blob: 1ddcf6745facd429108e88bf69d6963aaea12a9d [file] [log] [blame]
/*
* MTD split for Broadcom Whole Flash Image
*
* Copyright (C) 2020 Álvaro Fernández Rojas <noltari@gmail.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
*/
#define je16_to_cpu(x) ((x).v16)
#define je32_to_cpu(x) ((x).v32)
#include <linux/crc32.h>
#include <linux/init.h>
#include <linux/jffs2.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/byteorder/generic.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include "mtdsplit.h"
#define char_to_num(c) ((c >= '0' && c <= '9') ? (c - '0') : (0))
#define BCM_WFI_PARTS 3
#define BCM_WFI_SPLIT_PARTS 2
#define CFERAM_NAME "cferam"
#define CFERAM_NAME_LEN (sizeof(CFERAM_NAME) - 1)
#define KERNEL_NAME "vmlinux.lz"
#define KERNEL_NAME_LEN (sizeof(KERNEL_NAME) - 1)
#define OPENWRT_NAME "1-openwrt"
#define OPENWRT_NAME_LEN (sizeof(OPENWRT_NAME) - 1)
#define UBI_MAGIC 0x55424923
#define CFE_MAGIC_PFX "cferam."
#define CFE_MAGIC_PFX_LEN (sizeof(CFE_MAGIC_PFX) - 1)
#define CFE_MAGIC "cferam.000"
#define CFE_MAGIC_LEN (sizeof(CFE_MAGIC) - 1)
#define SERCOMM_MAGIC_PFX "eRcOmM."
#define SERCOMM_MAGIC_PFX_LEN (sizeof(SERCOMM_MAGIC_PFX) - 1)
#define SERCOMM_MAGIC "eRcOmM.000"
#define SERCOMM_MAGIC_LEN (sizeof(SERCOMM_MAGIC) - 1)
#define PART_CFERAM "cferam"
#define PART_FIRMWARE "firmware"
#define PART_IMAGE_1 "img1"
#define PART_IMAGE_2 "img2"
static u32 jffs2_dirent_crc(struct jffs2_raw_dirent *node)
{
return crc32(0, node, sizeof(struct jffs2_raw_dirent) - 8);
}
static bool jffs2_dirent_valid(struct jffs2_raw_dirent *node)
{
return ((je16_to_cpu(node->magic) == JFFS2_MAGIC_BITMASK) &&
(je16_to_cpu(node->nodetype) == JFFS2_NODETYPE_DIRENT) &&
je32_to_cpu(node->ino) &&
je32_to_cpu(node->node_crc) == jffs2_dirent_crc(node));
}
static int jffs2_find_file(struct mtd_info *mtd, uint8_t *buf,
const char *name, size_t name_len,
loff_t *offs, loff_t size,
char **out_name, size_t *out_name_len)
{
const loff_t end = *offs + size;
struct jffs2_raw_dirent *node;
bool valid = false;
size_t retlen;
uint16_t magic;
int rc;
for (; *offs < end; *offs += mtd->erasesize) {
unsigned int block_offs = 0;
/* Skip CFE erased blocks */
rc = mtd_read(mtd, *offs, sizeof(magic), &retlen,
(void *) &magic);
if (rc || retlen != sizeof(magic)) {
continue;
}
/* Skip blocks not starting with JFFS2 magic */
if (magic != JFFS2_MAGIC_BITMASK)
continue;
/* Read full block */
rc = mtd_read(mtd, *offs, mtd->erasesize, &retlen,
(void *) buf);
if (rc)
return rc;
if (retlen != mtd->erasesize)
return -EINVAL;
while (block_offs < mtd->erasesize) {
node = (struct jffs2_raw_dirent *) &buf[block_offs];
if (!jffs2_dirent_valid(node)) {
block_offs += 4;
continue;
}
if (!memcmp(node->name, OPENWRT_NAME,
OPENWRT_NAME_LEN)) {
valid = true;
} else if (!memcmp(node->name, name, name_len)) {
if (!valid)
return -EINVAL;
if (out_name)
*out_name = kstrndup(node->name,
node->nsize,
GFP_KERNEL);
if (out_name_len)
*out_name_len = node->nsize;
return 0;
}
block_offs += je32_to_cpu(node->totlen);
block_offs = (block_offs + 0x3) & ~0x3;
}
}
return -ENOENT;
}
static int ubifs_find(struct mtd_info *mtd, loff_t *offs, loff_t size)
{
const loff_t end = *offs + size;
uint32_t magic;
size_t retlen;
int rc;
for (; *offs < end; *offs += mtd->erasesize) {
rc = mtd_read(mtd, *offs, sizeof(magic), &retlen,
(unsigned char *) &magic);
if (rc || retlen != sizeof(magic))
continue;
if (be32_to_cpu(magic) == UBI_MAGIC)
return 0;
}
return -ENOENT;
}
static int parse_bcm_wfi(struct mtd_info *master,
const struct mtd_partition **pparts,
uint8_t *buf, loff_t off, loff_t size, bool cfe_part)
{
struct mtd_partition *parts;
loff_t cfe_off, kernel_off, rootfs_off;
unsigned int num_parts = BCM_WFI_PARTS, cur_part = 0;
int ret;
if (cfe_part) {
num_parts++;
cfe_off = off;
ret = jffs2_find_file(master, buf, CFERAM_NAME,
CFERAM_NAME_LEN, &cfe_off,
size - (cfe_off - off), NULL, NULL);
if (ret)
return ret;
kernel_off = cfe_off + master->erasesize;
} else {
kernel_off = off;
}
ret = jffs2_find_file(master, buf, KERNEL_NAME, KERNEL_NAME_LEN,
&kernel_off, size - (kernel_off - off),
NULL, NULL);
if (ret)
return ret;
rootfs_off = kernel_off + master->erasesize;
ret = ubifs_find(master, &rootfs_off, size - (rootfs_off - off));
if (ret)
return ret;
parts = kzalloc(num_parts * sizeof(*parts), GFP_KERNEL);
if (!parts)
return -ENOMEM;
if (cfe_part) {
parts[cur_part].name = PART_CFERAM;
parts[cur_part].mask_flags = MTD_WRITEABLE;
parts[cur_part].offset = cfe_off;
parts[cur_part].size = kernel_off - cfe_off;
cur_part++;
}
parts[cur_part].name = PART_FIRMWARE;
parts[cur_part].offset = kernel_off;
parts[cur_part].size = size - (kernel_off - off);
cur_part++;
parts[cur_part].name = KERNEL_PART_NAME;
parts[cur_part].offset = kernel_off;
parts[cur_part].size = rootfs_off - kernel_off;
cur_part++;
parts[cur_part].name = UBI_PART_NAME;
parts[cur_part].offset = rootfs_off;
parts[cur_part].size = size - (rootfs_off - off);
cur_part++;
*pparts = parts;
return num_parts;
}
static int mtdsplit_parse_bcm_wfi(struct mtd_info *master,
const struct mtd_partition **pparts,
struct mtd_part_parser_data *data)
{
struct device_node *mtd_node;
bool cfe_part = true;
uint8_t *buf;
int ret;
mtd_node = mtd_get_of_node(master);
if (!mtd_node)
return -EINVAL;
buf = kzalloc(master->erasesize, GFP_KERNEL);
if (!buf)
return -ENOMEM;
if (of_property_read_bool(mtd_node, "brcm,no-cferam"))
cfe_part = false;
ret = parse_bcm_wfi(master, pparts, buf, 0, master->size, cfe_part);
kfree(buf);
return ret;
}
static const struct of_device_id mtdsplit_bcm_wfi_of_match[] = {
{ .compatible = "brcm,wfi" },
{ },
};
static struct mtd_part_parser mtdsplit_bcm_wfi_parser = {
.owner = THIS_MODULE,
.name = "bcm-wfi-fw",
.of_match_table = mtdsplit_bcm_wfi_of_match,
.parse_fn = mtdsplit_parse_bcm_wfi,
.type = MTD_PARSER_TYPE_FIRMWARE,
};
static int cferam_bootflag_value(const char *name, size_t name_len)
{
int rc = -ENOENT;
if (name &&
(name_len >= CFE_MAGIC_LEN) &&
!memcmp(name, CFE_MAGIC_PFX, CFE_MAGIC_PFX_LEN)) {
rc = char_to_num(name[CFE_MAGIC_PFX_LEN + 0]) * 100;
rc += char_to_num(name[CFE_MAGIC_PFX_LEN + 1]) * 10;
rc += char_to_num(name[CFE_MAGIC_PFX_LEN + 2]) * 1;
}
return rc;
}
static int mtdsplit_parse_bcm_wfi_split(struct mtd_info *master,
const struct mtd_partition **pparts,
struct mtd_part_parser_data *data)
{
struct mtd_partition *parts;
loff_t cfe_off;
loff_t img1_off = 0;
loff_t img2_off = master->size / 2;
loff_t img1_size = (img2_off - img1_off);
loff_t img2_size = (master->size - img2_off);
loff_t active_off, inactive_off;
loff_t active_size, inactive_size;
const char *inactive_name;
uint8_t *buf;
char *cfe1_name = NULL, *cfe2_name = NULL;
size_t cfe1_size = 0, cfe2_size = 0;
int ret;
int bf1, bf2;
buf = kzalloc(master->erasesize, GFP_KERNEL);
if (!buf)
return -ENOMEM;
cfe_off = img1_off;
ret = jffs2_find_file(master, buf, CFERAM_NAME, CFERAM_NAME_LEN,
&cfe_off, img1_size, &cfe1_name, &cfe1_size);
cfe_off = img2_off;
ret = jffs2_find_file(master, buf, CFERAM_NAME, CFERAM_NAME_LEN,
&cfe_off, img2_size, &cfe2_name, &cfe2_size);
bf1 = cferam_bootflag_value(cfe1_name, cfe1_size);
if (bf1 >= 0)
printk("cferam: bootflag1=%d\n", bf1);
bf2 = cferam_bootflag_value(cfe2_name, cfe2_size);
if (bf2 >= 0)
printk("cferam: bootflag2=%d\n", bf2);
kfree(cfe1_name);
kfree(cfe2_name);
if (bf1 >= bf2) {
active_off = img1_off;
active_size = img1_size;
inactive_off = img2_off;
inactive_size = img2_size;
inactive_name = PART_IMAGE_2;
} else {
active_off = img2_off;
active_size = img2_size;
inactive_off = img1_off;
inactive_size = img1_size;
inactive_name = PART_IMAGE_1;
}
ret = parse_bcm_wfi(master, pparts, buf, active_off, active_size, true);
kfree(buf);
if (ret > 0) {
parts = kzalloc((ret + 1) * sizeof(*parts), GFP_KERNEL);
if (!parts)
return -ENOMEM;
memcpy(parts, *pparts, ret * sizeof(*parts));
kfree(*pparts);
parts[ret].name = inactive_name;
parts[ret].offset = inactive_off;
parts[ret].size = inactive_size;
ret++;
*pparts = parts;
} else {
parts = kzalloc(BCM_WFI_SPLIT_PARTS * sizeof(*parts), GFP_KERNEL);
parts[0].name = PART_IMAGE_1;
parts[0].offset = img1_off;
parts[0].size = img1_size;
parts[1].name = PART_IMAGE_2;
parts[1].offset = img2_off;
parts[1].size = img2_size;
*pparts = parts;
}
return ret;
}
static const struct of_device_id mtdsplit_bcm_wfi_split_of_match[] = {
{ .compatible = "brcm,wfi-split" },
{ },
};
static struct mtd_part_parser mtdsplit_bcm_wfi_split_parser = {
.owner = THIS_MODULE,
.name = "bcm-wfi-split-fw",
.of_match_table = mtdsplit_bcm_wfi_split_of_match,
.parse_fn = mtdsplit_parse_bcm_wfi_split,
.type = MTD_PARSER_TYPE_FIRMWARE,
};
static int sercomm_bootflag_value(struct mtd_info *mtd, uint8_t *buf)
{
size_t retlen;
loff_t offs;
int rc;
for (offs = 0; offs < mtd->size; offs += mtd->erasesize) {
rc = mtd_read(mtd, offs, SERCOMM_MAGIC_LEN, &retlen, buf);
if (rc || retlen != SERCOMM_MAGIC_LEN)
continue;
if (memcmp(buf, SERCOMM_MAGIC_PFX, SERCOMM_MAGIC_PFX_LEN))
continue;
rc = char_to_num(buf[SERCOMM_MAGIC_PFX_LEN + 0]) * 100;
rc += char_to_num(buf[SERCOMM_MAGIC_PFX_LEN + 1]) * 10;
rc += char_to_num(buf[SERCOMM_MAGIC_PFX_LEN + 2]) * 1;
return rc;
}
return -ENOENT;
}
static int mtdsplit_parse_ser_wfi(struct mtd_info *master,
const struct mtd_partition **pparts,
struct mtd_part_parser_data *data)
{
struct mtd_partition *parts;
struct mtd_info *mtd_bf1, *mtd_bf2;
loff_t img1_off = 0;
loff_t img2_off = master->size / 2;
loff_t img1_size = (img2_off - img1_off);
loff_t img2_size = (master->size - img2_off);
loff_t active_off, inactive_off;
loff_t active_size, inactive_size;
const char *inactive_name;
uint8_t *buf;
int bf1, bf2;
int ret;
mtd_bf1 = get_mtd_device_nm("bootflag1");
if (IS_ERR(mtd_bf1))
return -ENOENT;
mtd_bf2 = get_mtd_device_nm("bootflag2");
if (IS_ERR(mtd_bf2))
return -ENOENT;
buf = kzalloc(master->erasesize, GFP_KERNEL);
if (!buf)
return -ENOMEM;
bf1 = sercomm_bootflag_value(mtd_bf1, buf);
if (bf1 >= 0)
printk("sercomm: bootflag1=%d\n", bf1);
bf2 = sercomm_bootflag_value(mtd_bf2, buf);
if (bf2 >= 0)
printk("sercomm: bootflag2=%d\n", bf2);
if (bf1 == bf2 && bf2 >= 0) {
struct erase_info bf_erase;
bf2 = -ENOENT;
bf_erase.addr = 0;
bf_erase.len = mtd_bf2->size;
mtd_erase(mtd_bf2, &bf_erase);
}
if (bf1 >= bf2) {
active_off = img1_off;
active_size = img1_size;
inactive_off = img2_off;
inactive_size = img2_size;
inactive_name = PART_IMAGE_2;
} else {
active_off = img2_off;
active_size = img2_size;
inactive_off = img1_off;
inactive_size = img1_size;
inactive_name = PART_IMAGE_1;
}
ret = parse_bcm_wfi(master, pparts, buf, active_off, active_size, false);
kfree(buf);
if (ret > 0) {
parts = kzalloc((ret + 1) * sizeof(*parts), GFP_KERNEL);
if (!parts)
return -ENOMEM;
memcpy(parts, *pparts, ret * sizeof(*parts));
kfree(*pparts);
parts[ret].name = inactive_name;
parts[ret].offset = inactive_off;
parts[ret].size = inactive_size;
ret++;
*pparts = parts;
} else {
parts = kzalloc(BCM_WFI_SPLIT_PARTS * sizeof(*parts), GFP_KERNEL);
parts[0].name = PART_IMAGE_1;
parts[0].offset = img1_off;
parts[0].size = img1_size;
parts[1].name = PART_IMAGE_2;
parts[1].offset = img2_off;
parts[1].size = img2_size;
*pparts = parts;
}
return ret;
}
static const struct of_device_id mtdsplit_ser_wfi_of_match[] = {
{ .compatible = "sercomm,wfi" },
{ },
};
static struct mtd_part_parser mtdsplit_ser_wfi_parser = {
.owner = THIS_MODULE,
.name = "ser-wfi-fw",
.of_match_table = mtdsplit_ser_wfi_of_match,
.parse_fn = mtdsplit_parse_ser_wfi,
.type = MTD_PARSER_TYPE_FIRMWARE,
};
static int __init mtdsplit_bcm_wfi_init(void)
{
register_mtd_parser(&mtdsplit_bcm_wfi_parser);
register_mtd_parser(&mtdsplit_bcm_wfi_split_parser);
register_mtd_parser(&mtdsplit_ser_wfi_parser);
return 0;
}
module_init(mtdsplit_bcm_wfi_init);