtoul(s, &e, 10); |
| if (s == y || s == e || *e != '/' || day > 31) |
| day = 0; |
| out: |
| if (yearp) |
| *yearp = year; |
| if (monthp) |
| *monthp = month; |
| if (dayp) |
| *dayp = day; |
| return exists; |
| } |
| EXPORT_SYMBOL(dmi_get_date); |
| |
| /** |
| * dmi_walk - Walk the DMI table and get called back for every record |
| * @decode: Callback function |
| * @private_data: Private data to be passed to the callback function |
| * |
| * Returns -1 when the DMI table can't be reached, 0 on success. |
| */ |
| int dmi_walk(void (*decode)(const struct dmi_header *, void *), |
| void *private_data) |
| { |
| u8 *buf; |
| |
| if (!dmi_available) |
| return -1; |
| |
| buf = dmi_remap(dmi_base, dmi_len); |
| if (buf == NULL) |
| return -1; |
| |
| dmi_table(buf, decode, private_data); |
| |
| dmi_unmap(buf); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(dmi_walk); |
| |
| /** |
| * dmi_match - compare a string to the dmi field (if exists) |
| * @f: DMI field identifier |
| * @str: string to compare the DMI field to |
| * |
| * Returns true if the requested field equals to the str (including NULL). |
| */ |
| bool dmi_match(enum dmi_field f, const char *str) |
| { |
| const char *info = dmi_get_system_info(f); |
| |
| if (info == NULL || str == NULL) |
| return info == str; |
| |
| return !strcmp(info, str); |
| } |
| EXPORT_SYMBOL_GPL(dmi_match); |
| |
| void dmi_memdev_name(u16 handle, const char **bank, const char **device) |
| { |
| int n; |
| |
| if (dmi_memdev == NULL) |
| return; |
| |
| for (n = 0; n < dmi_memdev_nr; n++) { |
| if (handle == dmi_memdev[n].handle) { |
| *bank = dmi_memdev[n].bank; |
| *device = dmi_memdev[n].device; |
| break; |
| } |
| } |
| } |
| EXPORT_SYMBOL_GPL(dmi_memdev_name); |