blob: d8194892aeb640c05fe4879ea05d5bfa9bff9e5a [file] [log] [blame]
/* Copyright (c) 2016-2018, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/of.h>
#include <linux/pinctrl/consumer.h>
#include <linux/regulator/consumer.h>
#ifdef CNSS2_CPR
#include <soc/qcom/cmd-db.h>
#endif
#include "main.h"
#include "debug.h"
#ifdef CNSS2_VREG
static struct cnss_vreg_cfg cnss_vreg_list[] = {
{"vdd-wlan-core", 1300000, 1300000, 0, 0, 0},
{"vdd-wlan-io", 1800000, 1800000, 0, 0, 0},
{"vdd-wlan-xtal-aon", 0, 0, 0, 0, 0},
{"vdd-wlan-xtal", 1800000, 1800000, 0, 2, 0},
{"vdd-wlan", 0, 0, 0, 0, 0},
{"vdd-wlan-ctrl1", 0, 0, 0, 0, 0},
{"vdd-wlan-ctrl2", 0, 0, 0, 0, 0},
{"vdd-wlan-sp2t", 2700000, 2700000, 0, 0, 0},
{"wlan-ant-switch", 1800000, 1800000, 0, 0, 0},
{"wlan-soc-swreg", 1200000, 1200000, 0, 0, 0},
{"vdd-wlan-aon", 950000, 950000, 0, 0, 0},
{"vdd-wlan-dig", 950000, 952000, 0, 0, 0},
{"vdd-wlan-rfa1", 1900000, 1900000, 0, 0, 0},
{"vdd-wlan-rfa2", 1350000, 1350000, 0, 0, 0},
{"vdd-wlan-en", 0, 0, 0, 10, 0},
};
static struct cnss_clk_cfg cnss_clk_list[] = {
{"rf_clk", 0, 0},
};
#define CNSS_VREG_INFO_SIZE ARRAY_SIZE(cnss_vreg_list)
#define CNSS_CLK_INFO_SIZE ARRAY_SIZE(cnss_clk_list)
#define MAX_PROP_SIZE 32
#endif
#define BOOTSTRAP_GPIO "qcom,enable-bootstrap-gpio"
#define BOOTSTRAP_ACTIVE "bootstrap_active"
#define WLAN_EN_GPIO "wlan-en-gpio"
#define WLAN_EN_ACTIVE "wlan_en_active"
#define WLAN_EN_SLEEP "wlan_en_sleep"
#define BOOTSTRAP_DELAY 1000
#define WLAN_ENABLE_DELAY 1000
#define TCS_CMD_DATA_ADDR_OFFSET 0x4
#define TCS_OFFSET 0xC8
#define TCS_CMD_OFFSET 0x10
#define MAX_TCS_NUM 8
#define MAX_TCS_CMD_NUM 5
#define BT_CXMX_VOLTAGE_MV 950
#ifdef CNSS2_VREG
static int cnss_get_vreg_single(struct cnss_plat_data *plat_priv,
struct cnss_vreg_info *vreg)
{
int ret = 0;
struct device *dev;
struct regulator *reg;
const __be32 *prop;
char prop_name[MAX_PROP_SIZE] = {0};
int len;
dev = &plat_priv->plat_dev->dev;
reg = devm_regulator_get_optional(dev, vreg->cfg.name);
if (IS_ERR(reg)) {
ret = PTR_ERR(reg);
if (ret == -ENODEV)
return ret;
else if (ret == -EPROBE_DEFER)
cnss_pr_info("EPROBE_DEFER for regulator: %s\n",
vreg->cfg.name);
else
cnss_pr_err("Failed to get regulator %s, err = %d\n",
vreg->cfg.name, ret);
return ret;
}
vreg->reg = reg;
snprintf(prop_name, MAX_PROP_SIZE, "qcom,%s-config",
vreg->cfg.name);
prop = of_get_property(dev->of_node, prop_name, &len);
if (!prop || len != (5 * sizeof(__be32))) {
cnss_pr_dbg("Property %s %s, use default\n", prop_name,
prop ? "invalid format" : "doesn't exist");
} else {
vreg->cfg.min_uv = be32_to_cpup(&prop[0]);
vreg->cfg.max_uv = be32_to_cpup(&prop[1]);
vreg->cfg.load_ua = be32_to_cpup(&prop[2]);
vreg->cfg.delay_us = be32_to_cpup(&prop[3]);
vreg->cfg.need_unvote = be32_to_cpup(&prop[4]);
}
cnss_pr_dbg("Got regulator: %s, min_uv: %u, max_uv: %u, load_ua: %u, delay_us: %u, need_unvote: %u\n",
vreg->cfg.name, vreg->cfg.min_uv,
vreg->cfg.max_uv, vreg->cfg.load_ua,
vreg->cfg.delay_us, vreg->cfg.need_unvote);
return 0;
}
static void cnss_put_vreg_single(struct cnss_plat_data *plat_priv,
struct cnss_vreg_info *vreg)
{
struct device *dev = &plat_priv->plat_dev->dev;
cnss_pr_dbg("Put regulator: %s\n", vreg->cfg.name);
devm_regulator_put(vreg->reg);
devm_kfree(dev, vreg);
}
static int cnss_vreg_on_single(struct cnss_vreg_info *vreg)
{
int ret = 0;
if (vreg->enabled) {
cnss_pr_dbg("Regulator %s is already enabled\n",
vreg->cfg.name);
return 0;
}
cnss_pr_dbg("Regulator %s is being enabled\n", vreg->cfg.name);
if (vreg->cfg.min_uv != 0 && vreg->cfg.max_uv != 0) {
ret = regulator_set_voltage(vreg->reg,
vreg->cfg.min_uv,
vreg->cfg.max_uv);
if (ret) {
cnss_pr_err("Failed to set voltage for regulator %s, min_uv: %u, max_uv: %u, err = %d\n",
vreg->cfg.name, vreg->cfg.min_uv,
vreg->cfg.max_uv, ret);
goto out;
}
}
if (vreg->cfg.load_ua) {
ret = regulator_set_load(vreg->reg,
vreg->cfg.load_ua);
if (ret < 0) {
cnss_pr_err("Failed to set load for regulator %s, load: %u, err = %d\n",
vreg->cfg.name, vreg->cfg.load_ua,
ret);
goto out;
}
}
if (vreg->cfg.delay_us)
udelay(vreg->cfg.delay_us);
ret = regulator_enable(vreg->reg);
if (ret) {
cnss_pr_err("Failed to enable regulator %s, err = %d\n",
vreg->cfg.name, ret);
goto out;
}
vreg->enabled = true;
out:
return ret;
}
static int cnss_vreg_unvote_single(struct cnss_vreg_info *vreg)
{
int ret = 0;
if (!vreg->enabled) {
cnss_pr_dbg("Regulator %s is already disabled\n",
vreg->cfg.name);
return 0;
}
cnss_pr_dbg("Removing vote for Regulator %s\n", vreg->cfg.name);
if (vreg->cfg.load_ua) {
ret = regulator_set_load(vreg->reg, 0);
if (ret < 0)
cnss_pr_err("Failed to set load for regulator %s, err = %d\n",
vreg->cfg.name, ret);
}
if (vreg->cfg.min_uv != 0 && vreg->cfg.max_uv != 0) {
ret = regulator_set_voltage(vreg->reg, 0,
vreg->cfg.max_uv);
if (ret)
cnss_pr_err("Failed to set voltage for regulator %s, err = %d\n",
vreg->cfg.name, ret);
}
return ret;
}
static int cnss_vreg_off_single(struct cnss_vreg_info *vreg)
{
int ret = 0;
if (!vreg->enabled) {
cnss_pr_dbg("Regulator %s is already disabled\n",
vreg->cfg.name);
return 0;
}
cnss_pr_dbg("Regulator %s is being disabled\n",
vreg->cfg.name);
ret = regulator_disable(vreg->reg);
if (ret)
cnss_pr_err("Failed to disable regulator %s, err = %d\n",
vreg->cfg.name, ret);
if (vreg->cfg.load_ua) {
ret = regulator_set_load(vreg->reg, 0);
if (ret < 0)
cnss_pr_err("Failed to set load for regulator %s, err = %d\n",
vreg->cfg.name, ret);
}
if (vreg->cfg.min_uv != 0 && vreg->cfg.max_uv != 0) {
ret = regulator_set_voltage(vreg->reg, 0,
vreg->cfg.max_uv);
if (ret)
cnss_pr_err("Failed to set voltage for regulator %s, err = %d\n",
vreg->cfg.name, ret);
}
vreg->enabled = false;
return ret;
}
static struct cnss_vreg_cfg *get_vreg_list(u32 *vreg_list_size,
enum cnss_vreg_type type)
{
switch (type) {
case CNSS_VREG_PRIM:
*vreg_list_size = CNSS_VREG_INFO_SIZE;
return cnss_vreg_list;
default:
cnss_pr_err("Unsupported vreg type 0x%x\n", type);
*vreg_list_size = 0;
return NULL;
}
}
int cnss_get_vreg(struct cnss_plat_data *plat_priv)
{
int ret = 0;
int i;
struct cnss_vreg_info *vreg_info;
struct device *dev;
struct regulator *reg;
const __be32 *prop;
char prop_name[MAX_PROP_SIZE];
int len;
dev = &plat_priv->plat_dev->dev;
plat_priv->vreg_info = devm_kzalloc(dev, sizeof(cnss_vreg_info),
GFP_KERNEL);
if (!plat_priv->vreg_info) {
ret = -ENOMEM;
goto out;
}
memcpy(plat_priv->vreg_info, cnss_vreg_info, sizeof(cnss_vreg_info));
for (i = 0; i < CNSS_VREG_INFO_SIZE; i++) {
vreg_info = &plat_priv->vreg_info[i];
reg = devm_regulator_get_optional(dev, vreg_info->name);
if (IS_ERR(reg)) {
ret = PTR_ERR(reg);
if (ret == -ENODEV)
continue;
else if (ret == -EPROBE_DEFER)
cnss_pr_info("EPROBE_DEFER for regulator: %s\n",
vreg_info->name);
else
cnss_pr_err("Failed to get regulator %s, err = %d\n",
vreg_info->name, ret);
goto out;
}
vreg_info->reg = reg;
snprintf(prop_name, MAX_PROP_SIZE, "qcom,%s-info",
vreg_info->name);
prop = of_get_property(dev->of_node, prop_name, &len);
cnss_pr_dbg("Got regulator info, name: %s, len: %d\n",
prop_name, len);
if (!prop || len != (4 * sizeof(__be32))) {
cnss_pr_dbg("Property %s %s, use default\n", prop_name,
prop ? "invalid format" : "doesn't exist");
} else {
vreg_info->min_uv = be32_to_cpup(&prop[0]);
vreg_info->max_uv = be32_to_cpup(&prop[1]);
vreg_info->load_ua = be32_to_cpup(&prop[2]);
vreg_info->delay_us = be32_to_cpup(&prop[3]);
}
cnss_pr_dbg("Got regulator: %s, min_uv: %u, max_uv: %u, load_ua: %u, delay_us: %u\n",
vreg_info->name, vreg_info->min_uv,
vreg_info->max_uv, vreg_info->load_ua,
vreg_info->delay_us);
}
return 0;
out:
return ret;
}
#endif
#ifdef CONFIG_CNSS2_PM
static int cnss_vreg_on(struct cnss_plat_data *plat_priv)
{
int ret = 0;
struct cnss_vreg_info *vreg_info;
int i;
if (!plat_priv) {
printk(KERN_ERR "plat_priv is NULL!\n");
return -ENODEV;
}
for (i = 0; i < CNSS_VREG_INFO_SIZE; i++) {
vreg_info = &plat_priv->vreg_info[i];
if (!vreg_info->reg)
continue;
cnss_pr_dbg("Regulator %s is being enabled\n", vreg_info->name);
if (vreg_info->min_uv != 0 && vreg_info->max_uv != 0) {
ret = regulator_set_voltage(vreg_info->reg,
vreg_info->min_uv,
vreg_info->max_uv);
if (ret) {
cnss_pr_err("Failed to set voltage for regulator %s, min_uv: %u, max_uv: %u, err = %d\n",
vreg_info->name, vreg_info->min_uv,
vreg_info->max_uv, ret);
break;
}
}
if (vreg_info->load_ua) {
ret = regulator_set_load(vreg_info->reg,
vreg_info->load_ua);
if (ret < 0) {
cnss_pr_err("Failed to set load for regulator %s, load: %u, err = %d\n",
vreg_info->name, vreg_info->load_ua,
ret);
break;
}
}
if (vreg_info->delay_us)
udelay(vreg_info->delay_us);
ret = regulator_enable(vreg_info->reg);
if (ret) {
cnss_pr_err("Failed to enable regulator %s, err = %d\n",
vreg_info->name, ret);
break;
}
}
if (ret) {
for (; i >= 0; i--) {
vreg_info = &plat_priv->vreg_info[i];
if (!vreg_info->reg)
continue;
regulator_disable(vreg_info->reg);
if (vreg_info->load_ua)
regulator_set_load(vreg_info->reg, 0);
if (vreg_info->min_uv != 0 && vreg_info->max_uv != 0)
regulator_set_voltage(vreg_info->reg, 0,
vreg_info->max_uv);
}
return ret;
}
return 0;
}
static int cnss_vreg_off(struct cnss_plat_data *plat_priv)
{
int ret = 0;
struct cnss_vreg_info *vreg_info;
int i;
if (!plat_priv) {
pr_err("plat_priv is NULL!\n");
return -ENODEV;
}
for (i = CNSS_VREG_INFO_SIZE - 1; i >= 0; i--) {
vreg_info = &plat_priv->vreg_info[i];
if (!vreg_info->reg)
continue;
cnss_pr_dbg("Regulator %s is being disabled\n",
vreg_info->name);
ret = regulator_disable(vreg_info->reg);
if (ret)
cnss_pr_err("Failed to disable regulator %s, err = %d\n",
vreg_info->name, ret);
if (vreg_info->load_ua) {
ret = regulator_set_load(vreg_info->reg, 0);
if (ret < 0)
cnss_pr_err("Failed to set load for regulator %s, err = %d\n",
vreg_info->name, ret);
}
if (vreg_info->min_uv != 0 && vreg_info->max_uv != 0) {
ret = regulator_set_voltage(vreg_info->reg, 0,
vreg_info->max_uv);
if (ret)
cnss_pr_err("Failed to set voltage for regulator %s, err = %d\n",
vreg_info->name, ret);
}
}
return ret;
}
#endif
int cnss_get_pinctrl(struct cnss_plat_data *plat_priv)
{
int ret = 0;
struct device *dev;
struct cnss_pinctrl_info *pinctrl_info;
dev = &plat_priv->plat_dev->dev;
pinctrl_info = &plat_priv->pinctrl_info;
pinctrl_info->pinctrl = devm_pinctrl_get(dev);
if (IS_ERR_OR_NULL(pinctrl_info->pinctrl)) {
ret = PTR_ERR(pinctrl_info->pinctrl);
cnss_pr_err("Failed to get pinctrl, err = %d\n", ret);
goto out;
}
if (of_find_property(dev->of_node, WLAN_EN_GPIO, NULL)) {
pinctrl_info->wlan_en_active =
pinctrl_lookup_state(pinctrl_info->pinctrl,
WLAN_EN_ACTIVE);
if (IS_ERR_OR_NULL(pinctrl_info->wlan_en_active)) {
ret = PTR_ERR(pinctrl_info->wlan_en_active);
cnss_pr_err("Failed to get wlan_en active state, err = %d\n",
ret);
goto out;
}
pinctrl_info->wlan_en_sleep =
pinctrl_lookup_state(pinctrl_info->pinctrl,
WLAN_EN_SLEEP);
if (IS_ERR_OR_NULL(pinctrl_info->wlan_en_sleep)) {
ret = PTR_ERR(pinctrl_info->wlan_en_sleep);
cnss_pr_err("Failed to get wlan_en sleep state, err = %d\n",
ret);
goto out;
}
}
return 0;
out:
return ret;
}
#ifdef CONFIG_CNSS2_PM
static int cnss_select_pinctrl_state(struct cnss_plat_data *plat_priv,
bool state)
{
int ret = 0;
struct cnss_pinctrl_info *pinctrl_info;
if (!plat_priv) {
printk(KERN_ERR "plat_priv is NULL!\n");
ret = -ENODEV;
goto out;
}
pinctrl_info = &plat_priv->pinctrl_info;
if (state) {
if (!IS_ERR_OR_NULL(pinctrl_info->wlan_en_active)) {
ret = pinctrl_select_state(pinctrl_info->pinctrl,
pinctrl_info->
wlan_en_active);
if (ret) {
cnss_pr_err("Failed to select wlan_en active state, err = %d\n",
ret);
goto out;
}
udelay(WLAN_ENABLE_DELAY);
}
} else {
if (!IS_ERR_OR_NULL(pinctrl_info->wlan_en_sleep)) {
ret = pinctrl_select_state(pinctrl_info->pinctrl,
pinctrl_info->wlan_en_sleep);
if (ret) {
cnss_pr_err("Failed to select wlan_en sleep state, err = %d\n",
ret);
goto out;
}
}
}
return 0;
out:
return ret;
}
#endif
int cnss_power_on_device(struct cnss_plat_data *plat_priv, int device_id)
{
#ifdef CONFIG_CNSS2_PM
int ret;
if (!plat_priv) {
plat_priv = cnss_get_plat_priv_by_device_id(device_id);
if (!plat_priv) {
pr_err("%s: plat_priv is NULL: device id 0x%x\n",
__func__, device_id);
return -ENODEV;
}
}
ret = cnss_select_pinctrl_state(plat_priv, true);
if (ret) {
cnss_pr_err("Failed to select pinctrl state, err = %d\n", ret);
}
return ret;
#else
return 0;
#endif
}
EXPORT_SYMBOL(cnss_power_on_device);
int cnss_power_off_device(struct cnss_plat_data *plat_priv, int device_id)
{
#ifdef CONFIG_CNSS2_PM
int ret;
if (!plat_priv) {
plat_priv = cnss_get_plat_priv_by_device_id(device_id);
if (!plat_priv) {
pr_err("%s: plat_priv is NULL: device id 0x%x\n",
__func__, device_id);
return -ENODEV;
}
}
ret = cnss_select_pinctrl_state(plat_priv, false);
if (ret)
cnss_pr_err("Failed to select pinctrl state, err = %d\n", ret);
return ret;
#else
return 0;
#endif
}
EXPORT_SYMBOL(cnss_power_off_device);
void cnss_set_pin_connect_status(struct cnss_plat_data *plat_priv)
{
unsigned long pin_status = 0;
set_bit(CNSS_WLAN_EN, &pin_status);
set_bit(CNSS_PCIE_TXN, &pin_status);
set_bit(CNSS_PCIE_TXP, &pin_status);
set_bit(CNSS_PCIE_RXN, &pin_status);
set_bit(CNSS_PCIE_RXP, &pin_status);
set_bit(CNSS_PCIE_REFCLKN, &pin_status);
set_bit(CNSS_PCIE_REFCLKP, &pin_status);
set_bit(CNSS_PCIE_RST, &pin_status);
plat_priv->pin_result.host_pin_result = pin_status;
}
int cnss_get_cpr_info(struct cnss_plat_data *plat_priv)
{
#ifdef CNSS2_CPR
struct platform_device *plat_dev = plat_priv->plat_dev;
struct cnss_cpr_info *cpr_info = &plat_priv->cpr_info;
struct resource *res;
resource_size_t addr_len;
void __iomem *tcs_cmd_base_addr;
const char *cmd_db_name;
u32 cpr_pmic_addr = 0;
int ret = 0;
res = platform_get_resource_byname(plat_dev, IORESOURCE_MEM, "tcs_cmd");
if (!res) {
cnss_pr_dbg("TCS CMD address is not present for CPR\n");
goto out;
}
ret = of_property_read_string(plat_dev->dev.of_node,
"qcom,cmd_db_name", &cmd_db_name);
if (ret) {
cnss_pr_dbg("CommandDB name is not present for CPR\n");
goto out;
}
ret = cmd_db_ready();
if (ret) {
cnss_pr_err("CommandDB is not ready\n");
goto out;
}
cpr_pmic_addr = cmd_db_read_addr(cmd_db_name);
if (cpr_pmic_addr > 0) {
cpr_info->cpr_pmic_addr = cpr_pmic_addr;
cnss_pr_dbg("Get CPR PMIC address 0x%x from %s\n",
cpr_info->cpr_pmic_addr, cmd_db_name);
} else {
cnss_pr_err("CPR PMIC address is not available for %s\n",
cmd_db_name);
ret = -EINVAL;
goto out;
}
cpr_info->tcs_cmd_base_addr = res->start;
addr_len = resource_size(res);
cnss_pr_dbg("TCS CMD base address is %pa with length %pa\n",
&cpr_info->tcs_cmd_base_addr, &addr_len);
tcs_cmd_base_addr = devm_ioremap_resource(&plat_dev->dev, res);
if (IS_ERR(tcs_cmd_base_addr)) {
ret = PTR_ERR(tcs_cmd_base_addr);
cnss_pr_err("Failed to map TCS CMD address, err = %d\n",
ret);
goto out;
}
cpr_info->tcs_cmd_base_addr_io = tcs_cmd_base_addr;
return 0;
out:
return ret;
#endif
return 0;
}
int cnss_update_cpr_info(struct cnss_plat_data *plat_priv)
{
#ifdef CNSS2_CPR
struct cnss_cpr_info *cpr_info = &plat_priv->cpr_info;
u32 pmic_addr, voltage = 0, voltage_tmp, offset;
void __iomem *tcs_cmd_addr, *tcs_cmd_data_addr;
int i, j;
if (cpr_info->tcs_cmd_base_addr == 0) {
cnss_pr_dbg("CPR is not enabled\n");
return 0;
}
if (cpr_info->voltage == 0 || cpr_info->cpr_pmic_addr == 0) {
cnss_pr_err("Voltage %dmV or PMIC address 0x%x is not valid\n",
cpr_info->voltage, cpr_info->cpr_pmic_addr);
return -EINVAL;
}
if (cpr_info->tcs_cmd_data_addr_io)
goto update_cpr;
for (i = 0; i < MAX_TCS_NUM; i++) {
for (j = 0; j < MAX_TCS_CMD_NUM; j++) {
offset = i * TCS_OFFSET + j * TCS_CMD_OFFSET;
tcs_cmd_addr = cpr_info->tcs_cmd_base_addr_io + offset;
pmic_addr = readl_relaxed(tcs_cmd_addr);
if (pmic_addr == cpr_info->cpr_pmic_addr) {
tcs_cmd_data_addr = tcs_cmd_addr +
TCS_CMD_DATA_ADDR_OFFSET;
voltage_tmp = readl_relaxed(tcs_cmd_data_addr);
cnss_pr_dbg("Got voltage %dmV from i: %d, j: %d\n",
voltage_tmp, i, j);
if (voltage_tmp > voltage) {
voltage = voltage_tmp;
cpr_info->tcs_cmd_data_addr =
cpr_info->tcs_cmd_base_addr +
offset +
TCS_CMD_DATA_ADDR_OFFSET;
cpr_info->tcs_cmd_data_addr_io =
tcs_cmd_data_addr;
}
}
}
}
if (!cpr_info->tcs_cmd_data_addr_io) {
cnss_pr_err("Failed to find proper TCS CMD data address\n");
return -EINVAL;
}
update_cpr:
cpr_info->voltage = cpr_info->voltage > BT_CXMX_VOLTAGE_MV ?
cpr_info->voltage : BT_CXMX_VOLTAGE_MV;
cnss_pr_dbg("Update TCS CMD data address %pa with voltage %dmV\n",
&cpr_info->tcs_cmd_data_addr, cpr_info->voltage);
writel_relaxed(cpr_info->voltage, cpr_info->tcs_cmd_data_addr_io);
#endif
return 0;
}