blob: e5ae9d9629e24f06d1882c6bdf020c351b6bcb98 [file] [log] [blame]
# Copyright 2019 The Chromium Authors. All rights reserved.
# Use of this source code is governed by a BSD-style license that can be
# found in the LICENSE file.
"""
The code generator generates code based on a graph of code fragments. Each node
of the graph is represented with CodeNode and its subclasses. This module
provides a collection of the classes that represent code nodes independent from
specific bindings, such as ECMAScript bindings.
"""
from .codegen_accumulator import CodeGenAccumulator
from .codegen_format import format_template
from .mako_renderer import MakoRenderer
from .mako_renderer import MakoTemplate
def render_code_node(code_node):
"""
Renders |code_node| and turns it into text letting |code_node| apply all
necessary changes (side effects). Returns the resulting text.
"""
assert isinstance(code_node, CodeNode)
assert code_node.outer is None
renderer = code_node.renderer
accumulator = code_node.accumulator
accumulated_size = accumulator.total_size()
while True:
prev_accumulated_size = accumulated_size
renderer.reset()
code_node.render(renderer)
accumulated_size = accumulator.total_size()
if (renderer.is_rendering_complete()
and accumulated_size == prev_accumulated_size):
break
return renderer.to_text()
class Likeliness(object):
"""
Represents how much likely a code node will be executed.
Used in SymbolScopeNode in order to determine where SymbolDefinitionNodes
should be inserted. Likeliness level can change only at SymbolScopeNode.
Relational operators are supported, and it's guaranteed to be:
NEVER < UNLIKELY < LIKELY < ALWAYS
"""
class Level(int):
pass
NEVER = Level(0)
UNLIKELY = Level(1)
LIKELY = Level(2)
ALWAYS = Level(3)
class CodeNode(object):
"""
This is the base class of all code fragment nodes.
- Graph structure
CodeNode can be nested and |outer| points to the nesting CodeNode. Also
CodeNode can make a sequence and |prev| points to the previous CodeNode.
See also |ListNode|.
- Template rendering
CodeNode has template text and template variable bindings. Either of
|__str__| or |render| returns a text of generated code. However, these
methods have side effects on rendering states, and repeated calls may return
different results.
"""
class _RenderState(object):
"""
Represents a set of per-render states. Every call to CodeNode.render
resets all the per-render states.
"""
def __init__(self):
# List of SymbolNodes that are defined at this point of rendering.
# Used to determine whether a certain symbol is already defined by
# this point of rendering.
self.defined_code_symbols = []
# List of SymbolNodes that are not yet defined at this point of
# rendering. SymbolNodes are accumulated in order of their first
# appearance. The order affects the insertion order of
# SymbolDefinitionNodes.
self.undefined_code_symbols = []
# Dict from a SymbolNode to a set of tuples of SymbolScopeNodes
# where the symbol was used.
#
# For example, given a code symbol |x|, the following code
# structure:
# { // Scope1
# { // Scope2A
# { // Scope3
# x; // [1]
# }
# x; // [2]
# }
# x; // [3]
# { // Scope2B
# x; // [4]
# }
# x; // [5]
# }
# is translated into an entry of the dict below:
# set([
# (Scope1), # [3], [5]
# (Scope1, Scope2A), # [2]
# (Scope1, Scope2A, Scope3), # [1]
# (Scope1, Scope2B), # [4]
# ])
self.symbol_to_scope_chains = {}
_gensym_seq_id = 0
@classmethod
def gensym(cls):
"""
Creates a new template variable that never conflicts with anything.
The name 'gensym' came from 'gensym' (generated symbol) in Lisp that
exists for exactly the same purpose.
Note that |gensym| is used to produce a new Mako template variable while
SymbolNode is used to represent a code symbol (such as a local variable)
in generated code.
Bad example:
template_text = "abc ${tmp} xyz"
a = CodeNodeA(template_text='123')
b = CodeNodeB(template_text=template_text, {'tmp': a})
|b| expects "abc 123 xyz" but what if 'tmp' were already bound to
something else?
Good example:
sym = CodeNode.gensym()
template_text = format_template(
"abc ${{{node_a}}} xyz", node_a=sym)
a = CodeNodeA(template_text='123')
b = CodeNodeB(template_text=template_text, {sym: a})
"{{" and "}}" are literal of "{" and "}" themselves, and the innermost
"{node_a}" will be replaced with |sym|. The resulting template text
will be "abc ${gensym1} xyz" when |sym| is 'gensym1'.
"""
cls._gensym_seq_id += 1
return "gensym{}".format(cls._gensym_seq_id)
def __init__(self, template_text=None, template_vars=None):
assert template_text is None or isinstance(template_text, str)
assert template_vars is None or isinstance(template_vars, dict)
# The outer CodeNode or None iff this is a top-level node
self._outer = None
# The previous CodeNode if this is a Sequence or None
self._prev = None
# Mako's template text, bindings dict
if template_text is None:
self._template = None
else:
self._template = MakoTemplate(template_text)
# Template variable bindings
self._own_template_vars = None
self._base_template_vars = None
self._cached_template_vars = None
self._accumulator = None # CodeGenAccumulator
self._accumulate_requests = None
self._renderer = None # MakoRenderer
self._render_state = CodeNode._RenderState()
self._is_rendering = False
if template_vars:
self.add_template_vars(template_vars)
def __str__(self):
"""
Renders this CodeNode object directly into the renderer's text buffer
and always returns the empty string. This is because it's faster to
accumulate the rendering result directly in a single text buffer than
making a lot of string pieces and concatenating them.
This function is supposed to be used in a Mako template as ${code_node}.
"""
renderer = self.renderer
assert renderer
self.render(renderer)
return ""
def render(self, renderer):
"""
Renders this CodeNode object as a text string and also propagates
updates to related CodeNode objects. As this method has side-effects
not only to this object but also other related objects, the resulting
text may change on each invocation.
"""
last_render_state = self._render_state
self._render_state = CodeNode._RenderState()
self._is_rendering = True
try:
self._render(
renderer=renderer, last_render_state=last_render_state)
finally:
self._is_rendering = False
if self._accumulate_requests:
accumulator = self.accumulator
assert accumulator
for request in self._accumulate_requests:
request(accumulator)
self._accumulate_requests = None
def _render(self, renderer, last_render_state):
"""
Renders this CodeNode object as a text string and also propagates
updates to related CodeNode objects.
Only limited subclasses may override this method.
"""
renderer.render(
caller=self,
template=self._template,
template_vars=self.template_vars)
@property
def outer(self):
"""Returns the outer CodeNode or None iff this is a top-level node."""
return self._outer
def set_outer(self, outer):
assert isinstance(outer, CodeNode)
assert self._outer is None
self._outer = outer
def reset_outer(self, outer):
assert isinstance(outer, CodeNode) or outer is None
self._outer = outer
@property
def prev(self):
"""Returns the previous CodeNode if this is a Sequence or None."""
return self._prev
def set_prev(self, prev):
assert isinstance(prev, CodeNode)
assert self._prev is None
self._prev = prev
def reset_prev(self, prev):
assert isinstance(prev, CodeNode) or prev is None
self._prev = prev
def outer_scope(self):
"""Returns the outer scope closest to this scope or None."""
node = self.outer
while node is not None:
if isinstance(node, SymbolScopeNode):
return node
node = node.outer
return None
def outermost(self):
"""Returns the outermost node, i.e. the node whose |outer| is None."""
node = self
while node.outer is not None:
node = node.outer
return node
def inclusive_outers(self):
"""
Returns a list of outer nodes including this node in order from this
node to the outermost node.
"""
outers = []
node = self
while node is not None:
outers.append(node)
node = node.outer
return outers
@property
def template_vars(self):
"""
Returns the template variable bindings available at this point, i.e.
bound at this node or outer nodes.
CAUTION: This accessor caches the result. This accessor must not be
called during construction of a code node tree.
"""
if self._cached_template_vars is not None:
return self._cached_template_vars
outers = self.inclusive_outers()
bindings = None
for node in outers:
if node.base_template_vars is not None:
bindings = dict(node.base_template_vars)
break
if bindings is None:
bindings = {}
for node in outers:
if node.own_template_vars is None:
continue
for name, value in node.own_template_vars.items():
assert name not in bindings, (
"Duplicated template variable binding: {}".format(name))
bindings[name] = value
self._cached_template_vars = bindings
return self._cached_template_vars
@property
def own_template_vars(self):
"""Returns the template variables bound at this code node."""
return self._own_template_vars
def add_template_var(self, name, value):
if self._own_template_vars is None:
self._own_template_vars = {}
assert isinstance(name, str)
assert name not in self._own_template_vars, (
"Duplicated template variable binding: {}".format(name))
if isinstance(value, CodeNode):
value.set_outer(self)
self._own_template_vars[name] = value
def add_template_vars(self, template_vars):
assert isinstance(template_vars, dict)
for name, value in template_vars.items():
self.add_template_var(name, value)
@property
def base_template_vars(self):
"""
Returns the base template variables if it's set at this code node.
The base template variables are a set of template variables that of
the innermost code node takes effect. It means that the base template
variables are layered and shadowable.
"""
return self._base_template_vars
def set_base_template_vars(self, template_vars):
assert isinstance(template_vars, dict)
for name, value in template_vars.items():
assert isinstance(name, str)
assert not isinstance(value, CodeNode)
assert self._base_template_vars is None
self._base_template_vars = template_vars
@property
def accumulator(self):
# Always consistently use the accumulator of the root node.
if self.outer is None:
return self._accumulator
return self.outermost().accumulator
def set_accumulator(self, accumulator):
assert isinstance(accumulator, CodeGenAccumulator)
assert self._accumulator is None
self._accumulator = accumulator
def accumulate(self, request):
"""
While rendering the code node, |request| will be called with the
argument of self.accumulator.
"""
assert callable(request)
if self._accumulate_requests is None:
self._accumulate_requests = []
self._accumulate_requests.append(request)
@property
def renderer(self):
# Always consistently use the renderer of the root node.
if self.outer is None:
return self._renderer
return self.outermost().renderer
def set_renderer(self, renderer):
assert isinstance(renderer, MakoRenderer)
assert self._renderer is None
self._renderer = renderer
@property
def current_render_state(self):
assert self._is_rendering
return self._render_state
@property
def last_render_state(self):
assert not self._is_rendering
return self._render_state
def on_code_symbol_referenced(self, symbol_node, symbol_scope_chain):
"""Receives a report of use of a symbol node."""
assert isinstance(symbol_node, SymbolNode)
assert isinstance(symbol_scope_chain, tuple)
assert all(
isinstance(scope, SymbolScopeNode) for scope in symbol_scope_chain)
self.current_render_state.symbol_to_scope_chains.setdefault(
symbol_node, set()).add(symbol_scope_chain)
class EmptyNode(CodeNode):
"""Represents the zero-length text and renders nothing."""
def __init__(self):
CodeNode.__init__(self)
def _render(self, renderer, last_render_state):
pass
class LiteralNode(CodeNode):
"""
Represents a literal text, which will be rendered as is without any template
magic applied. The given literal text object will be stringified on each
rendering.
"""
def __init__(self, literal_text):
CodeNode.__init__(self)
self._literal_text = literal_text
def _render(self, renderer, last_render_state):
renderer.push_caller(self)
try:
renderer.render_text(str(self._literal_text))
finally:
renderer.pop_caller()
def TextNode(template_text):
"""
Represents a template text node.
TextNode is designed to be a leaf node of a code node tree. TextNode
represents a template text while LiteralNode represents a literal text.
All template magics will be applied to |template_text|.
This function is pretending to be a CodeNode subclass and instantiates one
of text-ish code node subclass depending on the content of |template_text|.
"""
assert isinstance(template_text, str)
if "$" in template_text or "%" in template_text:
return _TextNode(template_text)
elif template_text:
return LiteralNode(template_text)
else:
return EmptyNode()
class _TextNode(CodeNode):
"""
Represents a template text node.
TextNode is designed to be a leaf node of a code node tree. TextNode
represents a template text while LiteralNode represents a literal text.
All template magics will be applied to |template_text|.
"""
def __init__(self, template_text):
CodeNode.__init__(self, template_text=template_text)
class CompositeNode(CodeNode):
"""
Represents a composition of multiple code nodes. Composition will be done
by using |CodeNode.gensym| so that it won't contaminate a namespace of the
template variables.
"""
def __init__(self, template_format_str, *args, **kwargs):
"""
Args:
template_format_str: A format string that is used to produce the
template text.
args:
kwargs: Arguments to be passed to |format_template|. Not
necessarily be CodeNode, but also anything renderable can be
passed in.
"""
assert isinstance(template_format_str, str)
gensym_args = []
gensym_kwargs = {}
template_vars = {}
for arg in args:
assert isinstance(arg, (CodeNode, int, str))
gensym = CodeNode.gensym()
gensym_args.append("${{{}}}".format(gensym))
template_vars[gensym] = arg
for key, value in kwargs.items():
assert isinstance(key, (int, str))
assert isinstance(value, (CodeNode, int, str))
gensym = CodeNode.gensym()
gensym_kwargs[key] = "${{{}}}".format(gensym)
template_vars[gensym] = value
template_text = format_template(template_format_str, *gensym_args,
**gensym_kwargs)
CodeNode.__init__(
self, template_text=template_text, template_vars=template_vars)
class ListNode(CodeNode):
"""
Represents a list of nodes.
append, extend, insert, and remove work just like built-in list's methods
except that addition and removal of None have no effect.
"""
def __init__(self, code_nodes=None, separator="\n", head="", tail=""):
"""
Args:
code_nodes: A list of CodeNode to be rendered.
separator: A str inserted between code nodes.
head:
tail: The head and tail sections that will be rendered iff the
content list is not empty.
"""
assert isinstance(separator, str)
assert isinstance(head, str)
assert isinstance(tail, str)
CodeNode.__init__(self)
self._element_nodes = []
self._separator = separator
self._head = head
self._tail = tail
self._will_skip_separator = False
if code_nodes is not None:
self.extend(code_nodes)
def __getitem__(self, index):
return self._element_nodes[index]
def __iter__(self):
return iter(self._element_nodes)
def __len__(self):
return len(self._element_nodes)
def _render(self, renderer, last_render_state):
renderer.push_caller(self)
try:
if self._element_nodes:
renderer.render_text(self._head)
self._will_skip_separator = True
for node in self._element_nodes:
if self._will_skip_separator:
self._will_skip_separator = False
else:
renderer.render_text(self._separator)
node.render(renderer)
if self._element_nodes:
renderer.render_text(self._tail)
finally:
renderer.pop_caller()
def skip_separator(self):
self._will_skip_separator = True
def append(self, node):
if node is None:
return
assert isinstance(node, CodeNode)
assert node.outer is None and node.prev is None
if len(self._element_nodes) == 0:
self._element_nodes.append(node)
else:
node.set_prev(self._element_nodes[-1])
self._element_nodes.append(node)
node.set_outer(self)
def extend(self, nodes):
for node in nodes:
self.append(node)
def insert(self, index, node):
if node is None:
return
assert isinstance(index, int)
assert isinstance(node, CodeNode)
assert node.outer is None and node.prev is None
if index < 0:
index += len(self._element_nodes)
index = max(0, min(index, len(self._element_nodes)))
if (len(self._element_nodes) == 0
or index == len(self._element_nodes)):
return self.append(node)
next_node = self._element_nodes[index]
if next_node.prev:
node.set_prev(next_node.prev)
next_node.reset_prev(node)
node.set_outer(self)
self._element_nodes.insert(index, node)
def remove(self, node):
if node is None:
return
assert node in self
index = self._element_nodes.index(node)
if index + 1 < len(self._element_nodes):
next_node = self._element_nodes[index + 1]
prev_node = self._element_nodes[index - 1] if index != 0 else None
next_node.reset_prev(prev_node)
del self._element_nodes[index]
node.reset_outer(None)
node.reset_prev(None)
class SequenceNode(ListNode):
"""
Represents a sequence of generated code without introducing any new scope,
and provides the points where SymbolDefinitionNodes can be inserted.
"""
def __init__(self, code_nodes=None, separator="\n", head="", tail=""):
ListNode.__init__(
self,
code_nodes=code_nodes,
separator=separator,
head=head,
tail=tail)
self._to_be_removed = []
def _render(self, renderer, last_render_state):
if self._to_be_removed:
for node in self._to_be_removed:
self.remove(node)
self._to_be_removed = []
super(SequenceNode, self)._render(
renderer=renderer, last_render_state=last_render_state)
def schedule_to_remove(self, node):
"""Schedules a task to remove the |node| in the next rendering cycle."""
assert node in self
self._to_be_removed.append(node)
class SymbolScopeNode(SequenceNode):
"""
Represents a scope of generated code.
If SymbolNodes are rendered inside this node, this node will attempt to
insert corresponding SymbolDefinitionNodes appropriately.
"""
def __init__(self, code_nodes=None, separator="\n", head="", tail=""):
SequenceNode.__init__(
self,
code_nodes=code_nodes,
separator=separator,
head=head,
tail=tail)
self._likeliness = Likeliness.ALWAYS
self._registered_code_symbols = set()
self._referenced_code_symbols = set()
def _render(self, renderer, last_render_state):
for symbol_node in last_render_state.undefined_code_symbols:
assert self.is_code_symbol_registered(symbol_node)
self._referenced_code_symbols.add(symbol_node)
if not self.is_code_symbol_defined(symbol_node):
self._insert_symbol_definition(symbol_node, last_render_state)
super(SymbolScopeNode, self)._render(
renderer=renderer, last_render_state=last_render_state)
if self.current_render_state.undefined_code_symbols:
renderer.invalidate_rendering_result()
def _insert_symbol_definition(self, symbol_node, last_render_state):
DIRECT_USES = "u"
DIRECT_CHILD_SCOPES = "s"
ANALYSIS_RESULT_KEYS = (
# Number of direct uses in this scope
DIRECT_USES,
# Number of direct child scopes
DIRECT_CHILD_SCOPES,
# Number of direct child scopes per likeliness
Likeliness.ALWAYS,
Likeliness.LIKELY,
Likeliness.UNLIKELY,
)
def analyze_symbol_usage(render_state):
counts = dict.fromkeys(ANALYSIS_RESULT_KEYS, 0)
scope_chains = render_state.symbol_to_scope_chains.get(symbol_node)
if not scope_chains:
return counts
self_index = next(iter(scope_chains)).index(self)
scope_chains = map(
lambda scope_chain: scope_chain[self_index + 1:], scope_chains)
scope_to_likeliness = {}
for scope_chain in scope_chains:
if not scope_chain:
counts[DIRECT_USES] += 1
else:
likeliness = min(
map(lambda scope: scope.likeliness, scope_chain))
scope = scope_chain[0]
scope_to_likeliness[scope] = max(
likeliness, scope_to_likeliness.get(scope, likeliness))
for likeliness in scope_to_likeliness.values():
counts[DIRECT_CHILD_SCOPES] += 1
counts[likeliness] += 1
return counts
def likeliness_at(render_state):
counts = analyze_symbol_usage(render_state)
if counts[DIRECT_USES] >= 1:
return Likeliness.ALWAYS
for likeliness in (Likeliness.ALWAYS, Likeliness.LIKELY,
Likeliness.UNLIKELY):
if counts[likeliness] > 0:
return likeliness
return Likeliness.NEVER
def insert_before_threshold(sequence_node, threshold):
for index, node in enumerate(sequence_node):
if (isinstance(node, SequenceNode)
and not isinstance(node, SymbolScopeNode)):
did_insert = insert_before_threshold(node, threshold)
if did_insert:
return True
elif likeliness_at(node.last_render_state) >= threshold:
sequence_node.insert(index,
symbol_node.create_definition_node())
return True
return False
counts = analyze_symbol_usage(last_render_state)
if counts[DIRECT_USES] >= 1:
did_insert = insert_before_threshold(self, Likeliness.UNLIKELY)
assert did_insert
elif counts[DIRECT_CHILD_SCOPES] == 1:
pass # Let the child SymbolScopeNode do the work.
elif counts[Likeliness.ALWAYS] + counts[Likeliness.LIKELY] >= 2:
did_insert = insert_before_threshold(self, Likeliness.LIKELY)
assert did_insert
else:
pass # Let descendant SymbolScopeNodes do the work.
def is_code_symbol_registered(self, symbol_node):
"""
Returns True if |symbol_node| is registered and available for use within
this scope.
"""
assert isinstance(symbol_node, SymbolNode)
if symbol_node in self._registered_code_symbols:
return True
outer = self.outer_scope()
if outer is None:
return False
return outer.is_code_symbol_registered(symbol_node)
def register_code_symbol(self, symbol_node):
"""Registers a SymbolNode and makes it available in this scope."""
assert isinstance(symbol_node, SymbolNode)
self.add_template_var(symbol_node.name, symbol_node)
self._registered_code_symbols.add(symbol_node)
def register_code_symbols(self, symbol_nodes):
for symbol_node in symbol_nodes:
self.register_code_symbol(symbol_node)
@property
def referenced_code_symbols(self):
"""Returns SymbolNodes that have once been referenced in this scope."""
return frozenset(self._referenced_code_symbols)
@property
def likeliness(self):
"""
Returns how much likely that this SymbolScopeNode will be executed in
runtime. The likeliness is relative to the closest outer
SymbolScopeNode.
"""
return self._likeliness
def set_likeliness(self, likeliness):
assert isinstance(likeliness, Likeliness.Level)
self._likeliness = likeliness
def is_code_symbol_defined(self, symbol_node):
"""
Returns True if |symbol_node| is defined in this scope by the moment
when the method is called.
"""
assert isinstance(symbol_node, SymbolNode)
if symbol_node in self.current_render_state.defined_code_symbols:
return True
outer = self.outer_scope()
if outer is None:
return False
return outer.is_code_symbol_defined(symbol_node)
def on_code_symbol_defined(self, symbol_node):
"""Receives a report that a symbol gets defined."""
assert isinstance(symbol_node, SymbolNode)
self.current_render_state.defined_code_symbols.append(symbol_node)
def on_undefined_code_symbol_found(self, symbol_node):
"""Receives a report of use of an undefined symbol node."""
assert isinstance(symbol_node, SymbolNode)
state = self.current_render_state
if symbol_node not in state.undefined_code_symbols:
state.undefined_code_symbols.append(symbol_node)
class SymbolNode(CodeNode):
"""
Represents a code symbol such as a local variable of generated code.
Using a SymbolNode combined with SymbolScopeNode, SymbolDefinitionNode(s)
will be automatically inserted iff this symbol is referenced.
"""
def __init__(self, name, template_text=None, definition_constructor=None):
"""
Args:
name: The name of this code symbol.
template_text: Template text to be used to define the code symbol.
definition_constructor: A callable that creates and returns a new
definition node. This SymbolNode will be passed as the
argument.
Either of |template_text| or |definition_constructor| must be
given.
"""
assert isinstance(name, str) and name
CodeNode.__init__(self)
self._name = name
if template_text is not None:
assert isinstance(template_text, str)
assert definition_constructor is None
def constructor(symbol_node):
return SymbolDefinitionNode(
symbol_node=symbol_node,
code_nodes=[TextNode(template_text)])
self._definition_constructor = constructor
else:
assert template_text is None
assert callable(definition_constructor)
self._definition_constructor = definition_constructor
def _render(self, renderer, last_render_state):
self._request_symbol_definition(renderer)
renderer.render_text(self.name)
def request_symbol_definition(self):
self._request_symbol_definition(self.renderer)
def _request_symbol_definition(self, renderer):
symbol_scope_chain = tuple(
filter(lambda node: isinstance(node, SymbolScopeNode),
renderer.callers_from_first_to_last))
for caller in renderer.callers_from_last_to_first:
caller.on_code_symbol_referenced(self, symbol_scope_chain)
if caller is self.outer:
break
if not symbol_scope_chain[-1].is_code_symbol_defined(self):
for scope in reversed(symbol_scope_chain):
scope.on_undefined_code_symbol_found(self)
if scope is self.outer:
break
@property
def name(self):
return self._name
def create_definition_node(self):
"""Creates a new definition node."""
node = self._definition_constructor(self)
assert isinstance(node, SymbolDefinitionNode)
assert node.target_symbol is self
return node
class SymbolDefinitionNode(SequenceNode):
"""
Represents a definition of a code symbol.
It's allowed to define the same code symbol multiple times, and most
upstream definition(s) are effective.
"""
def __init__(self, symbol_node, code_nodes=None):
assert isinstance(symbol_node, SymbolNode)
SequenceNode.__init__(self, code_nodes)
self._symbol_node = symbol_node
def _render(self, renderer, last_render_state):
scope = self.outer_scope()
if scope.is_code_symbol_defined(self._symbol_node):
assert isinstance(self.outer, SequenceNode)
self.outer.schedule_to_remove(self)
self.outer.skip_separator()
return
scope.on_code_symbol_defined(self._symbol_node)
super(SymbolDefinitionNode, self)._render(
renderer=renderer, last_render_state=last_render_state)
@property
def target_symbol(self):
return self._symbol_node
class WeakDependencyNode(CodeNode):
"""
Represents weak dependencies to SymbolNodes, where "weak" means that this
code node itself does not require any SymbolDefinitionNode of the target
symbols, however, once any other code node within the closest outer scope
requires a symbol definition, then this code node also requires the symbol
definition, too. This makes the symbol definition node be placed prior to
this node iff such a definition is added.
In short, you can control the position of SymbolDefinitionNode with using
WeakDependencyNode without requiring the symbol definition node.
"""
def __init__(self, dep_syms):
"""
Args:
dep_syms: A list of code symbol names on which this code node
weakly depends.
"""
assert isinstance(dep_syms, (list, tuple))
assert all(isinstance(sym, str) for sym in dep_syms)
CodeNode.__init__(self)
# Registered weak dependencies to symbols.
self._weak_dep_sym_names = list(dep_syms)
# Symbol names that have not yet turned into strong references.
self._weak_dep_sym_queue = list(self._weak_dep_sym_names)
# SymbolNodes that already turned into strong references.
self._strong_dep_symbol_nodes = []
def _render(self, renderer, last_render_state):
renderer.push_caller(self)
try:
self._render_internal()
finally:
renderer.pop_caller()
def _render_internal(self):
for symbol_node in self._strong_dep_symbol_nodes:
symbol_node.request_symbol_definition()
if not self._weak_dep_sym_queue:
return
referenced_code_symbols = self.outer_scope().referenced_code_symbols
unprocessed_sym_names = []
for weak_sym_name in self._weak_dep_sym_queue:
for symbol_node in referenced_code_symbols:
if symbol_node.name == weak_sym_name:
symbol_node.request_symbol_definition()
self._strong_dep_symbol_nodes.append(symbol_node)
break
else:
unprocessed_sym_names.append(weak_sym_name)
self._weak_dep_sym_queue = unprocessed_sym_names