blob: f9bba0f3ba15ecc3c033a046728236be3202f970 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Parser for MikroTik RouterBoot partitions.
*
* Copyright (C) 2020 Thibaut VARÈNE <hacks+kernel@slashdirt.org>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
* This parser builds from the "fixed-partitions" one (see ofpart.c), but it can
* handle dynamic partitions as found on routerboot devices.
*
* DTS nodes are defined as follows:
* For fixed partitions:
* node-name@unit-address {
* reg = <prop-encoded-array>;
* label = <string>;
* read-only;
* lock;
* };
*
* reg property is mandatory; other properties are optional.
* reg format is <address length>. length can be 0 if the next partition is
* another fixed partition or a "well-known" partition as defined below: in that
* case the partition will extend up to the next one.
*
* For dynamic partitions:
* node-name {
* size = <prop-encoded-array>;
* label = <string>;
* read-only;
* lock;
* };
*
* size property is normally mandatory. It can only be omitted (or set to 0) if:
* - the partition is a "well-known" one (as defined below), in which case
* the partition size will be automatically adjusted; or
* - the next partition is a fixed one or a "well-known" one, in which case
* the current partition will extend up to the next one.
* Other properties are optional.
* size format is <length>.
* By default dynamic partitions are appended after the preceding one, except
* for "well-known" ones which are automatically located on flash.
*
* Well-known partitions (matched via label or node-name):
* - "hard_config"
* - "soft_config"
* - "dtb_config"
*
* Note: this parser will happily register 0-sized partitions if misused.
*
* This parser requires the DTS to list partitions in ascending order as
* expected on the MTD device.
*
* Since only the "hard_config" and "soft_config" partitions are used in OpenWRT,
* a minimal working DTS could define only these two partitions dynamically (in
* the right order, usually hard_config then soft_config).
*
* Note: some mips RB devices encode the hard_config offset and length in two
* consecutive u32 located at offset 0x14 (for ramips) or 0x24 (for ath79) on
* the SPI NOR flash. Unfortunately this seems inconsistent across machines and
* does not apply to e.g. ipq-based ones, so we ignore that information.
*
* Note: To find well-known partitions, this parser will go through the entire
* top mtd partition parsed, _before_ the DTS nodes are processed. This works
* well in the current state of affairs, and is a simpler implementation than
* searching for known partitions in the "holes" left between fixed-partition,
* _after_ processing DTS nodes.
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/of.h>
#include <linux/of_fdt.h>
#include <linux/libfdt_env.h>
#include <linux/string.h>
#define RB_MAGIC_HARD (('H') | ('a' << 8) | ('r' << 16) | ('d' << 24))
#define RB_MAGIC_SOFT (('S') | ('o' << 8) | ('f' << 16) | ('t' << 24))
#define RB_BLOCK_SIZE 0x1000
struct routerboot_dynpart {
const char * const name;
const u32 magic;
int (* const size_fixup)(struct mtd_info *, struct routerboot_dynpart *);
size_t offset;
size_t size;
bool found;
};
static int routerboot_dtbsfixup(struct mtd_info *, struct routerboot_dynpart *);
static struct routerboot_dynpart rb_dynparts[] = {
{
.name = "hard_config",
.magic = RB_MAGIC_HARD, // stored in CPU-endianness on flash
.size_fixup = NULL,
.offset = 0x0,
.size = RB_BLOCK_SIZE,
.found = false,
}, {
.name = "soft_config",
.magic = RB_MAGIC_SOFT, // stored in CPU-endianness on flash
.size_fixup = NULL,
.offset = 0x0,
.size = RB_BLOCK_SIZE,
.found = false,
}, {
.name = "dtb_config",
.magic = fdt32_to_cpu(OF_DT_HEADER), // stored BE on flash
.size_fixup = routerboot_dtbsfixup,
.offset = 0x0,
.size = 0x0,
.found = false,
}
};
static int routerboot_dtbsfixup(struct mtd_info *master, struct routerboot_dynpart *rbdpart)
{
int err;
size_t bytes_read, psize;
struct {
fdt32_t magic;
fdt32_t totalsize;
fdt32_t off_dt_struct;
fdt32_t off_dt_strings;
fdt32_t off_mem_rsvmap;
fdt32_t version;
fdt32_t last_comp_version;
fdt32_t boot_cpuid_phys;
fdt32_t size_dt_strings;
fdt32_t size_dt_struct;
} fdt_header;
err = mtd_read(master, rbdpart->offset, sizeof(fdt_header),
&bytes_read, (u8 *)&fdt_header);
if (err)
return err;
if (bytes_read != sizeof(fdt_header))
return -EIO;
psize = fdt32_to_cpu(fdt_header.totalsize);
if (!psize)
return -EINVAL;
rbdpart->size = psize;
return 0;
}
static void routerboot_find_dynparts(struct mtd_info *master)
{
size_t bytes_read, offset;
bool allfound;
int err, i;
u32 buf;
/*
* Dynamic RouterBoot partitions offsets are aligned to RB_BLOCK_SIZE:
* read the whole partition at RB_BLOCK_SIZE intervals to find sigs.
* Skip partition content when possible.
*/
offset = 0;
while (offset < master->size) {
err = mtd_read(master, offset, sizeof(buf), &bytes_read, (u8 *)&buf);
if (err) {
pr_err("%s: mtd_read error while parsing (offset: 0x%X): %d\n",
master->name, offset, err);
continue;
}
allfound = true;
for (i = 0; i < ARRAY_SIZE(rb_dynparts); i++) {
if (rb_dynparts[i].found)
continue;
allfound = false;
if (rb_dynparts[i].magic == buf) {
rb_dynparts[i].offset = offset;
if (rb_dynparts[i].size_fixup) {
err = rb_dynparts[i].size_fixup(master, &rb_dynparts[i]);
if (err) {
pr_err("%s: size fixup error while parsing \"%s\": %d\n",
master->name, rb_dynparts[i].name, err);
continue;
}
}
rb_dynparts[i].found = true;
/*
* move offset to skip the whole partition on
* next iteration if size > RB_BLOCK_SIZE.
*/
if (rb_dynparts[i].size > RB_BLOCK_SIZE)
offset += ALIGN_DOWN((rb_dynparts[i].size - RB_BLOCK_SIZE), RB_BLOCK_SIZE);
break;
}
}
offset += RB_BLOCK_SIZE;
if (allfound)
break;
}
}
static int routerboot_partitions_parse(struct mtd_info *master,
const struct mtd_partition **pparts,
struct mtd_part_parser_data *data)
{
struct device_node *rbpart_node, *pp;
struct mtd_partition *parts;
const char *partname;
size_t master_ofs;
int np;
/* Pull of_node from the master device node */
rbpart_node = mtd_get_of_node(master);
if (!rbpart_node)
return 0;
/* First count the subnodes */
np = 0;
for_each_child_of_node(rbpart_node, pp)
np++;
if (!np)
return 0;
parts = kcalloc(np, sizeof(*parts), GFP_KERNEL);
if (!parts)
return -ENOMEM;
/* Preemptively look for known parts in flash */
routerboot_find_dynparts(master);
np = 0;
master_ofs = 0;
for_each_child_of_node(rbpart_node, pp) {
const __be32 *reg, *sz;
size_t offset, size;
int i, len, a_cells, s_cells;
partname = of_get_property(pp, "label", &len);
/* Allow deprecated use of "name" instead of "label" */
if (!partname)
partname = of_get_property(pp, "name", &len);
/* Fallback to node name per spec if all else fails: partname is always set */
if (!partname)
partname = pp->name;
parts[np].name = partname;
reg = of_get_property(pp, "reg", &len);
if (reg) {
/* Fixed partition */
a_cells = of_n_addr_cells(pp);
s_cells = of_n_size_cells(pp);
if ((len / 4) != (a_cells + s_cells)) {
pr_debug("%s: routerboot partition %pOF (%pOF) error parsing reg property.\n",
master->name, pp, rbpart_node);
goto rbpart_fail;
}
offset = of_read_number(reg, a_cells);
size = of_read_number(reg + a_cells, s_cells);
} else {
/* Dynamic partition */
/* Default: part starts at current offset, 0 size */
offset = master_ofs;
size = 0;
/* Check if well-known partition */
for (i = 0; i < ARRAY_SIZE(rb_dynparts); i++) {
if (!strcmp(partname, rb_dynparts[i].name) && rb_dynparts[i].found) {
offset = rb_dynparts[i].offset;
size = rb_dynparts[i].size;
break;
}
}
/* Standalone 'size' property? Override size */
sz = of_get_property(pp, "size", &len);
if (sz) {
s_cells = of_n_size_cells(pp);
if ((len / 4) != s_cells) {
pr_debug("%s: routerboot partition %pOF (%pOF) error parsing size property.\n",
master->name, pp, rbpart_node);
goto rbpart_fail;
}
size = of_read_number(sz, s_cells);
}
}
if (np > 0) {
/* Minor sanity check for overlaps */
if (offset < (parts[np-1].offset + parts[np-1].size)) {
pr_err("%s: routerboot partition %pOF (%pOF) \"%s\" overlaps with previous partition \"%s\".\n",
master->name, pp, rbpart_node,
partname, parts[np-1].name);
goto rbpart_fail;
}
/* Fixup end of previous partition if necessary */
if (!parts[np-1].size)
parts[np-1].size = (offset - parts[np-1].offset);
}
if ((offset + size) > master->size) {
pr_err("%s: routerboot partition %pOF (%pOF) \"%s\" extends past end of segment.\n",
master->name, pp, rbpart_node, partname);
goto rbpart_fail;
}
parts[np].offset = offset;
parts[np].size = size;
parts[np].of_node = pp;
if (of_get_property(pp, "read-only", &len))
parts[np].mask_flags |= MTD_WRITEABLE;
if (of_get_property(pp, "lock", &len))
parts[np].mask_flags |= MTD_POWERUP_LOCK;
/* Keep master offset aligned to RB_BLOCK_SIZE */
master_ofs = ALIGN(offset + size, RB_BLOCK_SIZE);
np++;
}
*pparts = parts;
return np;
rbpart_fail:
pr_err("%s: error parsing routerboot partition %pOF (%pOF)\n",
master->name, pp, rbpart_node);
of_node_put(pp);
kfree(parts);
return -EINVAL;
}
static const struct of_device_id parse_routerbootpart_match_table[] = {
{ .compatible = "mikrotik,routerboot-partitions" },
{},
};
MODULE_DEVICE_TABLE(of, parse_routerbootpart_match_table);
static struct mtd_part_parser routerbootpart_parser = {
.parse_fn = routerboot_partitions_parse,
.name = "routerbootpart",
.of_match_table = parse_routerbootpart_match_table,
};
module_mtd_part_parser(routerbootpart_parser);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("MTD partitioning for RouterBoot");
MODULE_AUTHOR("Thibaut VARENE");