blob: 8981f9933a76a2d90acce528715e15a11f67237c [file] [log] [blame]
/*
* BLSP QUP SPI controller driver.
* Copyright (c) 2015-2017, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <common.h>
#include <watchdog.h>
#include <dm.h>
#include <spi.h>
#include <malloc.h>
#include <asm/io.h>
#include <asm/errno.h>
#include <asm/arch-qca-common/gpio.h>
#include <asm/arch-qca-common/iomap.h>
#include "qca_qup_spi.h"
static int check_bit_state(uint32_t reg_addr, int bit_num, int val, int us_delay)
{
unsigned int count = TIMEOUT_CNT;
unsigned int bit_val = ((readl(reg_addr) >> bit_num) & 0x01);
while (bit_val != val) {
count--;
if (count == 0)
return -ETIMEDOUT;
udelay(us_delay);
bit_val = ((readl(reg_addr) >> bit_num) & 0x01);
}
return SUCCESS;
}
/*
* Check whether QUPn State is valid
*/
static int check_qup_state_valid(struct ipq_spi_slave *ds)
{
return check_bit_state(ds->regs->qup_state, QUP_STATE_VALID_BIT,
QUP_STATE_VALID, 1);
}
/*
* Configure QUPn Core state
*/
static int config_spi_state(struct ipq_spi_slave *ds, unsigned int state)
{
uint32_t val;
int ret = SUCCESS;
ret = check_qup_state_valid(ds);
if (ret != SUCCESS)
return ret;
switch (state) {
case SPI_RUN_STATE:
/* Set the state to RUN */
val = ((readl(ds->regs->qup_state) & ~QUP_STATE_MASK)
| QUP_STATE_RUN_STATE);
writel(val, ds->regs->qup_state);
ret = check_qup_state_valid(ds);
if (ret != SUCCESS)
return ret;
ds->core_state = SPI_CORE_RUNNING;
break;
case SPI_RESET_STATE:
/* Set the state to RESET */
val = ((readl(ds->regs->qup_state) & ~QUP_STATE_MASK)
| QUP_STATE_RESET_STATE);
writel(val, ds->regs->qup_state);
ret = check_qup_state_valid(ds);
if (ret != SUCCESS)
return ret;
ds->core_state = SPI_CORE_RESET;
break;
default:
printf("err: unsupported QUP SPI state : %d\n", state);
ret = -EINVAL;
break;
}
return ret;
}
/*
* Set QUPn SPI Mode
*/
static void spi_set_mode(struct ipq_spi_slave *ds, unsigned int mode)
{
unsigned int clk_idle_state;
unsigned int input_first_mode;
uint32_t val;
switch (mode) {
case SPI_MODE0:
clk_idle_state = 0;
input_first_mode = SPI_INPUT_FIRST_MODE;
break;
case SPI_MODE1:
clk_idle_state = 0;
input_first_mode = 0;
break;
case SPI_MODE2:
clk_idle_state = 1;
input_first_mode = SPI_INPUT_FIRST_MODE;
break;
case SPI_MODE3:
clk_idle_state = 1;
input_first_mode = 0;
break;
default:
printf("err : unsupported spi mode : %d\n", mode);
return;
}
val = readl(ds->regs->spi_config);
val |= input_first_mode;
writel(val, ds->regs->spi_config);
val = readl(ds->regs->io_control);
if (clk_idle_state)
val |= SPI_IO_CONTROL_CLOCK_IDLE_HIGH;
else
val &= ~SPI_IO_CONTROL_CLOCK_IDLE_HIGH;
writel(val, ds->regs->io_control);
}
/*
* Reset entire QUP and all mini cores
*/
static void spi_reset(struct ipq_spi_slave *ds)
{
writel(0x1, ds->regs->qup_sw_reset);
udelay(5);
}
void spi_init()
{
/* do nothing */
}
struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
unsigned int max_hz, unsigned int mode)
{
struct ipq_spi_slave *ds;
ds = malloc(sizeof(struct ipq_spi_slave));
if (!ds) {
printf("SPI error: malloc of SPI structure failed\n");
return NULL;
}
memset(ds, 0, sizeof(struct ipq_spi_slave));
/*
* QCA BLSP supports SPI Flash
* on different BLSP0 and BLSP1
* with different number of chip selects (CS, channels):
*/
if ((bus < BLSP0_SPI) || (bus > BLSP1_SPI)
|| ((bus == BLSP0_SPI) && (cs > 2))
|| ((bus == BLSP1_SPI) && (cs > 0))) {
printf("SPI error: unsupported bus %d "
"(Supported busses 0,1 and 2) or chipselect\n", bus);
goto err;
}
ds->slave.bus = bus;
ds->slave.cs = cs;
ds->regs = &spi_reg[bus];
/* TODO For different clock frequency */
if (max_hz > MSM_QUP_MAX_FREQ) {
printf("SPI error: unsupported frequency %d Hz "
"Max frequency is %d Hz\n", max_hz, MSM_QUP_MAX_FREQ);
goto err;
}
ds->freq = max_hz;
if (mode > SPI_MODE3) {
printf("SPI error: unsupported SPI mode %d\n", mode);
goto err;
}
ds->mode = mode;
return &ds->slave;
err:
free(ds);
return NULL;
}
void spi_free_slave(struct spi_slave *slave)
{
struct ipq_spi_slave *ds = to_ipq_spi(slave);
if (ds != NULL)
free(ds);
}
/*
* BLSP QUPn SPI Hardware Initialisation
*/
static int spi_hw_init(struct ipq_spi_slave *ds)
{
int ret;
ds->initialized = 0;
/* QUPn module configuration */
spi_reset(ds);
/* Set the QUPn state */
ret = config_spi_state(ds, SPI_RESET_STATE);
if (ret)
return ret;
/*
* Configure Mini core to SPI core with Input Output enabled,
* SPI master, N = 8 bits
*/
clrsetbits_le32(ds->regs->qup_config, (QUP_CONFIG_MINI_CORE_MSK |
QUP_CONF_INPUT_MSK |
QUP_CONF_OUTPUT_MSK |
SPI_BIT_WORD_MSK),
(QUP_CONFIG_MINI_CORE_SPI |
QUP_CONF_INPUT_ENA |
QUP_CONF_OUTPUT_ENA |
SPI_8_BIT_WORD));
/*
* Configure Input first SPI protocol,
* SPI master mode and no loopback
*/
clrsetbits_le32(ds->regs->spi_config, (LOOP_BACK_MSK |
SLAVE_OPERATION_MSK),
(NO_LOOP_BACK |
SLAVE_OPERATION));
/*
* Configure SPI IO Control Register
* CLK_ALWAYS_ON = 0
* MX_CS_MODE = 0
* NO_TRI_STATE = 1
*/
writel((CLK_ALWAYS_ON | NO_TRI_STATE),
ds->regs->io_control);
/*
* Configure SPI IO Modes.
* OUTPUT_BIT_SHIFT_EN = 1
* INPUT_MODE = Block Mode
* OUTPUT MODE = Block Mode
*/
clrsetbits_le32(ds->regs->qup_io_modes, (OUTPUT_BIT_SHIFT_MSK |
INPUT_BLOCK_MODE_MSK |
OUTPUT_BLOCK_MODE_MSK),
(OUTPUT_BIT_SHIFT_EN |
INPUT_BLOCK_MODE |
OUTPUT_BLOCK_MODE));
spi_set_mode(ds, ds->mode);
/* Disable Error mask */
writel(0, ds->regs->error_flags_en);
writel(0, ds->regs->qup_error_flags_en);
writel(0, ds->regs->qup_deassert_wait);
ds->initialized = 1;
return SUCCESS;
}
int spi_claim_bus(struct spi_slave *slave)
{
struct ipq_spi_slave *ds = to_ipq_spi(slave);
unsigned int ret;
ret = spi_hw_init(ds);
if (ret)
return -EIO;
return SUCCESS;
}
void spi_release_bus(struct spi_slave *slave)
{
struct ipq_spi_slave *ds = to_ipq_spi(slave);
/* Reset the SPI hardware */
spi_reset(ds);
ds->initialized = 0;
}
static void write_force_cs(struct spi_slave *slave, int assert)
{
struct ipq_spi_slave *ds = to_ipq_spi(slave);
if (assert)
clrsetbits_le32(ds->regs->io_control,
FORCE_CS_MSK, FORCE_CS_EN);
else
clrsetbits_le32(ds->regs->io_control,
FORCE_CS_MSK, FORCE_CS_DIS);
return;
}
/*
* Function to write data to OUTPUT FIFO
*/
static void spi_write_byte(struct ipq_spi_slave *ds, unsigned char data)
{
/* Wait for space in the FIFO */
while ((readl(ds->regs->qup_operational) & QUP_OUTPUT_FIFO_FULL))
udelay(1);
/* Write the byte of data */
writel(data, ds->regs->qup_output_fifo);
}
/*
* Function to read data from Input FIFO
*/
static unsigned char spi_read_byte(struct ipq_spi_slave *ds)
{
/* Wait for Data in FIFO */
while (!(readl(ds->regs->qup_operational) &
QUP_DATA_AVAILABLE_FOR_READ)) {
udelay(1);
}
/* Read a byte of data */
return readl(ds->regs->qup_input_fifo) & 0xff;
}
/*
* Function to check wheather Input or Output FIFO
* has data to be serviced
*/
static int check_fifo_status(uint32_t reg_addr)
{
unsigned int count = TIMEOUT_CNT;
unsigned int status_flag;
unsigned int val;
do {
val = readl(reg_addr);
count--;
if (count == 0)
return -ETIMEDOUT;
status_flag = ((val & OUTPUT_SERVICE_FLAG) | (val & INPUT_SERVICE_FLAG));
} while (!status_flag);
return SUCCESS;
}
/*
* Function to configure Input and Output enable/disable
*/
static void enable_io_config(struct ipq_spi_slave *ds,
uint32_t write_cnt, uint32_t read_cnt)
{
if (write_cnt) {
clrsetbits_le32(ds->regs->qup_config,
QUP_CONF_OUTPUT_MSK, QUP_CONF_OUTPUT_ENA);
} else {
clrsetbits_le32(ds->regs->qup_config,
QUP_CONF_OUTPUT_MSK, QUP_CONF_NO_OUTPUT);
}
if (read_cnt) {
clrsetbits_le32(ds->regs->qup_config,
QUP_CONF_INPUT_MSK, QUP_CONF_INPUT_ENA);
} else {
clrsetbits_le32(ds->regs->qup_config,
QUP_CONF_INPUT_MSK, QUP_CONF_NO_INPUT);
}
return;
}
/*
* Function to read bytes number of data from the Input FIFO
*/
static int __blsp_spi_read(struct ipq_spi_slave *ds, u8 *data_buffer,
unsigned int bytes)
{
uint32_t val;
unsigned int i;
unsigned int read_bytes = bytes;
unsigned int fifo_count;
int ret = SUCCESS;
int state_config;
/* Configure no of bytes to read */
state_config = config_spi_state(ds, SPI_RESET_STATE);
if (state_config)
return state_config;
/* Configure input and output enable */
enable_io_config(ds, 0, read_bytes);
writel(bytes, ds->regs->qup_mx_input_count);
state_config = config_spi_state(ds, SPI_RUN_STATE);
if (state_config)
return state_config;
while (read_bytes) {
ret = check_fifo_status(ds->regs->qup_operational);
if (ret != SUCCESS)
goto out;
val = readl(ds->regs->qup_operational);
if (val & INPUT_SERVICE_FLAG) {
/*
* acknowledge to hw that software will
* read input data
*/
val &= INPUT_SERVICE_FLAG;
writel(val, ds->regs->qup_operational);
fifo_count = ((read_bytes > SPI_INPUT_BLOCK_SIZE) ?
SPI_INPUT_BLOCK_SIZE : read_bytes);
for (i = 0; i < fifo_count; i++) {
*data_buffer = spi_read_byte(ds);
data_buffer++;
read_bytes--;
}
}
}
out:
/*
* Put the SPI Core back in the Reset State
* to end the transfer
*/
(void)config_spi_state(ds, SPI_RESET_STATE);
return ret;
}
static int blsp_spi_read(struct ipq_spi_slave *ds, u8 *data_buffer,
unsigned int bytes)
{
int length, ret;
while (bytes) {
length = (bytes < MAX_COUNT_SIZE) ? bytes : MAX_COUNT_SIZE;
ret = __blsp_spi_read(ds, data_buffer, length);
if (ret != SUCCESS)
return ret;
data_buffer += length;
bytes -= length;
}
return 0;
}
/*
* Function to write data to the Output FIFO
*/
static int __blsp_spi_write(struct ipq_spi_slave *ds, const u8 *cmd_buffer,
unsigned int bytes)
{
uint32_t val;
unsigned int i;
unsigned int write_len = bytes;
unsigned int read_len = bytes;
unsigned int fifo_count;
int ret = SUCCESS;
int state_config;
state_config = config_spi_state(ds, SPI_RESET_STATE);
if (state_config)
return state_config;
/* No of bytes to be written in Output FIFO */
writel(bytes, ds->regs->qup_mx_output_count);
writel(bytes, ds->regs->qup_mx_input_count);
state_config = config_spi_state(ds, SPI_RUN_STATE);
if (state_config)
return state_config;
/* Configure input and output enable */
enable_io_config(ds, write_len, read_len);
/*
* read_len considered to ensure that we read the dummy data for the
* write we performed. This is needed to ensure with WR-RD transaction
* to get the actual data on the subsequent read cycle that happens
*/
while (write_len || read_len) {
ret = check_fifo_status(ds->regs->qup_operational);
if (ret != SUCCESS)
goto out;
val = readl(ds->regs->qup_operational);
if (val & OUTPUT_SERVICE_FLAG) {
/*
* acknowledge to hw that software will write
* expected output data
*/
val &= OUTPUT_SERVICE_FLAG;
writel(val, ds->regs->qup_operational);
if (write_len > SPI_OUTPUT_BLOCK_SIZE)
fifo_count = SPI_OUTPUT_BLOCK_SIZE;
else
fifo_count = write_len;
for (i = 0; i < fifo_count; i++) {
/* Write actual data to output FIFO */
spi_write_byte(ds, *cmd_buffer);
cmd_buffer++;
write_len--;
}
}
if (val & INPUT_SERVICE_FLAG) {
/*
* acknowledge to hw that software
* will read input data
*/
val &= INPUT_SERVICE_FLAG;
writel(val, ds->regs->qup_operational);
if (read_len > SPI_INPUT_BLOCK_SIZE)
fifo_count = SPI_INPUT_BLOCK_SIZE;
else
fifo_count = read_len;
for (i = 0; i < fifo_count; i++) {
/* Read dummy data for the data written */
(void)spi_read_byte(ds);
/* Decrement the write count after reading the dummy data
* from the device. This is to make sure we read dummy data
* before we write the data to fifo
*/
read_len--;
}
}
}
out:
/*
* Put the SPI Core back in the Reset State
* to end the transfer
*/
(void)config_spi_state(ds, SPI_RESET_STATE);
return ret;
}
static int blsp_spi_write(struct ipq_spi_slave *ds, const u8 *cmd_buffer,
unsigned int bytes)
{
int length, ret;
while (bytes) {
length = (bytes < MAX_COUNT_SIZE) ? bytes : MAX_COUNT_SIZE;
ret = __blsp_spi_write(ds, cmd_buffer, length);
if (ret != SUCCESS)
return ret;
cmd_buffer += length;
bytes -= length;
}
return 0;
}
/*
* This function is invoked with either tx_buf or rx_buf.
* Calling this function with both null does a chip select change.
*/
int spi_xfer(struct spi_slave *slave, unsigned int bitlen,
const void *dout, void *din, unsigned long flags)
{
struct ipq_spi_slave *ds = to_ipq_spi(slave);
unsigned int len;
const u8 *txp = dout;
u8 *rxp = din;
int ret;
if (bitlen & 0x07) {
printf("err : Invalid bit length");
return -EINVAL;
}
len = bitlen >> 3;
if (flags & SPI_XFER_BEGIN) {
ret = spi_hw_init(ds);
if (ret != SUCCESS)
return ret;
write_force_cs(slave, 1);
}
if (dout != NULL) {
ret = blsp_spi_write(ds, txp, len);
if (ret != SUCCESS)
return ret;
}
if (din != NULL) {
ret = blsp_spi_read(ds, rxp, len);
if (ret != SUCCESS)
return ret;
}
if (flags & SPI_XFER_END) {
/* To handle only when chip select change is needed */
write_force_cs(slave, 0);
}
return ret;
}
int spi_cs_is_valid(unsigned int bus, unsigned int cs)
{
return 1;
}
void spi_cs_activate(struct spi_slave *slave)
{
}
void spi_cs_deactivate(struct spi_slave *slave)
{
}