| /* |
| * Driver for Xceive XC5000 "QAM/8VSB single chip tuner" |
| * |
| * Copyright (c) 2007 Xceive Corporation |
| * Copyright (c) 2007 Steven Toth <stoth@linuxtv.org> |
| * Copyright (c) 2009 Devin Heitmueller <dheitmueller@kernellabs.com> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/moduleparam.h> |
| #include <linux/videodev2.h> |
| #include <linux/delay.h> |
| #include <linux/dvb/frontend.h> |
| #include <linux/i2c.h> |
| |
| #include "dvb_frontend.h" |
| |
| #include "xc5000.h" |
| #include "tuner-i2c.h" |
| |
| static int debug; |
| module_param(debug, int, 0644); |
| MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off)."); |
| |
| static int no_poweroff; |
| module_param(no_poweroff, int, 0644); |
| MODULE_PARM_DESC(no_poweroff, "0 (default) powers device off when not used.\n" |
| "\t\t1 keep device energized and with tuner ready all the times.\n" |
| "\t\tFaster, but consumes more power and keeps the device hotter"); |
| |
| static DEFINE_MUTEX(xc5000_list_mutex); |
| static LIST_HEAD(hybrid_tuner_instance_list); |
| |
| #define dprintk(level, fmt, arg...) if (debug >= level) \ |
| printk(KERN_INFO "%s: " fmt, "xc5000", ## arg) |
| |
| #define XC5000_DEFAULT_FIRMWARE "dvb-fe-xc5000-1.6.114.fw" |
| #define XC5000_DEFAULT_FIRMWARE_SIZE 12401 |
| |
| struct xc5000_priv { |
| struct tuner_i2c_props i2c_props; |
| struct list_head hybrid_tuner_instance_list; |
| |
| u32 if_khz; |
| u32 freq_hz; |
| u32 bandwidth; |
| u8 video_standard; |
| u8 rf_mode; |
| u8 radio_input; |
| }; |
| |
| /* Misc Defines */ |
| #define MAX_TV_STANDARD 23 |
| #define XC_MAX_I2C_WRITE_LENGTH 64 |
| |
| /* Signal Types */ |
| #define XC_RF_MODE_AIR 0 |
| #define XC_RF_MODE_CABLE 1 |
| |
| /* Result codes */ |
| #define XC_RESULT_SUCCESS 0 |
| #define XC_RESULT_RESET_FAILURE 1 |
| #define XC_RESULT_I2C_WRITE_FAILURE 2 |
| #define XC_RESULT_I2C_READ_FAILURE 3 |
| #define XC_RESULT_OUT_OF_RANGE 5 |
| |
| /* Product id */ |
| #define XC_PRODUCT_ID_FW_NOT_LOADED 0x2000 |
| #define XC_PRODUCT_ID_FW_LOADED 0x1388 |
| |
| /* Registers */ |
| #define XREG_INIT 0x00 |
| #define XREG_VIDEO_MODE 0x01 |
| #define XREG_AUDIO_MODE 0x02 |
| #define XREG_RF_FREQ 0x03 |
| #define XREG_D_CODE 0x04 |
| #define XREG_IF_OUT 0x05 |
| #define XREG_SEEK_MODE 0x07 |
| #define XREG_POWER_DOWN 0x0A /* Obsolete */ |
| #define XREG_SIGNALSOURCE 0x0D /* 0=Air, 1=Cable */ |
| #define XREG_SMOOTHEDCVBS 0x0E |
| #define XREG_XTALFREQ 0x0F |
| #define XREG_FINERFREQ 0x10 |
| #define XREG_DDIMODE 0x11 |
| |
| #define XREG_ADC_ENV 0x00 |
| #define XREG_QUALITY 0x01 |
| #define XREG_FRAME_LINES 0x02 |
| #define XREG_HSYNC_FREQ 0x03 |
| #define XREG_LOCK 0x04 |
| #define XREG_FREQ_ERROR 0x05 |
| #define XREG_SNR 0x06 |
| #define XREG_VERSION 0x07 |
| #define XREG_PRODUCT_ID 0x08 |
| #define XREG_BUSY 0x09 |
| #define XREG_BUILD 0x0D |
| |
| /* |
| Basic firmware description. This will remain with |
| the driver for documentation purposes. |
| |
| This represents an I2C firmware file encoded as a |
| string of unsigned char. Format is as follows: |
| |
| char[0 ]=len0_MSB -> len = len_MSB * 256 + len_LSB |
| char[1 ]=len0_LSB -> length of first write transaction |
| char[2 ]=data0 -> first byte to be sent |
| char[3 ]=data1 |
| char[4 ]=data2 |
| char[ ]=... |
| char[M ]=dataN -> last byte to be sent |
| char[M+1]=len1_MSB -> len = len_MSB * 256 + len_LSB |
| char[M+2]=len1_LSB -> length of second write transaction |
| char[M+3]=data0 |
| char[M+4]=data1 |
| ... |
| etc. |
| |
| The [len] value should be interpreted as follows: |
| |
| len= len_MSB _ len_LSB |
| len=1111_1111_1111_1111 : End of I2C_SEQUENCE |
| len=0000_0000_0000_0000 : Reset command: Do hardware reset |
| len=0NNN_NNNN_NNNN_NNNN : Normal transaction: number of bytes = {1:32767) |
| len=1WWW_WWWW_WWWW_WWWW : Wait command: wait for {1:32767} ms |
| |
| For the RESET and WAIT commands, the two following bytes will contain |
| immediately the length of the following transaction. |
| |
| */ |
| struct XC_TV_STANDARD { |
| char *Name; |
| u16 AudioMode; |
| u16 VideoMode; |
| }; |
| |
| /* Tuner standards */ |
| #define MN_NTSC_PAL_BTSC 0 |
| #define MN_NTSC_PAL_A2 1 |
| #define MN_NTSC_PAL_EIAJ 2 |
| #define MN_NTSC_PAL_Mono 3 |
| #define BG_PAL_A2 4 |
| #define BG_PAL_NICAM 5 |
| #define BG_PAL_MONO 6 |
| #define I_PAL_NICAM 7 |
| #define I_PAL_NICAM_MONO 8 |
| #define DK_PAL_A2 9 |
| #define DK_PAL_NICAM 10 |
| #define DK_PAL_MONO 11 |
| #define DK_SECAM_A2DK1 12 |
| #define DK_SECAM_A2LDK3 13 |
| #define DK_SECAM_A2MONO 14 |
| #define L_SECAM_NICAM 15 |
| #define LC_SECAM_NICAM 16 |
| #define DTV6 17 |
| #define DTV8 18 |
| #define DTV7_8 19 |
| #define DTV7 20 |
| #define FM_Radio_INPUT2 21 |
| #define FM_Radio_INPUT1 22 |
| |
| static struct XC_TV_STANDARD XC5000_Standard[MAX_TV_STANDARD] = { |
| {"M/N-NTSC/PAL-BTSC", 0x0400, 0x8020}, |
| {"M/N-NTSC/PAL-A2", 0x0600, 0x8020}, |
| {"M/N-NTSC/PAL-EIAJ", 0x0440, 0x8020}, |
| {"M/N-NTSC/PAL-Mono", 0x0478, 0x8020}, |
| {"B/G-PAL-A2", 0x0A00, 0x8049}, |
| {"B/G-PAL-NICAM", 0x0C04, 0x8049}, |
| {"B/G-PAL-MONO", 0x0878, 0x8059}, |
| {"I-PAL-NICAM", 0x1080, 0x8009}, |
| {"I-PAL-NICAM-MONO", 0x0E78, 0x8009}, |
| {"D/K-PAL-A2", 0x1600, 0x8009}, |
| {"D/K-PAL-NICAM", 0x0E80, 0x8009}, |
| {"D/K-PAL-MONO", 0x1478, 0x8009}, |
| {"D/K-SECAM-A2 DK1", 0x1200, 0x8009}, |
| {"D/K-SECAM-A2 L/DK3", 0x0E00, 0x8009}, |
| {"D/K-SECAM-A2 MONO", 0x1478, 0x8009}, |
| {"L-SECAM-NICAM", 0x8E82, 0x0009}, |
| {"L'-SECAM-NICAM", 0x8E82, 0x4009}, |
| {"DTV6", 0x00C0, 0x8002}, |
| {"DTV8", 0x00C0, 0x800B}, |
| {"DTV7/8", 0x00C0, 0x801B}, |
| {"DTV7", 0x00C0, 0x8007}, |
| {"FM Radio-INPUT2", 0x9802, 0x9002}, |
| {"FM Radio-INPUT1", 0x0208, 0x9002} |
| }; |
| |
| static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe); |
| static int xc5000_is_firmware_loaded(struct dvb_frontend *fe); |
| static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val); |
| static int xc5000_TunerReset(struct dvb_frontend *fe); |
| |
| static int xc_send_i2c_data(struct xc5000_priv *priv, u8 *buf, int len) |
| { |
| struct i2c_msg msg = { .addr = priv->i2c_props.addr, |
| .flags = 0, .buf = buf, .len = len }; |
| |
| if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) { |
| printk(KERN_ERR "xc5000: I2C write failed (len=%i)\n", len); |
| return XC_RESULT_I2C_WRITE_FAILURE; |
| } |
| return XC_RESULT_SUCCESS; |
| } |
| |
| #if 0 |
| /* This routine is never used because the only time we read data from the |
| i2c bus is when we read registers, and we want that to be an atomic i2c |
| transaction in case we are on a multi-master bus */ |
| static int xc_read_i2c_data(struct xc5000_priv *priv, u8 *buf, int len) |
| { |
| struct i2c_msg msg = { .addr = priv->i2c_props.addr, |
| .flags = I2C_M_RD, .buf = buf, .len = len }; |
| |
| if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) { |
| printk(KERN_ERR "xc5000 I2C read failed (len=%i)\n", len); |
| return -EREMOTEIO; |
| } |
| return 0; |
| } |
| #endif |
| |
| static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val) |
| { |
| u8 buf[2] = { reg >> 8, reg & 0xff }; |
| u8 bval[2] = { 0, 0 }; |
| struct i2c_msg msg[2] = { |
| { .addr = priv->i2c_props.addr, |
| .flags = 0, .buf = &buf[0], .len = 2 }, |
| { .addr = priv->i2c_props.addr, |
| .flags = I2C_M_RD, .buf = &bval[0], .len = 2 }, |
| }; |
| |
| if (i2c_transfer(priv->i2c_props.adap, msg, 2) != 2) { |
| printk(KERN_WARNING "xc5000: I2C read failed\n"); |
| return -EREMOTEIO; |
| } |
| |
| *val = (bval[0] << 8) | bval[1]; |
| return XC_RESULT_SUCCESS; |
| } |
| |
| static void xc_wait(int wait_ms) |
| { |
| msleep(wait_ms); |
| } |
| |
| static int xc5000_TunerReset(struct dvb_frontend *fe) |
| { |
| struct xc5000_priv *priv = fe->tuner_priv; |
| int ret; |
| |
| dprintk(1, "%s()\n", __func__); |
| |
| if (fe->callback) { |
| ret = fe->callback(((fe->dvb) && (fe->dvb->priv)) ? |
| fe->dvb->priv : |
| priv->i2c_props.adap->algo_data, |
| DVB_FRONTEND_COMPONENT_TUNER, |
| XC5000_TUNER_RESET, 0); |
| if (ret) { |
| printk(KERN_ERR "xc5000: reset failed\n"); |
| return XC_RESULT_RESET_FAILURE; |
| } |
| } else { |
| printk(KERN_ERR "xc5000: no tuner reset callback function, fatal\n"); |
| return XC_RESULT_RESET_FAILURE; |
| } |
| return XC_RESULT_SUCCESS; |
| } |
| |
| static int xc_write_reg(struct xc5000_priv *priv, u16 regAddr, u16 i2cData) |
| { |
| u8 buf[4]; |
| int WatchDogTimer = 100; |
| int result; |
| |
| buf[0] = (regAddr >> 8) & 0xFF; |
| buf[1] = regAddr & 0xFF; |
| buf[2] = (i2cData >> 8) & 0xFF; |
| buf[3] = i2cData & 0xFF; |
| result = xc_send_i2c_data(priv, buf, 4); |
| if (result == XC_RESULT_SUCCESS) { |
| /* wait for busy flag to clear */ |
| while ((WatchDogTimer > 0) && (result == XC_RESULT_SUCCESS)) { |
| result = xc5000_readreg(priv, XREG_BUSY, (u16 *)buf); |
| if (result == XC_RESULT_SUCCESS) { |
| if ((buf[0] == 0) && (buf[1] == 0)) { |
| /* busy flag cleared */ |
| break; |
| } else { |
| xc_wait(5); /* wait 5 ms */ |
| WatchDogTimer--; |
| } |
| } |
| } |
| } |
| if (WatchDogTimer < 0) |
| result = XC_RESULT_I2C_WRITE_FAILURE; |
| |
| return result; |
| } |
| |
| static int xc_load_i2c_sequence(struct dvb_frontend *fe, const u8 *i2c_sequence) |
| { |
| struct xc5000_priv *priv = fe->tuner_priv; |
| |
| int i, nbytes_to_send, result; |
| unsigned int len, pos, index; |
| u8 buf[XC_MAX_I2C_WRITE_LENGTH]; |
| |
| index = 0; |
| while ((i2c_sequence[index] != 0xFF) || |
| (i2c_sequence[index + 1] != 0xFF)) { |
| len = i2c_sequence[index] * 256 + i2c_sequence[index+1]; |
| if (len == 0x0000) { |
| /* RESET command */ |
| result = xc5000_TunerReset(fe); |
| index += 2; |
| if (result != XC_RESULT_SUCCESS) |
| return result; |
| } else if (len & 0x8000) { |
| /* WAIT command */ |
| xc_wait(len & 0x7FFF); |
| index += 2; |
| } else { |
| /* Send i2c data whilst ensuring individual transactions |
| * do not exceed XC_MAX_I2C_WRITE_LENGTH bytes. |
| */ |
| index += 2; |
| buf[0] = i2c_sequence[index]; |
| buf[1] = i2c_sequence[index + 1]; |
| pos = 2; |
| while (pos < len) { |
| if ((len - pos) > XC_MAX_I2C_WRITE_LENGTH - 2) |
| nbytes_to_send = |
| XC_MAX_I2C_WRITE_LENGTH; |
| else |
| nbytes_to_send = (len - pos + 2); |
| for (i = 2; i < nbytes_to_send; i++) { |
| buf[i] = i2c_sequence[index + pos + |
| i - 2]; |
| } |
| result = xc_send_i2c_data(priv, buf, |
| nbytes_to_send); |
| |
| if (result != XC_RESULT_SUCCESS) |
| return result; |
| |
| pos += nbytes_to_send - 2; |
| } |
| index += len; |
| } |
| } |
| return XC_RESULT_SUCCESS; |
| } |
| |
| static int xc_initialize(struct xc5000_priv *priv) |
| { |
| dprintk(1, "%s()\n", __func__); |
| return xc_write_reg(priv, XREG_INIT, 0); |
| } |
| |
| static int xc_SetTVStandard(struct xc5000_priv *priv, |
| u16 VideoMode, u16 AudioMode) |
| { |
| int ret; |
| dprintk(1, "%s(0x%04x,0x%04x)\n", __func__, VideoMode, AudioMode); |
| dprintk(1, "%s() Standard = %s\n", |
| __func__, |
| XC5000_Standard[priv->video_standard].Name); |
| |
| ret = xc_write_reg(priv, XREG_VIDEO_MODE, VideoMode); |
| if (ret == XC_RESULT_SUCCESS) |
| ret = xc_write_reg(priv, XREG_AUDIO_MODE, AudioMode); |
| |
| return ret; |
| } |
| |
| static int xc_SetSignalSource(struct xc5000_priv *priv, u16 rf_mode) |
| { |
| dprintk(1, "%s(%d) Source = %s\n", __func__, rf_mode, |
| rf_mode == XC_RF_MODE_AIR ? "ANTENNA" : "CABLE"); |
| |
| if ((rf_mode != XC_RF_MODE_AIR) && (rf_mode != XC_RF_MODE_CABLE)) { |
| rf_mode = XC_RF_MODE_CABLE; |
| printk(KERN_ERR |
| "%s(), Invalid mode, defaulting to CABLE", |
| __func__); |
| } |
| return xc_write_reg(priv, XREG_SIGNALSOURCE, rf_mode); |
| } |
| |
| static const struct dvb_tuner_ops xc5000_tuner_ops; |
| |
| static int xc_set_RF_frequency(struct xc5000_priv *priv, u32 freq_hz) |
| { |
| u16 freq_code; |
| |
| dprintk(1, "%s(%u)\n", __func__, freq_hz); |
| |
| if ((freq_hz > xc5000_tuner_ops.info.frequency_max) || |
| (freq_hz < xc5000_tuner_ops.info.frequency_min)) |
| return XC_RESULT_OUT_OF_RANGE; |
| |
| freq_code = (u16)(freq_hz / 15625); |
| |
| /* Starting in firmware version 1.1.44, Xceive recommends using the |
| FINERFREQ for all normal tuning (the doc indicates reg 0x03 should |
| only be used for fast scanning for channel lock) */ |
| return xc_write_reg(priv, XREG_FINERFREQ, freq_code); |
| } |
| |
| |
| static int xc_set_IF_frequency(struct xc5000_priv *priv, u32 freq_khz) |
| { |
| u32 freq_code = (freq_khz * 1024)/1000; |
| dprintk(1, "%s(freq_khz = %d) freq_code = 0x%x\n", |
| __func__, freq_khz, freq_code); |
| |
| return xc_write_reg(priv, XREG_IF_OUT, freq_code); |
| } |
| |
| |
| static int xc_get_ADC_Envelope(struct xc5000_priv *priv, u16 *adc_envelope) |
| { |
| return xc5000_readreg(priv, XREG_ADC_ENV, adc_envelope); |
| } |
| |
| static int xc_get_frequency_error(struct xc5000_priv *priv, u32 *freq_error_hz) |
| { |
| int result; |
| u16 regData; |
| u32 tmp; |
| |
| result = xc5000_readreg(priv, XREG_FREQ_ERROR, ®Data); |
| if (result != XC_RESULT_SUCCESS) |
| return result; |
| |
| tmp = (u32)regData; |
| (*freq_error_hz) = (tmp * 15625) / 1000; |
| return result; |
| } |
| |
| static int xc_get_lock_status(struct xc5000_priv *priv, u16 *lock_status) |
| { |
| return xc5000_readreg(priv, XREG_LOCK, lock_status); |
| } |
| |
| static int xc_get_version(struct xc5000_priv *priv, |
| u8 *hw_majorversion, u8 *hw_minorversion, |
| u8 *fw_majorversion, u8 *fw_minorversion) |
| { |
| u16 data; |
| int result; |
| |
| result = xc5000_readreg(priv, XREG_VERSION, &data); |
| if (result != XC_RESULT_SUCCESS) |
| return result; |
| |
| (*hw_majorversion) = (data >> 12) & 0x0F; |
| (*hw_minorversion) = (data >> 8) & 0x0F; |
| (*fw_majorversion) = (data >> 4) & 0x0F; |
| (*fw_minorversion) = data & 0x0F; |
| |
| return 0; |
| } |
| |
| static int xc_get_buildversion(struct xc5000_priv *priv, u16 *buildrev) |
| { |
| return xc5000_readreg(priv, XREG_BUILD, buildrev); |
| } |
| |
| static int xc_get_hsync_freq(struct xc5000_priv *priv, u32 *hsync_freq_hz) |
| { |
| u16 regData; |
| int result; |
| |
| result = xc5000_readreg(priv, XREG_HSYNC_FREQ, ®Data); |
| if (result != XC_RESULT_SUCCESS) |
| return result; |
| |
| (*hsync_freq_hz) = ((regData & 0x0fff) * 763)/100; |
| return result; |
| } |
| |
| static int xc_get_frame_lines(struct xc5000_priv *priv, u16 *frame_lines) |
| { |
| return xc5000_readreg(priv, XREG_FRAME_LINES, frame_lines); |
| } |
| |
| static int xc_get_quality(struct xc5000_priv *priv, u16 *quality) |
| { |
| return xc5000_readreg(priv, XREG_QUALITY, quality); |
| } |
| |
| static u16 WaitForLock(struct xc5000_priv *priv) |
| { |
| u16 lockState = 0; |
| int watchDogCount = 40; |
| |
| while ((lockState == 0) && (watchDogCount > 0)) { |
| xc_get_lock_status(priv, &lockState); |
| if (lockState != 1) { |
| xc_wait(5); |
| watchDogCount--; |
| } |
| } |
| return lockState; |
| } |
| |
| #define XC_TUNE_ANALOG 0 |
| #define XC_TUNE_DIGITAL 1 |
| static int xc_tune_channel(struct xc5000_priv *priv, u32 freq_hz, int mode) |
| { |
| int found = 0; |
| |
| dprintk(1, "%s(%u)\n", __func__, freq_hz); |
| |
| if (xc_set_RF_frequency(priv, freq_hz) != XC_RESULT_SUCCESS) |
| return 0; |
| |
| if (mode == XC_TUNE_ANALOG) { |
| if (WaitForLock(priv) == 1) |
| found = 1; |
| } |
| |
| return found; |
| } |
| |
| |
| static int xc5000_fwupload(struct dvb_frontend *fe) |
| { |
| struct xc5000_priv *priv = fe->tuner_priv; |
| const struct firmware *fw; |
| int ret; |
| |
| /* request the firmware, this will block and timeout */ |
| printk(KERN_INFO "xc5000: waiting for firmware upload (%s)...\n", |
| XC5000_DEFAULT_FIRMWARE); |
| |
| ret = request_firmware(&fw, XC5000_DEFAULT_FIRMWARE, |
| priv->i2c_props.adap->dev.parent); |
| if (ret) { |
| printk(KERN_ERR "xc5000: Upload failed. (file not found?)\n"); |
| ret = XC_RESULT_RESET_FAILURE; |
| goto out; |
| } else { |
| printk(KERN_DEBUG "xc5000: firmware read %Zu bytes.\n", |
| fw->size); |
| ret = XC_RESULT_SUCCESS; |
| } |
| |
| if (fw->size != XC5000_DEFAULT_FIRMWARE_SIZE) { |
| printk(KERN_ERR "xc5000: firmware incorrect size\n"); |
| ret = XC_RESULT_RESET_FAILURE; |
| } else { |
| printk(KERN_INFO "xc5000: firmware uploading...\n"); |
| ret = xc_load_i2c_sequence(fe, fw->data); |
| printk(KERN_INFO "xc5000: firmware upload complete...\n"); |
| } |
| |
| out: |
| release_firmware(fw); |
| return ret; |
| } |
| |
| static void xc_debug_dump(struct xc5000_priv *priv) |
| { |
| u16 adc_envelope; |
| u32 freq_error_hz = 0; |
| u16 lock_status; |
| u32 hsync_freq_hz = 0; |
| u16 frame_lines; |
| u16 quality; |
| u8 hw_majorversion = 0, hw_minorversion = 0; |
| u8 fw_majorversion = 0, fw_minorversion = 0; |
| u16 fw_buildversion = 0; |
| |
| /* Wait for stats to stabilize. |
| * Frame Lines needs two frame times after initial lock |
| * before it is valid. |
| */ |
| xc_wait(100); |
| |
| xc_get_ADC_Envelope(priv, &adc_envelope); |
| dprintk(1, "*** ADC envelope (0-1023) = %d\n", adc_envelope); |
| |
| xc_get_frequency_error(priv, &freq_error_hz); |
| dprintk(1, "*** Frequency error = %d Hz\n", freq_error_hz); |
| |
| xc_get_lock_status(priv, &lock_status); |
| dprintk(1, "*** Lock status (0-Wait, 1-Locked, 2-No-signal) = %d\n", |
| lock_status); |
| |
| xc_get_version(priv, &hw_majorversion, &hw_minorversion, |
| &fw_majorversion, &fw_minorversion); |
| xc_get_buildversion(priv, &fw_buildversion); |
| dprintk(1, "*** HW: V%02x.%02x, FW: V%02x.%02x.%04x\n", |
| hw_majorversion, hw_minorversion, |
| fw_majorversion, fw_minorversion, fw_buildversion); |
| |
| xc_get_hsync_freq(priv, &hsync_freq_hz); |
| dprintk(1, "*** Horizontal sync frequency = %d Hz\n", hsync_freq_hz); |
| |
| xc_get_frame_lines(priv, &frame_lines); |
| dprintk(1, "*** Frame lines = %d\n", frame_lines); |
| |
| xc_get_quality(priv, &quality); |
| dprintk(1, "*** Quality (0:<8dB, 7:>56dB) = %d\n", quality); |
| } |
| |
| static int xc5000_set_params(struct dvb_frontend *fe, |
| struct dvb_frontend_parameters *params) |
| { |
| struct xc5000_priv *priv = fe->tuner_priv; |
| int ret; |
| |
| if (xc5000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS) { |
| if (xc_load_fw_and_init_tuner(fe) != XC_RESULT_SUCCESS) { |
| dprintk(1, "Unable to load firmware and init tuner\n"); |
| return -EINVAL; |
| } |
| } |
| |
| dprintk(1, "%s() frequency=%d (Hz)\n", __func__, params->frequency); |
| |
| if (fe->ops.info.type == FE_ATSC) { |
| dprintk(1, "%s() ATSC\n", __func__); |
| switch (params->u.vsb.modulation) { |
| case VSB_8: |
| case VSB_16: |
| dprintk(1, "%s() VSB modulation\n", __func__); |
| priv->rf_mode = XC_RF_MODE_AIR; |
| priv->freq_hz = params->frequency - 1750000; |
| priv->bandwidth = BANDWIDTH_6_MHZ; |
| priv->video_standard = DTV6; |
| break; |
| case QAM_64: |
| case QAM_256: |
| case QAM_AUTO: |
| dprintk(1, "%s() QAM modulation\n", __func__); |
| priv->rf_mode = XC_RF_MODE_CABLE; |
| priv->freq_hz = params->frequency - 1750000; |
| priv->bandwidth = BANDWIDTH_6_MHZ; |
| priv->video_standard = DTV6; |
| break; |
| default: |
| return -EINVAL; |
| } |
| } else if (fe->ops.info.type == FE_OFDM) { |
| dprintk(1, "%s() OFDM\n", __func__); |
| switch (params->u.ofdm.bandwidth) { |
| case BANDWIDTH_6_MHZ: |
| priv->bandwidth = BANDWIDTH_6_MHZ; |
| priv->video_standard = DTV6; |
| priv->freq_hz = params->frequency - 1750000; |
| break; |
| case BANDWIDTH_7_MHZ: |
| printk(KERN_ERR "xc5000 bandwidth 7MHz not supported\n"); |
| return -EINVAL; |
| case BANDWIDTH_8_MHZ: |
| priv->bandwidth = BANDWIDTH_8_MHZ; |
| priv->video_standard = DTV8; |
| priv->freq_hz = params->frequency - 2750000; |
| break; |
| default: |
| printk(KERN_ERR "xc5000 bandwidth not set!\n"); |
| return -EINVAL; |
| } |
| priv->rf_mode = XC_RF_MODE_AIR; |
| } else { |
| printk(KERN_ERR "xc5000 modulation type not supported!\n"); |
| return -EINVAL; |
| } |
| |
| dprintk(1, "%s() frequency=%d (compensated)\n", |
| __func__, priv->freq_hz); |
| |
| ret = xc_SetSignalSource(priv, priv->rf_mode); |
| if (ret != XC_RESULT_SUCCESS) { |
| printk(KERN_ERR |
| "xc5000: xc_SetSignalSource(%d) failed\n", |
| priv->rf_mode); |
| return -EREMOTEIO; |
| } |
| |
| ret = xc_SetTVStandard(priv, |
| XC5000_Standard[priv->video_standard].VideoMode, |
| XC5000_Standard[priv->video_standard].AudioMode); |
| if (ret != XC_RESULT_SUCCESS) { |
| printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n"); |
| return -EREMOTEIO; |
| } |
| |
| ret = xc_set_IF_frequency(priv, priv->if_khz); |
| if (ret != XC_RESULT_SUCCESS) { |
| printk(KERN_ERR "xc5000: xc_Set_IF_frequency(%d) failed\n", |
| priv->if_khz); |
| return -EIO; |
| } |
| |
| xc_tune_channel(priv, priv->freq_hz, XC_TUNE_DIGITAL); |
| |
| if (debug) |
| xc_debug_dump(priv); |
| |
| return 0; |
| } |
| |
| static int xc5000_is_firmware_loaded(struct dvb_frontend *fe) |
| { |
| struct xc5000_priv *priv = fe->tuner_priv; |
| int ret; |
| u16 id; |
| |
| ret = xc5000_readreg(priv, XREG_PRODUCT_ID, &id); |
| if (ret == XC_RESULT_SUCCESS) { |
| if (id == XC_PRODUCT_ID_FW_NOT_LOADED) |
| ret = XC_RESULT_RESET_FAILURE; |
| else |
| ret = XC_RESULT_SUCCESS; |
| } |
| |
| dprintk(1, "%s() returns %s id = 0x%x\n", __func__, |
| ret == XC_RESULT_SUCCESS ? "True" : "False", id); |
| return ret; |
| } |
| |
| static int xc5000_set_tv_freq(struct dvb_frontend *fe, |
| struct analog_parameters *params) |
| { |
| struct xc5000_priv *priv = fe->tuner_priv; |
| int ret; |
| |
| dprintk(1, "%s() frequency=%d (in units of 62.5khz)\n", |
| __func__, params->frequency); |
| |
| /* Fix me: it could be air. */ |
| priv->rf_mode = params->mode; |
| if (params->mode > XC_RF_MODE_CABLE) |
| priv->rf_mode = XC_RF_MODE_CABLE; |
| |
| /* params->frequency is in units of 62.5khz */ |
| priv->freq_hz = params->frequency * 62500; |
| |
| /* FIX ME: Some video standards may have several possible audio |
| standards. We simply default to one of them here. |
| */ |
| if (params->std & V4L2_STD_MN) { |
| /* default to BTSC audio standard */ |
| priv->video_standard = MN_NTSC_PAL_BTSC; |
| goto tune_channel; |
| } |
| |
| if (params->std & V4L2_STD_PAL_BG) { |
| /* default to NICAM audio standard */ |
| priv->video_standard = BG_PAL_NICAM; |
| goto tune_channel; |
| } |
| |
| if (params->std & V4L2_STD_PAL_I) { |
| /* default to NICAM audio standard */ |
| priv->video_standard = I_PAL_NICAM; |
| goto tune_channel; |
| } |
| |
| if (params->std & V4L2_STD_PAL_DK) { |
| /* default to NICAM audio standard */ |
| priv->video_standard = DK_PAL_NICAM; |
| goto tune_channel; |
| } |
| |
| if (params->std & V4L2_STD_SECAM_DK) { |
| /* default to A2 DK1 audio standard */ |
| priv->video_standard = DK_SECAM_A2DK1; |
| goto tune_channel; |
| } |
| |
| if (params->std & V4L2_STD_SECAM_L) { |
| priv->video_standard = L_SECAM_NICAM; |
| goto tune_channel; |
| } |
| |
| if (params->std & V4L2_STD_SECAM_LC) { |
| priv->video_standard = LC_SECAM_NICAM; |
| goto tune_channel; |
| } |
| |
| tune_channel: |
| ret = xc_SetSignalSource(priv, priv->rf_mode); |
| if (ret != XC_RESULT_SUCCESS) { |
| printk(KERN_ERR |
| "xc5000: xc_SetSignalSource(%d) failed\n", |
| priv->rf_mode); |
| return -EREMOTEIO; |
| } |
| |
| ret = xc_SetTVStandard(priv, |
| XC5000_Standard[priv->video_standard].VideoMode, |
| XC5000_Standard[priv->video_standard].AudioMode); |
| if (ret != XC_RESULT_SUCCESS) { |
| printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n"); |
| return -EREMOTEIO; |
| } |
| |
| xc_tune_channel(priv, priv->freq_hz, XC_TUNE_ANALOG); |
| |
| if (debug) |
| xc_debug_dump(priv); |
| |
| return 0; |
| } |
| |
| static int xc5000_set_radio_freq(struct dvb_frontend *fe, |
| struct analog_parameters *params) |
| { |
| struct xc5000_priv *priv = fe->tuner_priv; |
| int ret = -EINVAL; |
| u8 radio_input; |
| |
| dprintk(1, "%s() frequency=%d (in units of khz)\n", |
| __func__, params->frequency); |
| |
| if (priv->radio_input == XC5000_RADIO_NOT_CONFIGURED) { |
| dprintk(1, "%s() radio input not configured\n", __func__); |
| return -EINVAL; |
| } |
| |
| if (priv->radio_input == XC5000_RADIO_FM1) |
| radio_input = FM_Radio_INPUT1; |
| else if (priv->radio_input == XC5000_RADIO_FM2) |
| radio_input = FM_Radio_INPUT2; |
| else { |
| dprintk(1, "%s() unknown radio input %d\n", __func__, |
| priv->radio_input); |
| return -EINVAL; |
| } |
| |
| priv->freq_hz = params->frequency * 125 / 2; |
| |
| priv->rf_mode = XC_RF_MODE_AIR; |
| |
| ret = xc_SetTVStandard(priv, XC5000_Standard[radio_input].VideoMode, |
| XC5000_Standard[radio_input].AudioMode); |
| |
| if (ret != XC_RESULT_SUCCESS) { |
| printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n"); |
| return -EREMOTEIO; |
| } |
| |
| ret = xc_SetSignalSource(priv, priv->rf_mode); |
| if (ret != XC_RESULT_SUCCESS) { |
| printk(KERN_ERR |
| "xc5000: xc_SetSignalSource(%d) failed\n", |
| priv->rf_mode); |
| return -EREMOTEIO; |
| } |
| |
| xc_tune_channel(priv, priv->freq_hz, XC_TUNE_ANALOG); |
| |
| return 0; |
| } |
| |
| static int xc5000_set_analog_params(struct dvb_frontend *fe, |
| struct analog_parameters *params) |
| { |
| struct xc5000_priv *priv = fe->tuner_priv; |
| int ret = -EINVAL; |
| |
| if (priv->i2c_props.adap == NULL) |
| return -EINVAL; |
| |
| if (xc5000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS) { |
| if (xc_load_fw_and_init_tuner(fe) != XC_RESULT_SUCCESS) { |
| dprintk(1, "Unable to load firmware and init tuner\n"); |
| return -EINVAL; |
| } |
| } |
| |
| switch (params->mode) { |
| case V4L2_TUNER_RADIO: |
| ret = xc5000_set_radio_freq(fe, params); |
| break; |
| case V4L2_TUNER_ANALOG_TV: |
| case V4L2_TUNER_DIGITAL_TV: |
| ret = xc5000_set_tv_freq(fe, params); |
| break; |
| } |
| |
| return ret; |
| } |
| |
| |
| static int xc5000_get_frequency(struct dvb_frontend *fe, u32 *freq) |
| { |
| struct xc5000_priv *priv = fe->tuner_priv; |
| dprintk(1, "%s()\n", __func__); |
| *freq = priv->freq_hz; |
| return 0; |
| } |
| |
| static int xc5000_get_bandwidth(struct dvb_frontend *fe, u32 *bw) |
| { |
| struct xc5000_priv *priv = fe->tuner_priv; |
| dprintk(1, "%s()\n", __func__); |
| |
| *bw = priv->bandwidth; |
| return 0; |
| } |
| |
| static int xc5000_get_status(struct dvb_frontend *fe, u32 *status) |
| { |
| struct xc5000_priv *priv = fe->tuner_priv; |
| u16 lock_status = 0; |
| |
| xc_get_lock_status(priv, &lock_status); |
| |
| dprintk(1, "%s() lock_status = 0x%08x\n", __func__, lock_status); |
| |
| *status = lock_status; |
| |
| return 0; |
| } |
| |
| static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe) |
| { |
| struct xc5000_priv *priv = fe->tuner_priv; |
| int ret = 0; |
| |
| if (xc5000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS) { |
| ret = xc5000_fwupload(fe); |
| if (ret != XC_RESULT_SUCCESS) |
| return ret; |
| } |
| |
| /* Start the tuner self-calibration process */ |
| ret |= xc_initialize(priv); |
| |
| /* Wait for calibration to complete. |
| * We could continue but XC5000 will clock stretch subsequent |
| * I2C transactions until calibration is complete. This way we |
| * don't have to rely on clock stretching working. |
| */ |
| xc_wait(100); |
| |
| /* Default to "CABLE" mode */ |
| ret |= xc_write_reg(priv, XREG_SIGNALSOURCE, XC_RF_MODE_CABLE); |
| |
| return ret; |
| } |
| |
| static int xc5000_sleep(struct dvb_frontend *fe) |
| { |
| int ret; |
| |
| dprintk(1, "%s()\n", __func__); |
| |
| /* Avoid firmware reload on slow devices */ |
| if (no_poweroff) |
| return 0; |
| |
| /* According to Xceive technical support, the "powerdown" register |
| was removed in newer versions of the firmware. The "supported" |
| way to sleep the tuner is to pull the reset pin low for 10ms */ |
| ret = xc5000_TunerReset(fe); |
| if (ret != XC_RESULT_SUCCESS) { |
| printk(KERN_ERR |
| "xc5000: %s() unable to shutdown tuner\n", |
| __func__); |
| return -EREMOTEIO; |
| } else |
| return XC_RESULT_SUCCESS; |
| } |
| |
| static int xc5000_init(struct dvb_frontend *fe) |
| { |
| struct xc5000_priv *priv = fe->tuner_priv; |
| dprintk(1, "%s()\n", __func__); |
| |
| if (xc_load_fw_and_init_tuner(fe) != XC_RESULT_SUCCESS) { |
| printk(KERN_ERR "xc5000: Unable to initialise tuner\n"); |
| return -EREMOTEIO; |
| } |
| |
| if (debug) |
| xc_debug_dump(priv); |
| |
| return 0; |
| } |
| |
| static int xc5000_release(struct dvb_frontend *fe) |
| { |
| struct xc5000_priv *priv = fe->tuner_priv; |
| |
| dprintk(1, "%s()\n", __func__); |
| |
| mutex_lock(&xc5000_list_mutex); |
| |
| if (priv) |
| hybrid_tuner_release_state(priv); |
| |
| mutex_unlock(&xc5000_list_mutex); |
| |
| fe->tuner_priv = NULL; |
| |
| return 0; |
| } |
| |
| static const struct dvb_tuner_ops xc5000_tuner_ops = { |
| .info = { |
| .name = "Xceive XC5000", |
| .frequency_min = 1000000, |
| .frequency_max = 1023000000, |
| .frequency_step = 50000, |
| }, |
| |
| .release = xc5000_release, |
| .init = xc5000_init, |
| .sleep = xc5000_sleep, |
| |
| .set_params = xc5000_set_params, |
| .set_analog_params = xc5000_set_analog_params, |
| .get_frequency = xc5000_get_frequency, |
| .get_bandwidth = xc5000_get_bandwidth, |
| .get_status = xc5000_get_status |
| }; |
| |
| struct dvb_frontend *xc5000_attach(struct dvb_frontend *fe, |
| struct i2c_adapter *i2c, |
| const struct xc5000_config *cfg) |
| { |
| struct xc5000_priv *priv = NULL; |
| int instance; |
| u16 id = 0; |
| |
| dprintk(1, "%s(%d-%04x)\n", __func__, |
| i2c ? i2c_adapter_id(i2c) : -1, |
| cfg ? cfg->i2c_address : -1); |
| |
| mutex_lock(&xc5000_list_mutex); |
| |
| instance = hybrid_tuner_request_state(struct xc5000_priv, priv, |
| hybrid_tuner_instance_list, |
| i2c, cfg->i2c_address, "xc5000"); |
| switch (instance) { |
| case 0: |
| goto fail; |
| break; |
| case 1: |
| /* new tuner instance */ |
| priv->bandwidth = BANDWIDTH_6_MHZ; |
| fe->tuner_priv = priv; |
| break; |
| default: |
| /* existing tuner instance */ |
| fe->tuner_priv = priv; |
| break; |
| } |
| |
| if (priv->if_khz == 0) { |
| /* If the IF hasn't been set yet, use the value provided by |
| the caller (occurs in hybrid devices where the analog |
| call to xc5000_attach occurs before the digital side) */ |
| priv->if_khz = cfg->if_khz; |
| } |
| |
| if (priv->radio_input == 0) |
| priv->radio_input = cfg->radio_input; |
| |
| /* Check if firmware has been loaded. It is possible that another |
| instance of the driver has loaded the firmware. |
| */ |
| if (xc5000_readreg(priv, XREG_PRODUCT_ID, &id) != XC_RESULT_SUCCESS) |
| goto fail; |
| |
| switch (id) { |
| case XC_PRODUCT_ID_FW_LOADED: |
| printk(KERN_INFO |
| "xc5000: Successfully identified at address 0x%02x\n", |
| cfg->i2c_address); |
| printk(KERN_INFO |
| "xc5000: Firmware has been loaded previously\n"); |
| break; |
| case XC_PRODUCT_ID_FW_NOT_LOADED: |
| printk(KERN_INFO |
| "xc5000: Successfully identified at address 0x%02x\n", |
| cfg->i2c_address); |
| printk(KERN_INFO |
| "xc5000: Firmware has not been loaded previously\n"); |
| break; |
| default: |
| printk(KERN_ERR |
| "xc5000: Device not found at addr 0x%02x (0x%x)\n", |
| cfg->i2c_address, id); |
| goto fail; |
| } |
| |
| mutex_unlock(&xc5000_list_mutex); |
| |
| memcpy(&fe->ops.tuner_ops, &xc5000_tuner_ops, |
| sizeof(struct dvb_tuner_ops)); |
| |
| return fe; |
| fail: |
| mutex_unlock(&xc5000_list_mutex); |
| |
| xc5000_release(fe); |
| return NULL; |
| } |
| EXPORT_SYMBOL(xc5000_attach); |
| |
| MODULE_AUTHOR("Steven Toth"); |
| MODULE_DESCRIPTION("Xceive xc5000 silicon tuner driver"); |
| MODULE_LICENSE("GPL"); |