blob: 144fb048fb440e65c2b1a1b7685207b707132dbc [file] [log] [blame]
/*
* Copyright (c) 2012-2017 The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <common.h>
#include <fdtdec.h>
#include <watchdog.h>
#include <console.h>
#include <spi.h>
#include <malloc.h>
#include <asm/io.h>
#include <asm/errno.h>
#include "ipq_spi.h"
#include <asm/arch-qca-common/gpio.h>
#include <dt-bindings/qcom/gpio-ipq806x.h>
#define SUCCESS 0
#define DUMMY_DATA_VAL 0
#define TIMEOUT_CNT 100
#define CS_ASSERT 1
#define CS_DEASSERT 0
#define NUM_PORTS 3
#define NUM_GSBI_PINS 3
#define TLMM_ARGS 6
#define NUM_CS 4
#define GSBI_PIN_IDX 0
#define FUNC_SEL_IDX 1
#define GPIO_DIR_IDX 2
#define PULL_CONF_IDX 3
#define DRV_STR_IDX 4
#define GPIO_EN_IDX 5
#define GSBI_IDX_TO_GSBI(idx) (idx + 5)
DECLARE_GLOBAL_DATA_PTR;
/*
* CS GPIO number array cs_gpio_array[port_num][cs_num]
* cs_gpio_array[0][x] -- GSBI5
* cs_gpio_array[1][x] -- GSBI6
* cs_gpio_array[2][x] -- GSBI7
*/
static unsigned int cs_gpio_array[NUM_PORTS][NUM_CS];
/*
* GSBI HCLK state register bit
* hclk_state[0] -- GSBI5
* hclk_state[1] -- GSBI6
* hclk_state[2] -- GSBI7
*/
static unsigned int hclk_state[NUM_PORTS] = {
GSBI5_HCLK,
GSBI6_HCLK,
GSBI7_HCLK
};
/*
* GSBI QUP_APPS_CLK state register bit
* qup_apps_clk_state[0] -- GSBI5
* qup_apps_clk_state[1] -- GSBI6
* qup_apps_clk_state[2] -- GSBI7
*/
static unsigned int qup_apps_clk_state[NUM_PORTS] = {
GSBI5_QUP_APPS_CLK,
GSBI6_QUP_APPS_CLK,
GSBI7_QUP_APPS_CLK
};
static int check_bit_state(uint32_t reg_addr, int bit_num, int val, int us_delay)
{
unsigned int count = TIMEOUT_CNT;
unsigned int bit_val = ((readl(reg_addr) >> bit_num) & 0x01);
while (bit_val != val) {
count--;
if (count == 0)
return -ETIMEDOUT;
udelay(us_delay);
bit_val = ((readl(reg_addr) >> bit_num) & 0x01);
}
return SUCCESS;
}
/*
* Check whether GSBIn_QUP State is valid
*/
static int check_qup_state_valid(struct ipq_spi_slave *ds)
{
return check_bit_state(ds->regs->qup_state, QUP_STATE_VALID_BIT,
QUP_STATE_VALID, 1);
}
/*
* Configure GSBIn Core state
*/
static int config_spi_state(struct ipq_spi_slave *ds, unsigned int state)
{
uint32_t val;
int ret = SUCCESS;
ret = check_qup_state_valid(ds);
if (ret != SUCCESS)
return ret;
switch (state) {
case SPI_RUN_STATE:
/* Set the state to RUN */
val = ((readl(ds->regs->qup_state) & ~QUP_STATE_MASK)
| QUP_STATE_RUN_STATE);
writel(val, ds->regs->qup_state);
ret = check_qup_state_valid(ds);
if (ret != SUCCESS)
return ret;
ds->core_state = SPI_CORE_RUNNING;
break;
case SPI_RESET_STATE:
/* Set the state to RESET */
val = ((readl(ds->regs->qup_state) & ~QUP_STATE_MASK)
| QUP_STATE_RESET_STATE);
writel(val, ds->regs->qup_state);
ret = check_qup_state_valid(ds);
if (ret != SUCCESS)
return ret;
ds->core_state = SPI_CORE_RESET;
break;
default:
printf("err: unsupported GSBI SPI state : %d\n", state);
ret = -EINVAL;
break;
}
return ret;
}
/*
* Set GSBIn SPI Mode
*/
static void spi_set_mode(struct ipq_spi_slave *ds, unsigned int mode)
{
unsigned int clk_idle_state;
unsigned int input_first_mode;
uint32_t val;
switch (mode) {
case GSBI_SPI_MODE_0:
clk_idle_state = 0;
input_first_mode = SPI_INPUT_FIRST_MODE;
break;
case GSBI_SPI_MODE_1:
clk_idle_state = 0;
input_first_mode = 0;
break;
case GSBI_SPI_MODE_2:
clk_idle_state = 1;
input_first_mode = SPI_INPUT_FIRST_MODE;
break;
case GSBI_SPI_MODE_3:
clk_idle_state = 1;
input_first_mode = 0;
break;
default:
printf("err : unsupported spi mode : %d\n", mode);
return;
}
val = readl(ds->regs->spi_config);
val |= input_first_mode;
writel(val, ds->regs->spi_config);
val = readl(ds->regs->io_control);
if (clk_idle_state)
val |= SPI_IO_CONTROL_CLOCK_IDLE_HIGH;
else
val &= ~SPI_IO_CONTROL_CLOCK_IDLE_HIGH;
writel(val, ds->regs->io_control);
}
/*
* Check for HCLK state
*/
static int check_hclk_state(unsigned int core_num, int enable)
{
return check_bit_state(CLK_HALT_CFPB_STATEB_REG,
hclk_state[core_num], enable, 5);
}
/*
* Check for QUP APPS CLK state
*/
static int check_qup_clk_state(unsigned int core_num, int enable)
{
return check_bit_state(CLK_HALT_CFPB_STATEB_REG,
qup_apps_clk_state[core_num], enable, 5);
}
/*
* Function to assert and De-assert chip select
*/
static void CS_change(int port_num, int cs_num, int enable)
{
unsigned int cs_gpio;
uint32_t addr = 0;
uint32_t val = 0;
cs_gpio = cs_gpio_array[port_num][cs_num];
addr = GPIO_IN_OUT_ADDR(cs_gpio);
val = readl(addr);
val &= (~(GPIO_OUT));
if (!enable)
val |= (GPIO_OUT);
writel(val, addr);
}
/*
* GSBIn TLMM configuration
*/
int gsbi_pin_config(unsigned int port_num, int cs_num)
{
char spi_node_path[32];
int spi_node = 0;
int i,j;
int spi_cs_node = 0, spi_cs_gpio_node = 0;
for (i = 0; i < NUM_PORTS; i++) {
for (j = 0; j < NUM_CS; j++) {
sprintf(spi_node_path, "/spi/spi%d/cs%d", i, j);
spi_cs_node = fdt_path_offset
(gd->fdt_blob, spi_node_path);
spi_cs_gpio_node = fdt_first_subnode
(gd->fdt_blob, spi_cs_node);
cs_gpio_array[i][j] = fdtdec_get_uint
(gd->fdt_blob, spi_cs_gpio_node, "gpio", 0);
}
}
/* Hold the GSBIn (core_num) core in reset */
clrsetbits_le32(GSBIn_RESET_REG(GSBI_IDX_TO_GSBI(port_num)),
GSBI1_RESET_MSK, GSBI1_RESET);
/*
* Configure SPI_CLK, SPI_MISO and SPI_MOSI
*/
sprintf(spi_node_path, "/spi/spi%d/mosi_miso_clk", port_num);
spi_node = fdt_path_offset(gd->fdt_blob, spi_node_path);
if (spi_node >= 0) {
qca_gpio_init(spi_node);
} else {
printf("SPI : Node not found, skipping initialization\n");
return -1;
}
/*
* Configure SPI_CS
*/
sprintf(spi_node_path, "/spi/spi%d/cs%d", port_num, cs_num);
spi_node = fdt_path_offset(gd->fdt_blob, spi_node_path);
if (spi_node >= 0) {
qca_gpio_init(spi_node);
} else {
printf("SPI : Node not found, skipping initialization\n");
return -1;
}
CS_change(port_num, cs_num, CS_DEASSERT);
return 0;
}
/*
* Clock configuration for GSBIn Core
*/
static int gsbi_clock_init(struct ipq_spi_slave *ds)
{
int ret;
/* Hold the GSBIn (core_num) core in reset */
clrsetbits_le32(GSBIn_RESET_REG(GSBI_IDX_TO_GSBI(ds->slave.bus)),
GSBI1_RESET_MSK, GSBI1_RESET);
/* Disable GSBIn (core_num) QUP core clock branch */
clrsetbits_le32(ds->regs->qup_ns_reg, QUP_CLK_BRANCH_ENA_MSK,
QUP_CLK_BRANCH_DIS);
ret = check_qup_clk_state(ds->slave.bus, 1);
if (ret) {
printf("QUP Clock Halt For GSBI%d failed!\n", ds->slave.bus);
return ret;
}
/* Disable M/N:D counter and hold M/N:D counter in reset */
clrsetbits_le32(ds->regs->qup_ns_reg, (MNCNTR_MSK | MNCNTR_RST_MSK),
(MNCNTR_RST_ENA | MNCNTR_DIS));
/* Disable GSBIn (core_num) QUP core clock root */
clrsetbits_le32(ds->regs->qup_ns_reg, CLK_ROOT_ENA_MSK, CLK_ROOT_DIS);
clrsetbits_le32(ds->regs->qup_ns_reg, GSBIn_PLL_SRC_MSK,
GSBIn_PLL_SRC_PLL8);
clrsetbits_le32(ds->regs->qup_ns_reg, GSBIn_PRE_DIV_SEL_MSK,
(0 << GSBI_PRE_DIV_SEL_SHFT));
/* Program M/N:D values for GSBIn_QUP_APPS_CLK @50MHz */
clrsetbits_le32(ds->regs->qup_md_reg, GSBIn_M_VAL_MSK,
(0x01 << GSBI_M_VAL_SHFT));
clrsetbits_le32(ds->regs->qup_md_reg, GSBIn_D_VAL_MSK,
(0xF7 << GSBI_D_VAL_SHFT));
clrsetbits_le32(ds->regs->qup_ns_reg, GSBIn_N_VAL_MSK,
(0xF8 << GSBI_N_VAL_SHFT));
/* Set MNCNTR_MODE = 0: Bypass mode */
clrsetbits_le32(ds->regs->qup_ns_reg, MNCNTR_MODE_MSK,
MNCNTR_MODE_DUAL_EDGE);
/* De-assert the M/N:D counter reset */
clrsetbits_le32(ds->regs->qup_ns_reg, MNCNTR_RST_MSK, MNCNTR_RST_DIS);
clrsetbits_le32(ds->regs->qup_ns_reg, MNCNTR_MSK, MNCNTR_EN);
/*
* Enable the GSBIn (core_num) QUP core clock root.
* Keep MND counter disabled
*/
clrsetbits_le32(ds->regs->qup_ns_reg, CLK_ROOT_ENA_MSK, CLK_ROOT_ENA);
/* Enable GSBIn (core_num) QUP core clock branch */
clrsetbits_le32(ds->regs->qup_ns_reg, QUP_CLK_BRANCH_ENA_MSK,
QUP_CLK_BRANCH_ENA);
ret = check_qup_clk_state(ds->slave.bus, 0);
if (ret) {
printf("QUP Clock Enable For GSBI%d"
" failed!\n", ds->slave.bus);
return ret;
}
/* Enable GSBIn (core_num) core clock branch */
clrsetbits_le32(GSBIn_HCLK_CTL_REG(GSBI_IDX_TO_GSBI(ds->slave.bus)),
GSBI_CLK_BRANCH_ENA_MSK, GSBI_CLK_BRANCH_ENA);
ret = check_hclk_state(ds->slave.bus, 0);
if (ret) {
printf("HCLK Enable For GSBI%d failed!\n", ds->slave.bus);
return ret;
}
/* Release GSBIn (core_num) core from reset */
clrsetbits_le32(GSBIn_RESET_REG(GSBI_IDX_TO_GSBI(ds->slave.bus)),
GSBI1_RESET_MSK, 0);
udelay(50);
return SUCCESS;
}
/*
* Reset entire QUP and all mini cores
*/
static void spi_reset(struct ipq_spi_slave *ds)
{
writel(0x1, ds->regs->qup_sw_reset);
udelay(5);
}
void spi_init()
{
/* do nothing */
}
struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
unsigned int max_hz, unsigned int mode)
{
struct ipq_spi_slave *ds;
ds = malloc(sizeof(struct ipq_spi_slave));
if (!ds) {
printf("SPI error: malloc of SPI structure failed\n");
return NULL;
}
/*
* IPQ GSBI (Generic Serial Bus Interface) supports SPI Flash
* on different GSBI5, GSBI6 and GSBI7
* with different number of chip selects (CS, channels):
*/
if ((bus < GSBI5_SPI) || (bus > GSBI7_SPI)
|| ((bus == GSBI5_SPI) && (cs > 3))
|| ((bus == GSBI6_SPI) && (cs > 0))
|| ((bus == GSBI7_SPI) && (cs > 0))) {
printf("SPI error: unsupported bus %d "
"(Supported busses 0,1 and 2) or chipselect\n", bus);
goto err;
}
ds->slave.bus = bus;
ds->slave.cs = cs;
ds->slave.option = 0;
ds->slave.max_write_size = 0;
ds->slave.op_mode_rx = 0; /* Default Rx Mode: CMD_READ_ARRAY_FAST */
ds->slave.op_mode_tx = 0; /* Default Tx Mode: CMD_PAGE_PROGRAM */
ds->slave.memory_map = NULL; /* Not memory mapped */
ds->regs = &spi_reg[bus];
/* TODO For different clock frequency */
if (max_hz > MSM_GSBI_MAX_FREQ) {
printf("SPI error: unsupported frequency %d Hz "
"Max frequency is %d Hz\n", max_hz, MSM_GSBI_MAX_FREQ);
goto err;
}
ds->freq = max_hz;
if (mode > GSBI_SPI_MODE_3) {
printf("SPI error: unsupported SPI mode %d\n", mode);
goto err;
}
ds->mode = mode;
if(gsbi_clock_init(ds)){
printf("SPI Clock config Failed for Bus %d CS %d\n", bus, cs);
goto err;
}
return &ds->slave;
err:
free(ds);
return NULL;
}
void spi_free_slave(struct spi_slave *slave)
{
struct ipq_spi_slave *ds = to_ipq_spi(slave);
if (ds != NULL)
free(ds);
}
/*
* GSBIn SPI Hardware Initialisation
*/
static int spi_hw_init(struct ipq_spi_slave *ds)
{
int ret;
ds->initialized = 0;
/* GSBI module configuration */
spi_reset(ds);
/* Set the GSBIn QUP state */
ret = config_spi_state(ds, SPI_RESET_STATE);
if (ret)
return ret;
/* Configure GSBI_CTRL register to set protocol_mode to SPI:011 */
clrsetbits_le32(ds->regs->gsbi_ctrl, PROTOCOL_CODE_MSK,
PROTOCOL_CODE_SPI);
/*
* Configure Mini core to SPI core with Input Output enabled,
* SPI master, N = 8 bits
*/
clrsetbits_le32(ds->regs->qup_config, (QUP_CONFIG_MINI_CORE_MSK |
SPI_QUP_CONF_INPUT_MSK |
SPI_QUP_CONF_OUTPUT_MSK |
SPI_BIT_WORD_MSK),
(QUP_CONFIG_MINI_CORE_SPI |
SPI_QUP_CONF_INPUT_ENA |
SPI_QUP_CONF_OUTPUT_ENA |
SPI_8_BIT_WORD));
/*
* Configure Input first SPI protocol,
* SPI master mode and no loopback
*/
clrsetbits_le32(ds->regs->spi_config, (LOOP_BACK_MSK |
SLAVE_OPERATION_MSK),
(NO_LOOP_BACK |
SLAVE_OPERATION));
/*
* Configure SPI IO Control Register
* CLK_ALWAYS_ON = 0
* MX_CS_MODE = 0
* NO_TRI_STATE = 1
*/
writel((CLK_ALWAYS_ON | MX_CS_MODE | NO_TRI_STATE),
ds->regs->io_control);
/*
* Configure SPI IO Modes.
* OUTPUT_BIT_SHIFT_EN = 1
* INPUT_MODE = Block Mode
* OUTPUT MODE = Block Mode
*/
clrsetbits_le32(ds->regs->qup_io_modes, (OUTPUT_BIT_SHIFT_MSK |
INPUT_BLOCK_MODE_MSK |
OUTPUT_BLOCK_MODE_MSK),
(OUTPUT_BIT_SHIFT_EN |
INPUT_BLOCK_MODE |
OUTPUT_BLOCK_MODE));
spi_set_mode(ds, ds->mode);
/* Disable Error mask */
writel(0, ds->regs->error_flags_en);
writel(0, ds->regs->qup_error_flags_en);
ds->initialized = 1;
return SUCCESS;
}
int spi_claim_bus(struct spi_slave *slave)
{
struct ipq_spi_slave *ds = to_ipq_spi(slave);
unsigned int ret;
ret = spi_hw_init(ds);
if (ret)
return -EIO;
return SUCCESS;
}
void spi_release_bus(struct spi_slave *slave)
{
struct ipq_spi_slave *ds = to_ipq_spi(slave);
/* Reset the SPI hardware */
spi_reset(ds);
ds->initialized = 0;
}
/* Drain input fifo
* If input fifo is not empty drain the input FIFO. When the
* input fifo is drained make sure that the output fifo is also
* empty and break when the input fifo is completely drained.
*/
static void flush_fifos(struct ipq_spi_slave *ds)
{
unsigned int fifo_data;
while (1) {
if (readl(ds->regs->qup_operational) &
QUP_DATA_AVAILABLE_FOR_READ) {
fifo_data = readl(ds->regs->qup_input_fifo);
} else {
if (!(readl(ds->regs->qup_operational) &
QUP_OUTPUT_FIFO_NOT_EMPTY)) {
if (!(readl(ds->regs->qup_operational) &
QUP_DATA_AVAILABLE_FOR_READ))
break;
}
}
WATCHDOG_RESET();
}
(void)fifo_data;
}
/*
* Function to write data to OUTPUT FIFO
*/
static void spi_write_byte(struct ipq_spi_slave *ds, unsigned char data)
{
/* Wait for space in the FIFO */
while ((readl(ds->regs->qup_operational) & QUP_OUTPUT_FIFO_FULL))
udelay(1);
/* Write the byte of data */
writel(data, ds->regs->qup_output_fifo);
}
/*
* Function to read data from Input FIFO
*/
static unsigned char spi_read_byte(struct ipq_spi_slave *ds)
{
/* Wait for Data in FIFO */
while (!(readl(ds->regs->qup_operational) &
QUP_DATA_AVAILABLE_FOR_READ)) {
udelay(1);
}
/* Read a byte of data */
return readl(ds->regs->qup_input_fifo) & 0xff;
}
/*
* Function to check wheather Input or Output FIFO
* has data to be serviced
*/
static int check_fifo_status(uint32_t reg_addr)
{
unsigned int count = TIMEOUT_CNT;
unsigned int status_flag;
unsigned int val;
do {
val = readl(reg_addr);
count--;
if (count == 0)
return -ETIMEDOUT;
status_flag = ((val & OUTPUT_SERVICE_FLAG) | (val & INPUT_SERVICE_FLAG));
} while (!status_flag);
return SUCCESS;
}
/*
* Function to read bytes number of data from the Input FIFO
*/
static int gsbi_spi_read(struct ipq_spi_slave *ds, u8 *data_buffer,
unsigned int bytes, unsigned long flags)
{
uint32_t val;
unsigned int i;
unsigned int read_bytes = bytes;
unsigned int fifo_count;
int ret = SUCCESS;
int state_config;
if (flags & SPI_XFER_BEGIN) {
/* Assert chip select */
CS_change(ds->slave.bus, ds->slave.cs, CS_ASSERT);
}
/* Configure no of bytes to read */
state_config = config_spi_state(ds, SPI_RESET_STATE);
if (state_config)
return state_config;
/*
* A count of zero implies read data as long as clock is
* supplied. So configure it with zero and read as much
* data as we want. This also helps us while reading data
* that is not aligned to sector address and/or length.
*/
writel(0, ds->regs->qup_mx_output_count);
writel(0, ds->regs->qup_mx_input_count);
state_config = config_spi_state(ds, SPI_RUN_STATE);
if (state_config)
return state_config;
while (read_bytes) {
ret = check_fifo_status(ds->regs->qup_operational);
if (ret != SUCCESS)
goto out;
val = readl(ds->regs->qup_operational);
if (val & INPUT_SERVICE_FLAG) {
/*
* acknowledge to hw that software will
* read input data
*/
val &= INPUT_SERVICE_FLAG;
writel(val, ds->regs->qup_operational);
fifo_count = ((read_bytes > SPI_INPUT_BLOCK_SIZE) ?
SPI_INPUT_BLOCK_SIZE : read_bytes);
for (i = 0; i < fifo_count; i++) {
if (ctrlc()) {
putc ('\n');
return 1;
}
*data_buffer = spi_read_byte(ds);
data_buffer++;
read_bytes--;
}
}
if (val & OUTPUT_SERVICE_FLAG) {
/*
* acknowledge to hw that software will
* write output data
*/
val &= OUTPUT_SERVICE_FLAG;
writel(val, ds->regs->qup_operational);
fifo_count = ((read_bytes > SPI_OUTPUT_BLOCK_SIZE) ?
SPI_OUTPUT_BLOCK_SIZE : read_bytes);
for (i = 0; i < fifo_count; i++) {
if (ctrlc()) {
putc ('\n');
return 1;
}
/*
* Write dummy data byte for the device
* to shift in actual data. Most of the SPI devices
* accepts dummy data value as 0. In case of any
* other value change DUMMY_DATA_VAL.
*/
spi_write_byte(ds, DUMMY_DATA_VAL);
}
}
}
if (flags & SPI_XFER_END) {
flush_fifos(ds);
goto out;
}
return ret;
out:
/* Deassert CS */
CS_change(ds->slave.bus, ds->slave.cs, CS_DEASSERT);
/*
* Put the SPI Core back in the Reset State
* to end the transfer
*/
(void)config_spi_state(ds, SPI_RESET_STATE);
return ret;
}
/*
* Function to write data to the Output FIFO
*/
static int gsbi_spi_write(struct ipq_spi_slave *ds, const u8 *cmd_buffer,
unsigned int bytes, unsigned long flags)
{
uint32_t val;
unsigned int i;
unsigned int write_len = bytes;
unsigned int read_len = bytes;
unsigned int fifo_count;
int ret = SUCCESS;
int state_config;
if (flags & SPI_XFER_BEGIN) {
/* Select the chip select */
CS_change(ds->slave.bus, ds->slave.cs, CS_ASSERT);
}
state_config = config_spi_state(ds, SPI_RESET_STATE);
if (state_config)
return state_config;
/* No of bytes to be written in Output FIFO */
writel(bytes, ds->regs->qup_mx_output_count);
writel(bytes, ds->regs->qup_mx_input_count);
state_config = config_spi_state(ds, SPI_RUN_STATE);
if (state_config)
return state_config;
/*
* read_len considered to ensure that we read the dummy data for the
* write we performed. This is needed to ensure with WR-RD transaction
* to get the actual data on the subsequent read cycle that happens
*/
while (write_len || read_len) {
ret = check_fifo_status(ds->regs->qup_operational);
if (ret != SUCCESS)
goto out;
val = readl(ds->regs->qup_operational);
if (val & OUTPUT_SERVICE_FLAG) {
/*
* acknowledge to hw that software will write
* expected output data
*/
val &= OUTPUT_SERVICE_FLAG;
writel(val, ds->regs->qup_operational);
if (write_len > SPI_OUTPUT_BLOCK_SIZE)
fifo_count = SPI_OUTPUT_BLOCK_SIZE;
else
fifo_count = write_len;
for (i = 0; i < fifo_count; i++) {
/* Write actual data to output FIFO */
if (ctrlc()) {
putc ('\n');
return 1;
}
spi_write_byte(ds, *cmd_buffer);
cmd_buffer++;
write_len--;
}
}
if (val & INPUT_SERVICE_FLAG) {
/*
* acknowledge to hw that software
* will read input data
*/
val &= INPUT_SERVICE_FLAG;
writel(val, ds->regs->qup_operational);
if (read_len > SPI_INPUT_BLOCK_SIZE)
fifo_count = SPI_INPUT_BLOCK_SIZE;
else
fifo_count = read_len;
for (i = 0; i < fifo_count; i++) {
if (ctrlc()) {
putc ('\n');
return 1;
}
/* Read dummy data for the data written */
(void)spi_read_byte(ds);
/* Decrement the write count after reading the dummy data
* from the device. This is to make sure we read dummy data
* before we write the data to fifo
*/
read_len--;
}
}
}
if (flags & SPI_XFER_END) {
flush_fifos(ds);
goto out;
}
return ret;
out:
/* Deassert CS */
CS_change(ds->slave.bus, ds->slave.cs, CS_DEASSERT);
/*
* Put the SPI Core back in the Reset State
* to end the transfer
*/
(void)config_spi_state(ds, SPI_RESET_STATE);
return ret;
}
/*
* This function is invoked with either tx_buf or rx_buf.
* Calling this function with both null does a chip select change.
*/
int spi_xfer(struct spi_slave *slave, unsigned int bitlen,
const void *dout, void *din, unsigned long flags)
{
struct ipq_spi_slave *ds = to_ipq_spi(slave);
unsigned int len;
const u8 *txp = dout;
u8 *rxp = din;
int ret;
if (bitlen & 0x07) {
printf("err : Invalid bit length");
return -EINVAL;
}
len = bitlen >> 3;
if (dout != NULL) {
ret = gsbi_spi_write(ds, txp, len, flags);
if (ret != SUCCESS)
return ret;
}
if (din != NULL)
return gsbi_spi_read(ds, rxp, len, flags);
if ((din == NULL) && (dout == NULL))
/* To handle only when chip select change is needed */
ret = gsbi_spi_write(ds, NULL, 0, flags);
return ret;
}