blob: 6cfe8eb7f47dcfc3b52dd027e5d084b4a7105a03 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2019, Intel Corporation. */
#include "ice_common.h"
#include "ice_flex_pipe.h"
/**
* ice_pkg_val_buf
* @buf: pointer to the ice buffer
*
* This helper function validates a buffer's header.
*/
static struct ice_buf_hdr *ice_pkg_val_buf(struct ice_buf *buf)
{
struct ice_buf_hdr *hdr;
u16 section_count;
u16 data_end;
hdr = (struct ice_buf_hdr *)buf->buf;
/* verify data */
section_count = le16_to_cpu(hdr->section_count);
if (section_count < ICE_MIN_S_COUNT || section_count > ICE_MAX_S_COUNT)
return NULL;
data_end = le16_to_cpu(hdr->data_end);
if (data_end < ICE_MIN_S_DATA_END || data_end > ICE_MAX_S_DATA_END)
return NULL;
return hdr;
}
/**
* ice_find_buf_table
* @ice_seg: pointer to the ice segment
*
* Returns the address of the buffer table within the ice segment.
*/
static struct ice_buf_table *ice_find_buf_table(struct ice_seg *ice_seg)
{
struct ice_nvm_table *nvms;
nvms = (struct ice_nvm_table *)
(ice_seg->device_table +
le32_to_cpu(ice_seg->device_table_count));
return (__force struct ice_buf_table *)
(nvms->vers + le32_to_cpu(nvms->table_count));
}
/**
* ice_pkg_enum_buf
* @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
* @state: pointer to the enum state
*
* This function will enumerate all the buffers in the ice segment. The first
* call is made with the ice_seg parameter non-NULL; on subsequent calls,
* ice_seg is set to NULL which continues the enumeration. When the function
* returns a NULL pointer, then the end of the buffers has been reached, or an
* unexpected value has been detected (for example an invalid section count or
* an invalid buffer end value).
*/
static struct ice_buf_hdr *
ice_pkg_enum_buf(struct ice_seg *ice_seg, struct ice_pkg_enum *state)
{
if (ice_seg) {
state->buf_table = ice_find_buf_table(ice_seg);
if (!state->buf_table)
return NULL;
state->buf_idx = 0;
return ice_pkg_val_buf(state->buf_table->buf_array);
}
if (++state->buf_idx < le32_to_cpu(state->buf_table->buf_count))
return ice_pkg_val_buf(state->buf_table->buf_array +
state->buf_idx);
else
return NULL;
}
/**
* ice_pkg_advance_sect
* @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
* @state: pointer to the enum state
*
* This helper function will advance the section within the ice segment,
* also advancing the buffer if needed.
*/
static bool
ice_pkg_advance_sect(struct ice_seg *ice_seg, struct ice_pkg_enum *state)
{
if (!ice_seg && !state->buf)
return false;
if (!ice_seg && state->buf)
if (++state->sect_idx < le16_to_cpu(state->buf->section_count))
return true;
state->buf = ice_pkg_enum_buf(ice_seg, state);
if (!state->buf)
return false;
/* start of new buffer, reset section index */
state->sect_idx = 0;
return true;
}
/**
* ice_pkg_enum_section
* @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
* @state: pointer to the enum state
* @sect_type: section type to enumerate
*
* This function will enumerate all the sections of a particular type in the
* ice segment. The first call is made with the ice_seg parameter non-NULL;
* on subsequent calls, ice_seg is set to NULL which continues the enumeration.
* When the function returns a NULL pointer, then the end of the matching
* sections has been reached.
*/
static void *
ice_pkg_enum_section(struct ice_seg *ice_seg, struct ice_pkg_enum *state,
u32 sect_type)
{
u16 offset, size;
if (ice_seg)
state->type = sect_type;
if (!ice_pkg_advance_sect(ice_seg, state))
return NULL;
/* scan for next matching section */
while (state->buf->section_entry[state->sect_idx].type !=
cpu_to_le32(state->type))
if (!ice_pkg_advance_sect(NULL, state))
return NULL;
/* validate section */
offset = le16_to_cpu(state->buf->section_entry[state->sect_idx].offset);
if (offset < ICE_MIN_S_OFF || offset > ICE_MAX_S_OFF)
return NULL;
size = le16_to_cpu(state->buf->section_entry[state->sect_idx].size);
if (size < ICE_MIN_S_SZ || size > ICE_MAX_S_SZ)
return NULL;
/* make sure the section fits in the buffer */
if (offset + size > ICE_PKG_BUF_SIZE)
return NULL;
state->sect_type =
le32_to_cpu(state->buf->section_entry[state->sect_idx].type);
/* calc pointer to this section */
state->sect = ((u8 *)state->buf) +
le16_to_cpu(state->buf->section_entry[state->sect_idx].offset);
return state->sect;
}
/**
* ice_acquire_global_cfg_lock
* @hw: pointer to the HW structure
* @access: access type (read or write)
*
* This function will request ownership of the global config lock for reading
* or writing of the package. When attempting to obtain write access, the
* caller must check for the following two return values:
*
* ICE_SUCCESS - Means the caller has acquired the global config lock
* and can perform writing of the package.
* ICE_ERR_AQ_NO_WORK - Indicates another driver has already written the
* package or has found that no update was necessary; in
* this case, the caller can just skip performing any
* update of the package.
*/
static enum ice_status
ice_acquire_global_cfg_lock(struct ice_hw *hw,
enum ice_aq_res_access_type access)
{
enum ice_status status;
status = ice_acquire_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID, access,
ICE_GLOBAL_CFG_LOCK_TIMEOUT);
if (!status)
mutex_lock(&ice_global_cfg_lock_sw);
else if (status == ICE_ERR_AQ_NO_WORK)
ice_debug(hw, ICE_DBG_PKG,
"Global config lock: No work to do\n");
return status;
}
/**
* ice_release_global_cfg_lock
* @hw: pointer to the HW structure
*
* This function will release the global config lock.
*/
static void ice_release_global_cfg_lock(struct ice_hw *hw)
{
mutex_unlock(&ice_global_cfg_lock_sw);
ice_release_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID);
}
/**
* ice_aq_download_pkg
* @hw: pointer to the hardware structure
* @pkg_buf: the package buffer to transfer
* @buf_size: the size of the package buffer
* @last_buf: last buffer indicator
* @error_offset: returns error offset
* @error_info: returns error information
* @cd: pointer to command details structure or NULL
*
* Download Package (0x0C40)
*/
static enum ice_status
ice_aq_download_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf,
u16 buf_size, bool last_buf, u32 *error_offset,
u32 *error_info, struct ice_sq_cd *cd)
{
struct ice_aqc_download_pkg *cmd;
struct ice_aq_desc desc;
enum ice_status status;
if (error_offset)
*error_offset = 0;
if (error_info)
*error_info = 0;
cmd = &desc.params.download_pkg;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_download_pkg);
desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
if (last_buf)
cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF;
status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
if (status == ICE_ERR_AQ_ERROR) {
/* Read error from buffer only when the FW returned an error */
struct ice_aqc_download_pkg_resp *resp;
resp = (struct ice_aqc_download_pkg_resp *)pkg_buf;
if (error_offset)
*error_offset = le32_to_cpu(resp->error_offset);
if (error_info)
*error_info = le32_to_cpu(resp->error_info);
}
return status;
}
/**
* ice_find_seg_in_pkg
* @hw: pointer to the hardware structure
* @seg_type: the segment type to search for (i.e., SEGMENT_TYPE_CPK)
* @pkg_hdr: pointer to the package header to be searched
*
* This function searches a package file for a particular segment type. On
* success it returns a pointer to the segment header, otherwise it will
* return NULL.
*/
static struct ice_generic_seg_hdr *
ice_find_seg_in_pkg(struct ice_hw *hw, u32 seg_type,
struct ice_pkg_hdr *pkg_hdr)
{
u32 i;
ice_debug(hw, ICE_DBG_PKG, "Package format version: %d.%d.%d.%d\n",
pkg_hdr->format_ver.major, pkg_hdr->format_ver.minor,
pkg_hdr->format_ver.update, pkg_hdr->format_ver.draft);
/* Search all package segments for the requested segment type */
for (i = 0; i < le32_to_cpu(pkg_hdr->seg_count); i++) {
struct ice_generic_seg_hdr *seg;
seg = (struct ice_generic_seg_hdr *)
((u8 *)pkg_hdr + le32_to_cpu(pkg_hdr->seg_offset[i]));
if (le32_to_cpu(seg->seg_type) == seg_type)
return seg;
}
return NULL;
}
/**
* ice_dwnld_cfg_bufs
* @hw: pointer to the hardware structure
* @bufs: pointer to an array of buffers
* @count: the number of buffers in the array
*
* Obtains global config lock and downloads the package configuration buffers
* to the firmware. Metadata buffers are skipped, and the first metadata buffer
* found indicates that the rest of the buffers are all metadata buffers.
*/
static enum ice_status
ice_dwnld_cfg_bufs(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
{
enum ice_status status;
struct ice_buf_hdr *bh;
u32 offset, info, i;
if (!bufs || !count)
return ICE_ERR_PARAM;
/* If the first buffer's first section has its metadata bit set
* then there are no buffers to be downloaded, and the operation is
* considered a success.
*/
bh = (struct ice_buf_hdr *)bufs;
if (le32_to_cpu(bh->section_entry[0].type) & ICE_METADATA_BUF)
return 0;
/* reset pkg_dwnld_status in case this function is called in the
* reset/rebuild flow
*/
hw->pkg_dwnld_status = ICE_AQ_RC_OK;
status = ice_acquire_global_cfg_lock(hw, ICE_RES_WRITE);
if (status) {
if (status == ICE_ERR_AQ_NO_WORK)
hw->pkg_dwnld_status = ICE_AQ_RC_EEXIST;
else
hw->pkg_dwnld_status = hw->adminq.sq_last_status;
return status;
}
for (i = 0; i < count; i++) {
bool last = ((i + 1) == count);
if (!last) {
/* check next buffer for metadata flag */
bh = (struct ice_buf_hdr *)(bufs + i + 1);
/* A set metadata flag in the next buffer will signal
* that the current buffer will be the last buffer
* downloaded
*/
if (le16_to_cpu(bh->section_count))
if (le32_to_cpu(bh->section_entry[0].type) &
ICE_METADATA_BUF)
last = true;
}
bh = (struct ice_buf_hdr *)(bufs + i);
status = ice_aq_download_pkg(hw, bh, ICE_PKG_BUF_SIZE, last,
&offset, &info, NULL);
/* Save AQ status from download package */
hw->pkg_dwnld_status = hw->adminq.sq_last_status;
if (status) {
ice_debug(hw, ICE_DBG_PKG,
"Pkg download failed: err %d off %d inf %d\n",
status, offset, info);
break;
}
if (last)
break;
}
ice_release_global_cfg_lock(hw);
return status;
}
/**
* ice_aq_get_pkg_info_list
* @hw: pointer to the hardware structure
* @pkg_info: the buffer which will receive the information list
* @buf_size: the size of the pkg_info information buffer
* @cd: pointer to command details structure or NULL
*
* Get Package Info List (0x0C43)
*/
static enum ice_status
ice_aq_get_pkg_info_list(struct ice_hw *hw,
struct ice_aqc_get_pkg_info_resp *pkg_info,
u16 buf_size, struct ice_sq_cd *cd)
{
struct ice_aq_desc desc;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_pkg_info_list);
return ice_aq_send_cmd(hw, &desc, pkg_info, buf_size, cd);
}
/**
* ice_download_pkg
* @hw: pointer to the hardware structure
* @ice_seg: pointer to the segment of the package to be downloaded
*
* Handles the download of a complete package.
*/
static enum ice_status
ice_download_pkg(struct ice_hw *hw, struct ice_seg *ice_seg)
{
struct ice_buf_table *ice_buf_tbl;
ice_debug(hw, ICE_DBG_PKG, "Segment version: %d.%d.%d.%d\n",
ice_seg->hdr.seg_ver.major, ice_seg->hdr.seg_ver.minor,
ice_seg->hdr.seg_ver.update, ice_seg->hdr.seg_ver.draft);
ice_debug(hw, ICE_DBG_PKG, "Seg: type 0x%X, size %d, name %s\n",
le32_to_cpu(ice_seg->hdr.seg_type),
le32_to_cpu(ice_seg->hdr.seg_size), ice_seg->hdr.seg_name);
ice_buf_tbl = ice_find_buf_table(ice_seg);
ice_debug(hw, ICE_DBG_PKG, "Seg buf count: %d\n",
le32_to_cpu(ice_buf_tbl->buf_count));
return ice_dwnld_cfg_bufs(hw, ice_buf_tbl->buf_array,
le32_to_cpu(ice_buf_tbl->buf_count));
}
/**
* ice_init_pkg_info
* @hw: pointer to the hardware structure
* @pkg_hdr: pointer to the driver's package hdr
*
* Saves off the package details into the HW structure.
*/
static enum ice_status
ice_init_pkg_info(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr)
{
struct ice_global_metadata_seg *meta_seg;
struct ice_generic_seg_hdr *seg_hdr;
if (!pkg_hdr)
return ICE_ERR_PARAM;
meta_seg = (struct ice_global_metadata_seg *)
ice_find_seg_in_pkg(hw, SEGMENT_TYPE_METADATA, pkg_hdr);
if (meta_seg) {
hw->pkg_ver = meta_seg->pkg_ver;
memcpy(hw->pkg_name, meta_seg->pkg_name, sizeof(hw->pkg_name));
ice_debug(hw, ICE_DBG_PKG, "Pkg: %d.%d.%d.%d, %s\n",
meta_seg->pkg_ver.major, meta_seg->pkg_ver.minor,
meta_seg->pkg_ver.update, meta_seg->pkg_ver.draft,
meta_seg->pkg_name);
} else {
ice_debug(hw, ICE_DBG_INIT,
"Did not find metadata segment in driver package\n");
return ICE_ERR_CFG;
}
seg_hdr = ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, pkg_hdr);
if (seg_hdr) {
hw->ice_pkg_ver = seg_hdr->seg_ver;
memcpy(hw->ice_pkg_name, seg_hdr->seg_name,
sizeof(hw->ice_pkg_name));
ice_debug(hw, ICE_DBG_PKG, "Ice Pkg: %d.%d.%d.%d, %s\n",
seg_hdr->seg_ver.major, seg_hdr->seg_ver.minor,
seg_hdr->seg_ver.update, seg_hdr->seg_ver.draft,
seg_hdr->seg_name);
} else {
ice_debug(hw, ICE_DBG_INIT,
"Did not find ice segment in driver package\n");
return ICE_ERR_CFG;
}
return 0;
}
/**
* ice_get_pkg_info
* @hw: pointer to the hardware structure
*
* Store details of the package currently loaded in HW into the HW structure.
*/
static enum ice_status ice_get_pkg_info(struct ice_hw *hw)
{
struct ice_aqc_get_pkg_info_resp *pkg_info;
enum ice_status status;
u16 size;
u32 i;
size = sizeof(*pkg_info) + (sizeof(pkg_info->pkg_info[0]) *
(ICE_PKG_CNT - 1));
pkg_info = kzalloc(size, GFP_KERNEL);
if (!pkg_info)
return ICE_ERR_NO_MEMORY;
status = ice_aq_get_pkg_info_list(hw, pkg_info, size, NULL);
if (status)
goto init_pkg_free_alloc;
for (i = 0; i < le32_to_cpu(pkg_info->count); i++) {
#define ICE_PKG_FLAG_COUNT 4
char flags[ICE_PKG_FLAG_COUNT + 1] = { 0 };
u8 place = 0;
if (pkg_info->pkg_info[i].is_active) {
flags[place++] = 'A';
hw->active_pkg_ver = pkg_info->pkg_info[i].ver;
memcpy(hw->active_pkg_name,
pkg_info->pkg_info[i].name,
sizeof(hw->active_pkg_name));
hw->active_pkg_in_nvm = pkg_info->pkg_info[i].is_in_nvm;
}
if (pkg_info->pkg_info[i].is_active_at_boot)
flags[place++] = 'B';
if (pkg_info->pkg_info[i].is_modified)
flags[place++] = 'M';
if (pkg_info->pkg_info[i].is_in_nvm)
flags[place++] = 'N';
ice_debug(hw, ICE_DBG_PKG, "Pkg[%d]: %d.%d.%d.%d,%s,%s\n",
i, pkg_info->pkg_info[i].ver.major,
pkg_info->pkg_info[i].ver.minor,
pkg_info->pkg_info[i].ver.update,
pkg_info->pkg_info[i].ver.draft,
pkg_info->pkg_info[i].name, flags);
}
init_pkg_free_alloc:
kfree(pkg_info);
return status;
}
/**
* ice_verify_pkg - verify package
* @pkg: pointer to the package buffer
* @len: size of the package buffer
*
* Verifies various attributes of the package file, including length, format
* version, and the requirement of at least one segment.
*/
static enum ice_status ice_verify_pkg(struct ice_pkg_hdr *pkg, u32 len)
{
u32 seg_count;
u32 i;
if (len < sizeof(*pkg))
return ICE_ERR_BUF_TOO_SHORT;
if (pkg->format_ver.major != ICE_PKG_FMT_VER_MAJ ||
pkg->format_ver.minor != ICE_PKG_FMT_VER_MNR ||
pkg->format_ver.update != ICE_PKG_FMT_VER_UPD ||
pkg->format_ver.draft != ICE_PKG_FMT_VER_DFT)
return ICE_ERR_CFG;
/* pkg must have at least one segment */
seg_count = le32_to_cpu(pkg->seg_count);
if (seg_count < 1)
return ICE_ERR_CFG;
/* make sure segment array fits in package length */
if (len < sizeof(*pkg) + ((seg_count - 1) * sizeof(pkg->seg_offset)))
return ICE_ERR_BUF_TOO_SHORT;
/* all segments must fit within length */
for (i = 0; i < seg_count; i++) {
u32 off = le32_to_cpu(pkg->seg_offset[i]);
struct ice_generic_seg_hdr *seg;
/* segment header must fit */
if (len < off + sizeof(*seg))
return ICE_ERR_BUF_TOO_SHORT;
seg = (struct ice_generic_seg_hdr *)((u8 *)pkg + off);
/* segment body must fit */
if (len < off + le32_to_cpu(seg->seg_size))
return ICE_ERR_BUF_TOO_SHORT;
}
return 0;
}
/**
* ice_free_seg - free package segment pointer
* @hw: pointer to the hardware structure
*
* Frees the package segment pointer in the proper manner, depending on if the
* segment was allocated or just the passed in pointer was stored.
*/
void ice_free_seg(struct ice_hw *hw)
{
if (hw->pkg_copy) {
devm_kfree(ice_hw_to_dev(hw), hw->pkg_copy);
hw->pkg_copy = NULL;
hw->pkg_size = 0;
}
hw->seg = NULL;
}
/**
* ice_init_pkg_regs - initialize additional package registers
* @hw: pointer to the hardware structure
*/
static void ice_init_pkg_regs(struct ice_hw *hw)
{
#define ICE_SW_BLK_INP_MASK_L 0xFFFFFFFF
#define ICE_SW_BLK_INP_MASK_H 0x0000FFFF
#define ICE_SW_BLK_IDX 0
/* setup Switch block input mask, which is 48-bits in two parts */
wr32(hw, GL_PREEXT_L2_PMASK0(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_L);
wr32(hw, GL_PREEXT_L2_PMASK1(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_H);
}
/**
* ice_chk_pkg_version - check package version for compatibility with driver
* @pkg_ver: pointer to a version structure to check
*
* Check to make sure that the package about to be downloaded is compatible with
* the driver. To be compatible, the major and minor components of the package
* version must match our ICE_PKG_SUPP_VER_MAJ and ICE_PKG_SUPP_VER_MNR
* definitions.
*/
static enum ice_status ice_chk_pkg_version(struct ice_pkg_ver *pkg_ver)
{
if (pkg_ver->major != ICE_PKG_SUPP_VER_MAJ ||
pkg_ver->minor != ICE_PKG_SUPP_VER_MNR)
return ICE_ERR_NOT_SUPPORTED;
return 0;
}
/**
* ice_init_pkg - initialize/download package
* @hw: pointer to the hardware structure
* @buf: pointer to the package buffer
* @len: size of the package buffer
*
* This function initializes a package. The package contains HW tables
* required to do packet processing. First, the function extracts package
* information such as version. Then it finds the ice configuration segment
* within the package; this function then saves a copy of the segment pointer
* within the supplied package buffer. Next, the function will cache any hints
* from the package, followed by downloading the package itself. Note, that if
* a previous PF driver has already downloaded the package successfully, then
* the current driver will not have to download the package again.
*
* The local package contents will be used to query default behavior and to
* update specific sections of the HW's version of the package (e.g. to update
* the parse graph to understand new protocols).
*
* This function stores a pointer to the package buffer memory, and it is
* expected that the supplied buffer will not be freed immediately. If the
* package buffer needs to be freed, such as when read from a file, use
* ice_copy_and_init_pkg() instead of directly calling ice_init_pkg() in this
* case.
*/
enum ice_status ice_init_pkg(struct ice_hw *hw, u8 *buf, u32 len)
{
struct ice_pkg_hdr *pkg;
enum ice_status status;
struct ice_seg *seg;
if (!buf || !len)
return ICE_ERR_PARAM;
pkg = (struct ice_pkg_hdr *)buf;
status = ice_verify_pkg(pkg, len);
if (status) {
ice_debug(hw, ICE_DBG_INIT, "failed to verify pkg (err: %d)\n",
status);
return status;
}
/* initialize package info */
status = ice_init_pkg_info(hw, pkg);
if (status)
return status;
/* before downloading the package, check package version for
* compatibility with driver
*/
status = ice_chk_pkg_version(&hw->pkg_ver);
if (status)
return status;
/* find segment in given package */
seg = (struct ice_seg *)ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, pkg);
if (!seg) {
ice_debug(hw, ICE_DBG_INIT, "no ice segment in package.\n");
return ICE_ERR_CFG;
}
/* download package */
status = ice_download_pkg(hw, seg);
if (status == ICE_ERR_AQ_NO_WORK) {
ice_debug(hw, ICE_DBG_INIT,
"package previously loaded - no work.\n");
status = 0;
}
/* Get information on the package currently loaded in HW, then make sure
* the driver is compatible with this version.
*/
if (!status) {
status = ice_get_pkg_info(hw);
if (!status)
status = ice_chk_pkg_version(&hw->active_pkg_ver);
}
if (!status) {
hw->seg = seg;
/* on successful package download update other required
* registers to support the package and fill HW tables
* with package content.
*/
ice_init_pkg_regs(hw);
ice_fill_blk_tbls(hw);
} else {
ice_debug(hw, ICE_DBG_INIT, "package load failed, %d\n",
status);
}
return status;
}
/**
* ice_copy_and_init_pkg - initialize/download a copy of the package
* @hw: pointer to the hardware structure
* @buf: pointer to the package buffer
* @len: size of the package buffer
*
* This function copies the package buffer, and then calls ice_init_pkg() to
* initialize the copied package contents.
*
* The copying is necessary if the package buffer supplied is constant, or if
* the memory may disappear shortly after calling this function.
*
* If the package buffer resides in the data segment and can be modified, the
* caller is free to use ice_init_pkg() instead of ice_copy_and_init_pkg().
*
* However, if the package buffer needs to be copied first, such as when being
* read from a file, the caller should use ice_copy_and_init_pkg().
*
* This function will first copy the package buffer, before calling
* ice_init_pkg(). The caller is free to immediately destroy the original
* package buffer, as the new copy will be managed by this function and
* related routines.
*/
enum ice_status ice_copy_and_init_pkg(struct ice_hw *hw, const u8 *buf, u32 len)
{
enum ice_status status;
u8 *buf_copy;
if (!buf || !len)
return ICE_ERR_PARAM;
buf_copy = devm_kmemdup(ice_hw_to_dev(hw), buf, len, GFP_KERNEL);
status = ice_init_pkg(hw, buf_copy, len);
if (status) {
/* Free the copy, since we failed to initialize the package */
devm_kfree(ice_hw_to_dev(hw), buf_copy);
} else {
/* Track the copied pkg so we can free it later */
hw->pkg_copy = buf_copy;
hw->pkg_size = len;
}
return status;
}
/* PTG Management */
/**
* ice_ptg_find_ptype - Search for packet type group using packet type (ptype)
* @hw: pointer to the hardware structure
* @blk: HW block
* @ptype: the ptype to search for
* @ptg: pointer to variable that receives the PTG
*
* This function will search the PTGs for a particular ptype, returning the
* PTG ID that contains it through the PTG parameter, with the value of
* ICE_DEFAULT_PTG (0) meaning it is part the default PTG.
*/
static enum ice_status
ice_ptg_find_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 *ptg)
{
if (ptype >= ICE_XLT1_CNT || !ptg)
return ICE_ERR_PARAM;
*ptg = hw->blk[blk].xlt1.ptypes[ptype].ptg;
return 0;
}
/**
* ice_ptg_alloc_val - Allocates a new packet type group ID by value
* @hw: pointer to the hardware structure
* @blk: HW block
* @ptg: the PTG to allocate
*
* This function allocates a given packet type group ID specified by the PTG
* parameter.
*/
static void ice_ptg_alloc_val(struct ice_hw *hw, enum ice_block blk, u8 ptg)
{
hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = true;
}
/**
* ice_ptg_remove_ptype - Removes ptype from a particular packet type group
* @hw: pointer to the hardware structure
* @blk: HW block
* @ptype: the ptype to remove
* @ptg: the PTG to remove the ptype from
*
* This function will remove the ptype from the specific PTG, and move it to
* the default PTG (ICE_DEFAULT_PTG).
*/
static enum ice_status
ice_ptg_remove_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
{
struct ice_ptg_ptype **ch;
struct ice_ptg_ptype *p;
if (ptype > ICE_XLT1_CNT - 1)
return ICE_ERR_PARAM;
if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use)
return ICE_ERR_DOES_NOT_EXIST;
/* Should not happen if .in_use is set, bad config */
if (!hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype)
return ICE_ERR_CFG;
/* find the ptype within this PTG, and bypass the link over it */
p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
ch = &hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
while (p) {
if (ptype == (p - hw->blk[blk].xlt1.ptypes)) {
*ch = p->next_ptype;
break;
}
ch = &p->next_ptype;
p = p->next_ptype;
}
hw->blk[blk].xlt1.ptypes[ptype].ptg = ICE_DEFAULT_PTG;
hw->blk[blk].xlt1.ptypes[ptype].next_ptype = NULL;
return 0;
}
/**
* ice_ptg_add_mv_ptype - Adds/moves ptype to a particular packet type group
* @hw: pointer to the hardware structure
* @blk: HW block
* @ptype: the ptype to add or move
* @ptg: the PTG to add or move the ptype to
*
* This function will either add or move a ptype to a particular PTG depending
* on if the ptype is already part of another group. Note that using a
* a destination PTG ID of ICE_DEFAULT_PTG (0) will move the ptype to the
* default PTG.
*/
static enum ice_status
ice_ptg_add_mv_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
{
enum ice_status status;
u8 original_ptg;
if (ptype > ICE_XLT1_CNT - 1)
return ICE_ERR_PARAM;
if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use && ptg != ICE_DEFAULT_PTG)
return ICE_ERR_DOES_NOT_EXIST;
status = ice_ptg_find_ptype(hw, blk, ptype, &original_ptg);
if (status)
return status;
/* Is ptype already in the correct PTG? */
if (original_ptg == ptg)
return 0;
/* Remove from original PTG and move back to the default PTG */
if (original_ptg != ICE_DEFAULT_PTG)
ice_ptg_remove_ptype(hw, blk, ptype, original_ptg);
/* Moving to default PTG? Then we're done with this request */
if (ptg == ICE_DEFAULT_PTG)
return 0;
/* Add ptype to PTG at beginning of list */
hw->blk[blk].xlt1.ptypes[ptype].next_ptype =
hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype =
&hw->blk[blk].xlt1.ptypes[ptype];
hw->blk[blk].xlt1.ptypes[ptype].ptg = ptg;
hw->blk[blk].xlt1.t[ptype] = ptg;
return 0;
}
/* Block / table size info */
struct ice_blk_size_details {
u16 xlt1; /* # XLT1 entries */
u16 xlt2; /* # XLT2 entries */
u16 prof_tcam; /* # profile ID TCAM entries */
u16 prof_id; /* # profile IDs */
u8 prof_cdid_bits; /* # CDID one-hot bits used in key */
u16 prof_redir; /* # profile redirection entries */
u16 es; /* # extraction sequence entries */
u16 fvw; /* # field vector words */
u8 overwrite; /* overwrite existing entries allowed */
u8 reverse; /* reverse FV order */
};
static const struct ice_blk_size_details blk_sizes[ICE_BLK_COUNT] = {
/**
* Table Definitions
* XLT1 - Number of entries in XLT1 table
* XLT2 - Number of entries in XLT2 table
* TCAM - Number of entries Profile ID TCAM table
* CDID - Control Domain ID of the hardware block
* PRED - Number of entries in the Profile Redirection Table
* FV - Number of entries in the Field Vector
* FVW - Width (in WORDs) of the Field Vector
* OVR - Overwrite existing table entries
* REV - Reverse FV
*/
/* XLT1 , XLT2 ,TCAM, PID,CDID,PRED, FV, FVW */
/* Overwrite , Reverse FV */
/* SW */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 256, 0, 256, 256, 48,
false, false },
/* ACL */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 32,
false, false },
/* FD */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24,
false, true },
/* RSS */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24,
true, true },
/* PE */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 64, 32, 0, 32, 32, 24,
false, false },
};
enum ice_sid_all {
ICE_SID_XLT1_OFF = 0,
ICE_SID_XLT2_OFF,
ICE_SID_PR_OFF,
ICE_SID_PR_REDIR_OFF,
ICE_SID_ES_OFF,
ICE_SID_OFF_COUNT,
};
/* VSIG Management */
/**
* ice_vsig_find_vsi - find a VSIG that contains a specified VSI
* @hw: pointer to the hardware structure
* @blk: HW block
* @vsi: VSI of interest
* @vsig: pointer to receive the VSI group
*
* This function will lookup the VSI entry in the XLT2 list and return
* the VSI group its associated with.
*/
static enum ice_status
ice_vsig_find_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 *vsig)
{
if (!vsig || vsi >= ICE_MAX_VSI)
return ICE_ERR_PARAM;
/* As long as there's a default or valid VSIG associated with the input
* VSI, the functions returns a success. Any handling of VSIG will be
* done by the following add, update or remove functions.
*/
*vsig = hw->blk[blk].xlt2.vsis[vsi].vsig;
return 0;
}
/**
* ice_vsig_alloc_val - allocate a new VSIG by value
* @hw: pointer to the hardware structure
* @blk: HW block
* @vsig: the VSIG to allocate
*
* This function will allocate a given VSIG specified by the VSIG parameter.
*/
static u16 ice_vsig_alloc_val(struct ice_hw *hw, enum ice_block blk, u16 vsig)
{
u16 idx = vsig & ICE_VSIG_IDX_M;
if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) {
INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
hw->blk[blk].xlt2.vsig_tbl[idx].in_use = true;
}
return ICE_VSIG_VALUE(idx, hw->pf_id);
}
/**
* ice_vsig_remove_vsi - remove VSI from VSIG
* @hw: pointer to the hardware structure
* @blk: HW block
* @vsi: VSI to remove
* @vsig: VSI group to remove from
*
* The function will remove the input VSI from its VSI group and move it
* to the DEFAULT_VSIG.
*/
static enum ice_status
ice_vsig_remove_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
{
struct ice_vsig_vsi **vsi_head, *vsi_cur, *vsi_tgt;
u16 idx;
idx = vsig & ICE_VSIG_IDX_M;
if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
return ICE_ERR_PARAM;
if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
return ICE_ERR_DOES_NOT_EXIST;
/* entry already in default VSIG, don't have to remove */
if (idx == ICE_DEFAULT_VSIG)
return 0;
vsi_head = &hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
if (!(*vsi_head))
return ICE_ERR_CFG;
vsi_tgt = &hw->blk[blk].xlt2.vsis[vsi];
vsi_cur = (*vsi_head);
/* iterate the VSI list, skip over the entry to be removed */
while (vsi_cur) {
if (vsi_tgt == vsi_cur) {
(*vsi_head) = vsi_cur->next_vsi;
break;
}
vsi_head = &vsi_cur->next_vsi;
vsi_cur = vsi_cur->next_vsi;
}
/* verify if VSI was removed from group list */
if (!vsi_cur)
return ICE_ERR_DOES_NOT_EXIST;
vsi_cur->vsig = ICE_DEFAULT_VSIG;
vsi_cur->changed = 1;
vsi_cur->next_vsi = NULL;
return 0;
}
/**
* ice_vsig_add_mv_vsi - add or move a VSI to a VSI group
* @hw: pointer to the hardware structure
* @blk: HW block
* @vsi: VSI to move
* @vsig: destination VSI group
*
* This function will move or add the input VSI to the target VSIG.
* The function will find the original VSIG the VSI belongs to and
* move the entry to the DEFAULT_VSIG, update the original VSIG and
* then move entry to the new VSIG.
*/
static enum ice_status
ice_vsig_add_mv_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
{
struct ice_vsig_vsi *tmp;
enum ice_status status;
u16 orig_vsig, idx;
idx = vsig & ICE_VSIG_IDX_M;
if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
return ICE_ERR_PARAM;
/* if VSIG not in use and VSIG is not default type this VSIG
* doesn't exist.
*/
if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use &&
vsig != ICE_DEFAULT_VSIG)
return ICE_ERR_DOES_NOT_EXIST;
status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
if (status)
return status;
/* no update required if vsigs match */
if (orig_vsig == vsig)
return 0;
if (orig_vsig != ICE_DEFAULT_VSIG) {
/* remove entry from orig_vsig and add to default VSIG */
status = ice_vsig_remove_vsi(hw, blk, vsi, orig_vsig);
if (status)
return status;
}
if (idx == ICE_DEFAULT_VSIG)
return 0;
/* Create VSI entry and add VSIG and prop_mask values */
hw->blk[blk].xlt2.vsis[vsi].vsig = vsig;
hw->blk[blk].xlt2.vsis[vsi].changed = 1;
/* Add new entry to the head of the VSIG list */
tmp = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi =
&hw->blk[blk].xlt2.vsis[vsi];
hw->blk[blk].xlt2.vsis[vsi].next_vsi = tmp;
hw->blk[blk].xlt2.t[vsi] = vsig;
return 0;
}
/* Block / table section IDs */
static const u32 ice_blk_sids[ICE_BLK_COUNT][ICE_SID_OFF_COUNT] = {
/* SWITCH */
{ ICE_SID_XLT1_SW,
ICE_SID_XLT2_SW,
ICE_SID_PROFID_TCAM_SW,
ICE_SID_PROFID_REDIR_SW,
ICE_SID_FLD_VEC_SW
},
/* ACL */
{ ICE_SID_XLT1_ACL,
ICE_SID_XLT2_ACL,
ICE_SID_PROFID_TCAM_ACL,
ICE_SID_PROFID_REDIR_ACL,
ICE_SID_FLD_VEC_ACL
},
/* FD */
{ ICE_SID_XLT1_FD,
ICE_SID_XLT2_FD,
ICE_SID_PROFID_TCAM_FD,
ICE_SID_PROFID_REDIR_FD,
ICE_SID_FLD_VEC_FD
},
/* RSS */
{ ICE_SID_XLT1_RSS,
ICE_SID_XLT2_RSS,
ICE_SID_PROFID_TCAM_RSS,
ICE_SID_PROFID_REDIR_RSS,
ICE_SID_FLD_VEC_RSS
},
/* PE */
{ ICE_SID_XLT1_PE,
ICE_SID_XLT2_PE,
ICE_SID_PROFID_TCAM_PE,
ICE_SID_PROFID_REDIR_PE,
ICE_SID_FLD_VEC_PE
}
};
/**
* ice_init_sw_xlt1_db - init software XLT1 database from HW tables
* @hw: pointer to the hardware structure
* @blk: the HW block to initialize
*/
static void ice_init_sw_xlt1_db(struct ice_hw *hw, enum ice_block blk)
{
u16 pt;
for (pt = 0; pt < hw->blk[blk].xlt1.count; pt++) {
u8 ptg;
ptg = hw->blk[blk].xlt1.t[pt];
if (ptg != ICE_DEFAULT_PTG) {
ice_ptg_alloc_val(hw, blk, ptg);
ice_ptg_add_mv_ptype(hw, blk, pt, ptg);
}
}
}
/**
* ice_init_sw_xlt2_db - init software XLT2 database from HW tables
* @hw: pointer to the hardware structure
* @blk: the HW block to initialize
*/
static void ice_init_sw_xlt2_db(struct ice_hw *hw, enum ice_block blk)
{
u16 vsi;
for (vsi = 0; vsi < hw->blk[blk].xlt2.count; vsi++) {
u16 vsig;
vsig = hw->blk[blk].xlt2.t[vsi];
if (vsig) {
ice_vsig_alloc_val(hw, blk, vsig);
ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
/* no changes at this time, since this has been
* initialized from the original package
*/
hw->blk[blk].xlt2.vsis[vsi].changed = 0;
}
}
}
/**
* ice_init_sw_db - init software database from HW tables
* @hw: pointer to the hardware structure
*/
static void ice_init_sw_db(struct ice_hw *hw)
{
u16 i;
for (i = 0; i < ICE_BLK_COUNT; i++) {
ice_init_sw_xlt1_db(hw, (enum ice_block)i);
ice_init_sw_xlt2_db(hw, (enum ice_block)i);
}
}
/**
* ice_fill_tbl - Reads content of a single table type into database
* @hw: pointer to the hardware structure
* @block_id: Block ID of the table to copy
* @sid: Section ID of the table to copy
*
* Will attempt to read the entire content of a given table of a single block
* into the driver database. We assume that the buffer will always
* be as large or larger than the data contained in the package. If
* this condition is not met, there is most likely an error in the package
* contents.
*/
static void ice_fill_tbl(struct ice_hw *hw, enum ice_block block_id, u32 sid)
{
u32 dst_len, sect_len, offset = 0;
struct ice_prof_redir_section *pr;
struct ice_prof_id_section *pid;
struct ice_xlt1_section *xlt1;
struct ice_xlt2_section *xlt2;
struct ice_sw_fv_section *es;
struct ice_pkg_enum state;
u8 *src, *dst;
void *sect;
/* if the HW segment pointer is null then the first iteration of
* ice_pkg_enum_section() will fail. In this case the HW tables will
* not be filled and return success.
*/
if (!hw->seg) {
ice_debug(hw, ICE_DBG_PKG, "hw->seg is NULL, tables are not filled\n");
return;
}
memset(&state, 0, sizeof(state));
sect = ice_pkg_enum_section(hw->seg, &state, sid);
while (sect) {
switch (sid) {
case ICE_SID_XLT1_SW:
case ICE_SID_XLT1_FD:
case ICE_SID_XLT1_RSS:
case ICE_SID_XLT1_ACL:
case ICE_SID_XLT1_PE:
xlt1 = (struct ice_xlt1_section *)sect;
src = xlt1->value;
sect_len = le16_to_cpu(xlt1->count) *
sizeof(*hw->blk[block_id].xlt1.t);
dst = hw->blk[block_id].xlt1.t;
dst_len = hw->blk[block_id].xlt1.count *
sizeof(*hw->blk[block_id].xlt1.t);
break;
case ICE_SID_XLT2_SW:
case ICE_SID_XLT2_FD:
case ICE_SID_XLT2_RSS:
case ICE_SID_XLT2_ACL:
case ICE_SID_XLT2_PE:
xlt2 = (struct ice_xlt2_section *)sect;
src = (__force u8 *)xlt2->value;
sect_len = le16_to_cpu(xlt2->count) *
sizeof(*hw->blk[block_id].xlt2.t);
dst = (u8 *)hw->blk[block_id].xlt2.t;
dst_len = hw->blk[block_id].xlt2.count *
sizeof(*hw->blk[block_id].xlt2.t);
break;
case ICE_SID_PROFID_TCAM_SW:
case ICE_SID_PROFID_TCAM_FD:
case ICE_SID_PROFID_TCAM_RSS:
case ICE_SID_PROFID_TCAM_ACL:
case ICE_SID_PROFID_TCAM_PE:
pid = (struct ice_prof_id_section *)sect;
src = (u8 *)pid->entry;
sect_len = le16_to_cpu(pid->count) *
sizeof(*hw->blk[block_id].prof.t);
dst = (u8 *)hw->blk[block_id].prof.t;
dst_len = hw->blk[block_id].prof.count *
sizeof(*hw->blk[block_id].prof.t);
break;
case ICE_SID_PROFID_REDIR_SW:
case ICE_SID_PROFID_REDIR_FD:
case ICE_SID_PROFID_REDIR_RSS:
case ICE_SID_PROFID_REDIR_ACL:
case ICE_SID_PROFID_REDIR_PE:
pr = (struct ice_prof_redir_section *)sect;
src = pr->redir_value;
sect_len = le16_to_cpu(pr->count) *
sizeof(*hw->blk[block_id].prof_redir.t);
dst = hw->blk[block_id].prof_redir.t;
dst_len = hw->blk[block_id].prof_redir.count *
sizeof(*hw->blk[block_id].prof_redir.t);
break;
case ICE_SID_FLD_VEC_SW:
case ICE_SID_FLD_VEC_FD:
case ICE_SID_FLD_VEC_RSS:
case ICE_SID_FLD_VEC_ACL:
case ICE_SID_FLD_VEC_PE:
es = (struct ice_sw_fv_section *)sect;
src = (u8 *)es->fv;
sect_len = (u32)(le16_to_cpu(es->count) *
hw->blk[block_id].es.fvw) *
sizeof(*hw->blk[block_id].es.t);
dst = (u8 *)hw->blk[block_id].es.t;
dst_len = (u32)(hw->blk[block_id].es.count *
hw->blk[block_id].es.fvw) *
sizeof(*hw->blk[block_id].es.t);
break;
default:
return;
}
/* if the section offset exceeds destination length, terminate
* table fill.
*/
if (offset > dst_len)
return;
/* if the sum of section size and offset exceed destination size
* then we are out of bounds of the HW table size for that PF.
* Changing section length to fill the remaining table space
* of that PF.
*/
if ((offset + sect_len) > dst_len)
sect_len = dst_len - offset;
memcpy(dst + offset, src, sect_len);
offset += sect_len;
sect = ice_pkg_enum_section(NULL, &state, sid);
}
}
/**
* ice_fill_blk_tbls - Read package context for tables
* @hw: pointer to the hardware structure
*
* Reads the current package contents and populates the driver
* database with the data iteratively for all advanced feature
* blocks. Assume that the HW tables have been allocated.
*/
void ice_fill_blk_tbls(struct ice_hw *hw)
{
u8 i;
for (i = 0; i < ICE_BLK_COUNT; i++) {
enum ice_block blk_id = (enum ice_block)i;
ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt1.sid);
ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt2.sid);
ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof.sid);
ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof_redir.sid);
ice_fill_tbl(hw, blk_id, hw->blk[blk_id].es.sid);
}
ice_init_sw_db(hw);
}
/**
* ice_free_hw_tbls - free hardware table memory
* @hw: pointer to the hardware structure
*/
void ice_free_hw_tbls(struct ice_hw *hw)
{
u8 i;
for (i = 0; i < ICE_BLK_COUNT; i++) {
hw->blk[i].is_list_init = false;
devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptypes);
devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptg_tbl);
devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.t);
devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.t);
devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsig_tbl);
devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsis);
devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof.t);
devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof_redir.t);
devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.t);
devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.ref_count);
devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.written);
}
memset(hw->blk, 0, sizeof(hw->blk));
}
/**
* ice_clear_hw_tbls - clear HW tables and flow profiles
* @hw: pointer to the hardware structure
*/
void ice_clear_hw_tbls(struct ice_hw *hw)
{
u8 i;
for (i = 0; i < ICE_BLK_COUNT; i++) {
struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
struct ice_prof_tcam *prof = &hw->blk[i].prof;
struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
struct ice_es *es = &hw->blk[i].es;
memset(xlt1->ptypes, 0, xlt1->count * sizeof(*xlt1->ptypes));
memset(xlt1->ptg_tbl, 0,
ICE_MAX_PTGS * sizeof(*xlt1->ptg_tbl));
memset(xlt1->t, 0, xlt1->count * sizeof(*xlt1->t));
memset(xlt2->vsis, 0, xlt2->count * sizeof(*xlt2->vsis));
memset(xlt2->vsig_tbl, 0,
xlt2->count * sizeof(*xlt2->vsig_tbl));
memset(xlt2->t, 0, xlt2->count * sizeof(*xlt2->t));
memset(prof->t, 0, prof->count * sizeof(*prof->t));
memset(prof_redir->t, 0,
prof_redir->count * sizeof(*prof_redir->t));
memset(es->t, 0, es->count * sizeof(*es->t));
memset(es->ref_count, 0, es->count * sizeof(*es->ref_count));
memset(es->written, 0, es->count * sizeof(*es->written));
}
}
/**
* ice_init_hw_tbls - init hardware table memory
* @hw: pointer to the hardware structure
*/
enum ice_status ice_init_hw_tbls(struct ice_hw *hw)
{
u8 i;
for (i = 0; i < ICE_BLK_COUNT; i++) {
struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
struct ice_prof_tcam *prof = &hw->blk[i].prof;
struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
struct ice_es *es = &hw->blk[i].es;
u16 j;
if (hw->blk[i].is_list_init)
continue;
hw->blk[i].is_list_init = true;
hw->blk[i].overwrite = blk_sizes[i].overwrite;
es->reverse = blk_sizes[i].reverse;
xlt1->sid = ice_blk_sids[i][ICE_SID_XLT1_OFF];
xlt1->count = blk_sizes[i].xlt1;
xlt1->ptypes = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count,
sizeof(*xlt1->ptypes), GFP_KERNEL);
if (!xlt1->ptypes)
goto err;
xlt1->ptg_tbl = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_PTGS,
sizeof(*xlt1->ptg_tbl),
GFP_KERNEL);
if (!xlt1->ptg_tbl)
goto err;
xlt1->t = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count,
sizeof(*xlt1->t), GFP_KERNEL);
if (!xlt1->t)
goto err;
xlt2->sid = ice_blk_sids[i][ICE_SID_XLT2_OFF];
xlt2->count = blk_sizes[i].xlt2;
xlt2->vsis = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
sizeof(*xlt2->vsis), GFP_KERNEL);
if (!xlt2->vsis)
goto err;
xlt2->vsig_tbl = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
sizeof(*xlt2->vsig_tbl),
GFP_KERNEL);
if (!xlt2->vsig_tbl)
goto err;
for (j = 0; j < xlt2->count; j++)
INIT_LIST_HEAD(&xlt2->vsig_tbl[j].prop_lst);
xlt2->t = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
sizeof(*xlt2->t), GFP_KERNEL);
if (!xlt2->t)
goto err;
prof->sid = ice_blk_sids[i][ICE_SID_PR_OFF];
prof->count = blk_sizes[i].prof_tcam;
prof->max_prof_id = blk_sizes[i].prof_id;
prof->cdid_bits = blk_sizes[i].prof_cdid_bits;
prof->t = devm_kcalloc(ice_hw_to_dev(hw), prof->count,
sizeof(*prof->t), GFP_KERNEL);
if (!prof->t)
goto err;
prof_redir->sid = ice_blk_sids[i][ICE_SID_PR_REDIR_OFF];
prof_redir->count = blk_sizes[i].prof_redir;
prof_redir->t = devm_kcalloc(ice_hw_to_dev(hw),
prof_redir->count,
sizeof(*prof_redir->t),
GFP_KERNEL);
if (!prof_redir->t)
goto err;
es->sid = ice_blk_sids[i][ICE_SID_ES_OFF];
es->count = blk_sizes[i].es;
es->fvw = blk_sizes[i].fvw;
es->t = devm_kcalloc(ice_hw_to_dev(hw),
(u32)(es->count * es->fvw),
sizeof(*es->t), GFP_KERNEL);
if (!es->t)
goto err;
es->ref_count = devm_kcalloc(ice_hw_to_dev(hw), es->count,
sizeof(*es->ref_count),
GFP_KERNEL);
if (!es->ref_count)
goto err;
es->written = devm_kcalloc(ice_hw_to_dev(hw), es->count,
sizeof(*es->written), GFP_KERNEL);
if (!es->written)
goto err;
}
return 0;
err:
ice_free_hw_tbls(hw);
return ICE_ERR_NO_MEMORY;
}