blob: 54e263df8c0ee1bc3783b490fb795af3e8992e7a [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Driver for MikroTik RouterBoot soft config.
*
* Copyright (C) 2020 Thibaut VARĂˆNE <hacks+kernel@slashdirt.org>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
* This driver exposes the data encoded in the "soft_config" flash segment of
* MikroTik RouterBOARDs devices. It presents the data in a sysfs folder
* named "soft_config". The data is presented in a user/machine-friendly way
* with just as much parsing as can be generalized across mikrotik platforms
* (as inferred from reverse-engineering).
*
* The known soft_config tags are presented in the "soft_config" sysfs folder,
* with the addition of one specific file named "commit", which is only
* available if the driver supports writes to the mtd device: no modifications
* made to any of the other attributes are actually written back to flash media
* until a true value is input into this file (e.g. [Yy1]). This is to avoid
* unnecessary flash wear, and to permit to revert all changes by issuing a
* false value ([Nn0]). Reading the content of this file shows the current
* status of the driver: if the data in sysfs matches the content of the
* soft_config partition, the file will read "clean". Otherwise, it will read
* "dirty".
*
* The writeable sysfs files presented by this driver will accept only inputs
* which are in a valid range for the given tag. As a design choice, the driver
* will not assess whether the inputs are identical to the existing data.
*
* Note: PAGE_SIZE is assumed to be >= 4K, hence the device attribute show
* routines need not check for output overflow.
*
* Some constant defines extracted from rbcfg.h by Gabor Juhos
* <juhosg@openwrt.org>
*/
#include <linux/types.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include <linux/kobject.h>
#include <linux/string.h>
#include <linux/mtd/mtd.h>
#include <linux/sysfs.h>
#include <linux/version.h>
#include <linux/capability.h>
#include <linux/spinlock.h>
#include <linux/crc32.h>
#ifdef CONFIG_ATH79
#include <asm/mach-ath79/ath79.h>
#endif
#include "routerboot.h"
#define RB_SOFTCONFIG_VER "0.03"
#define RB_SC_PR_PFX "[rb_softconfig] "
/*
* mtd operations before 4.17 are asynchronous, not handled by this code
* Also make the driver act read-only if 4K_SECTORS are not enabled, since they
* are require to handle partial erasing of the small soft_config partition.
*/
#if defined(CONFIG_MTD_SPI_NOR_USE_4K_SECTORS)
#define RB_SC_HAS_WRITE_SUPPORT true
#define RB_SC_WMODE S_IWUSR
#define RB_SC_RMODE S_IRUSR
#else
#define RB_SC_HAS_WRITE_SUPPORT false
#define RB_SC_WMODE 0
#define RB_SC_RMODE S_IRUSR
#endif
/* ID values for software settings */
#define RB_SCID_UART_SPEED 0x01 // u32*1
#define RB_SCID_BOOT_DELAY 0x02 // u32*1
#define RB_SCID_BOOT_DEVICE 0x03 // u32*1
#define RB_SCID_BOOT_KEY 0x04 // u32*1
#define RB_SCID_CPU_MODE 0x05 // u32*1
#define RB_SCID_BIOS_VERSION 0x06 // str
#define RB_SCID_BOOT_PROTOCOL 0x09 // u32*1
#define RB_SCID_CPU_FREQ_IDX 0x0C // u32*1
#define RB_SCID_BOOTER 0x0D // u32*1
#define RB_SCID_SILENT_BOOT 0x0F // u32*1
/*
* protected_routerboot seems to use tag 0x1F. It only works in combination with
* RouterOS, resulting in a wiped board otherwise, so it's not implemented here.
* The tag values are as follows:
* - off: 0x0
* - on: the lower halfword encodes the max value in s for the reset feature,
* the higher halfword encodes the min value in s for the reset feature.
* Default value when on: 0x00140258: 0x14 = 20s / 0x258= 600s
* See details here: https://wiki.mikrotik.com/wiki/Manual:RouterBOARD_settings#Protected_bootloader
*/
/* Tag values */
#define RB_UART_SPEED_115200 0
#define RB_UART_SPEED_57600 1
#define RB_UART_SPEED_38400 2
#define RB_UART_SPEED_19200 3
#define RB_UART_SPEED_9600 4
#define RB_UART_SPEED_4800 5
#define RB_UART_SPEED_2400 6
#define RB_UART_SPEED_1200 7
#define RB_UART_SPEED_OFF 8
/* valid boot delay: 1 - 9s in 1s increment */
#define RB_BOOT_DELAY_MIN 1
#define RB_BOOT_DELAY_MAX 9
#define RB_BOOT_DEVICE_ETHER 0 // "boot over Ethernet"
#define RB_BOOT_DEVICE_NANDETH 1 // "boot from NAND, if fail then Ethernet"
#define RB_BOOT_DEVICE_CFCARD 2 // (not available in rbcfg)
#define RB_BOOT_DEVICE_ETHONCE 3 // "boot Ethernet once, then NAND"
#define RB_BOOT_DEVICE_NANDONLY 5 // "boot from NAND only"
#define RB_BOOT_DEVICE_FLASHCFG 7 // "boot in flash configuration mode"
#define RB_BOOT_DEVICE_FLSHONCE 8 // "boot in flash configuration mode once, then NAND"
/*
* ATH79 9xxx CPU frequency indices.
* It is unknown if they apply to all ATH79 RBs, and some do not seem to feature
* the upper levels (QCA955x), while F is presumably AR9344-only.
*/
#define RB_CPU_FREQ_IDX_ATH79_9X_A (0 << 3)
#define RB_CPU_FREQ_IDX_ATH79_9X_B (1 << 3) // 0x8
#define RB_CPU_FREQ_IDX_ATH79_9X_C (2 << 3) // 0x10 - factory freq for many devices
#define RB_CPU_FREQ_IDX_ATH79_9X_D (3 << 3) // 0x18
#define RB_CPU_FREQ_IDX_ATH79_9X_E (4 << 3) // 0x20
#define RB_CPU_FREQ_IDX_ATH79_9X_F (5 << 3) // 0x28
#define RB_CPU_FREQ_IDX_ATH79_9X_MIN 0 // all devices support lowest setting
#define RB_CPU_FREQ_IDX_ATH79_9X_AR9334_MAX 5 // stops at F
#define RB_CPU_FREQ_IDX_ATH79_9X_QCA953X_MAX 4 // stops at E
#define RB_CPU_FREQ_IDX_ATH79_9X_QCA9556_MAX 2 // stops at C
#define RB_CPU_FREQ_IDX_ATH79_9X_QCA9558_MAX 3 // stops at D
/* ATH79 7xxx CPU frequency indices. */
#define RB_CPU_FREQ_IDX_ATH79_7X_A ((0 * 9) << 4)
#define RB_CPU_FREQ_IDX_ATH79_7X_B ((1 * 9) << 4)
#define RB_CPU_FREQ_IDX_ATH79_7X_C ((2 * 9) << 4)
#define RB_CPU_FREQ_IDX_ATH79_7X_D ((3 * 9) << 4)
#define RB_CPU_FREQ_IDX_ATH79_7X_E ((4 * 9) << 4)
#define RB_CPU_FREQ_IDX_ATH79_7X_F ((5 * 9) << 4)
#define RB_CPU_FREQ_IDX_ATH79_7X_G ((6 * 9) << 4)
#define RB_CPU_FREQ_IDX_ATH79_7X_H ((7 * 9) << 4)
#define RB_CPU_FREQ_IDX_ATH79_7X_MIN 0 // all devices support lowest setting
#define RB_CPU_FREQ_IDX_ATH79_7X_AR724X_MAX 3 // stops at D
#define RB_CPU_FREQ_IDX_ATH79_7X_AR7161_MAX 7 // stops at H - check if applies to all AR71xx devices
#define RB_SC_CRC32_OFFSET 4 // located right after magic
static struct kobject *sc_kobj;
static u8 *sc_buf;
static size_t sc_buflen;
static rwlock_t sc_bufrwl; // rw lock to sc_buf
/* MUST be used with lock held */
#define RB_SC_CLRCRC() *(u32 *)(sc_buf + RB_SC_CRC32_OFFSET) = 0
#define RB_SC_GETCRC() *(u32 *)(sc_buf + RB_SC_CRC32_OFFSET)
#define RB_SC_SETCRC(_crc) *(u32 *)(sc_buf + RB_SC_CRC32_OFFSET) = (_crc)
struct sc_u32tvs {
const u32 val;
const char *str;
};
#define RB_SC_TVS(_val, _str) { \
.val = (_val), \
.str = (_str), \
}
static ssize_t sc_tag_show_u32tvs(const u8 *pld, u16 pld_len, char *buf,
const struct sc_u32tvs tvs[], const int tvselmts)
{
const char *fmt;
char *out = buf;
u32 data; // cpu-endian
int i;
// fallback to raw hex output if we can't handle the input
if (tvselmts < 0)
return routerboot_tag_show_u32s(pld, pld_len, buf);
if (sizeof(data) != pld_len)
return -EINVAL;
read_lock(&sc_bufrwl);
data = *(u32 *)pld; // pld aliases sc_buf
read_unlock(&sc_bufrwl);
for (i = 0; i < tvselmts; i++) {
fmt = (tvs[i].val == data) ? "[%s] " : "%s ";
out += sprintf(out, fmt, tvs[i].str);
}
out += sprintf(out, "\n");
return out - buf;
}
static ssize_t sc_tag_store_u32tvs(const u8 *pld, u16 pld_len, const char *buf, size_t count,
const struct sc_u32tvs tvs[], const int tvselmts)
{
int i;
if (tvselmts < 0)
return tvselmts;
if (sizeof(u32) != pld_len)
return -EINVAL;
for (i = 0; i < tvselmts; i++) {
if (sysfs_streq(buf, tvs[i].str)) {
write_lock(&sc_bufrwl);
*(u32 *)pld = tvs[i].val; // pld aliases sc_buf
RB_SC_CLRCRC();
write_unlock(&sc_bufrwl);
return count;
}
}
return -EINVAL;
}
struct sc_boolts {
const char *strfalse;
const char *strtrue;
};
static ssize_t sc_tag_show_boolts(const u8 *pld, u16 pld_len, char *buf,
const struct sc_boolts *bts)
{
const char *fmt;
char *out = buf;
u32 data; // cpu-endian
if (sizeof(data) != pld_len)
return -EINVAL;
read_lock(&sc_bufrwl);
data = *(u32 *)pld; // pld aliases sc_buf
read_unlock(&sc_bufrwl);
fmt = (data) ? "%s [%s]\n" : "[%s] %s\n";
out += sprintf(out, fmt, bts->strfalse, bts->strtrue);
return out - buf;
}
static ssize_t sc_tag_store_boolts(const u8 *pld, u16 pld_len, const char *buf, size_t count,
const struct sc_boolts *bts)
{
u32 data; // cpu-endian
if (sizeof(data) != pld_len)
return -EINVAL;
if (sysfs_streq(buf, bts->strfalse))
data = 0;
else if (sysfs_streq(buf, bts->strtrue))
data = 1;
else
return -EINVAL;
write_lock(&sc_bufrwl);
*(u32 *)pld = data; // pld aliases sc_buf
RB_SC_CLRCRC();
write_unlock(&sc_bufrwl);
return count;
}
static struct sc_u32tvs const sc_uartspeeds[] = {
RB_SC_TVS(RB_UART_SPEED_OFF, "off"),
RB_SC_TVS(RB_UART_SPEED_1200, "1200"),
RB_SC_TVS(RB_UART_SPEED_2400, "2400"),
RB_SC_TVS(RB_UART_SPEED_4800, "4800"),
RB_SC_TVS(RB_UART_SPEED_9600, "9600"),
RB_SC_TVS(RB_UART_SPEED_19200, "19200"),
RB_SC_TVS(RB_UART_SPEED_38400, "38400"),
RB_SC_TVS(RB_UART_SPEED_57600, "57600"),
RB_SC_TVS(RB_UART_SPEED_115200, "115200"),
};
/*
* While the defines are carried over from rbcfg, use strings that more clearly
* show the actual setting purpose (especially since the NAND* settings apply
* to both nand- and nor-based devices). "cfcard" was disabled in rbcfg: disable
* it here too.
*/
static struct sc_u32tvs const sc_bootdevices[] = {
RB_SC_TVS(RB_BOOT_DEVICE_ETHER, "eth"),
RB_SC_TVS(RB_BOOT_DEVICE_NANDETH, "flasheth"),
//RB_SC_TVS(RB_BOOT_DEVICE_CFCARD, "cfcard"),
RB_SC_TVS(RB_BOOT_DEVICE_ETHONCE, "ethonce"),
RB_SC_TVS(RB_BOOT_DEVICE_NANDONLY, "flash"),
RB_SC_TVS(RB_BOOT_DEVICE_FLASHCFG, "cfg"),
RB_SC_TVS(RB_BOOT_DEVICE_FLSHONCE, "cfgonce"),
};
static struct sc_boolts const sc_bootkey = {
.strfalse = "any",
.strtrue = "del",
};
static struct sc_boolts const sc_cpumode = {
.strfalse = "powersave",
.strtrue = "regular",
};
static struct sc_boolts const sc_bootproto = {
.strfalse = "bootp",
.strtrue = "dhcp",
};
static struct sc_boolts const sc_booter = {
.strfalse = "regular",
.strtrue = "backup",
};
static struct sc_boolts const sc_silent_boot = {
.strfalse = "off",
.strtrue = "on",
};
#define SC_TAG_SHOW_STORE_U32TVS_FUNCS(_name) \
static ssize_t sc_tag_show_##_name(const u8 *pld, u16 pld_len, char *buf) \
{ \
return sc_tag_show_u32tvs(pld, pld_len, buf, sc_##_name, ARRAY_SIZE(sc_##_name)); \
} \
static ssize_t sc_tag_store_##_name(const u8 *pld, u16 pld_len, const char *buf, size_t count) \
{ \
return sc_tag_store_u32tvs(pld, pld_len, buf, count, sc_##_name, ARRAY_SIZE(sc_##_name)); \
}
#define SC_TAG_SHOW_STORE_BOOLTS_FUNCS(_name) \
static ssize_t sc_tag_show_##_name(const u8 *pld, u16 pld_len, char *buf) \
{ \
return sc_tag_show_boolts(pld, pld_len, buf, &sc_##_name); \
} \
static ssize_t sc_tag_store_##_name(const u8 *pld, u16 pld_len, const char *buf, size_t count) \
{ \
return sc_tag_store_boolts(pld, pld_len, buf, count, &sc_##_name); \
}
SC_TAG_SHOW_STORE_U32TVS_FUNCS(uartspeeds)
SC_TAG_SHOW_STORE_U32TVS_FUNCS(bootdevices)
SC_TAG_SHOW_STORE_BOOLTS_FUNCS(bootkey)
SC_TAG_SHOW_STORE_BOOLTS_FUNCS(cpumode)
SC_TAG_SHOW_STORE_BOOLTS_FUNCS(bootproto)
SC_TAG_SHOW_STORE_BOOLTS_FUNCS(booter)
SC_TAG_SHOW_STORE_BOOLTS_FUNCS(silent_boot)
static ssize_t sc_tag_show_bootdelays(const u8 *pld, u16 pld_len, char *buf)
{
const char *fmt;
char *out = buf;
u32 data; // cpu-endian
int i;
if (sizeof(data) != pld_len)
return -EINVAL;
read_lock(&sc_bufrwl);
data = *(u32 *)pld; // pld aliases sc_buf
read_unlock(&sc_bufrwl);
for (i = RB_BOOT_DELAY_MIN; i <= RB_BOOT_DELAY_MAX; i++) {
fmt = (i == data) ? "[%d] " : "%d ";
out += sprintf(out, fmt, i);
}
out += sprintf(out, "\n");
return out - buf;
}
static ssize_t sc_tag_store_bootdelays(const u8 *pld, u16 pld_len, const char *buf, size_t count)
{
u32 data; // cpu-endian
int ret;
if (sizeof(data) != pld_len)
return -EINVAL;
ret = kstrtou32(buf, 10, &data);
if (ret)
return ret;
if ((data < RB_BOOT_DELAY_MIN) || (RB_BOOT_DELAY_MAX < data))
return -EINVAL;
write_lock(&sc_bufrwl);
*(u32 *)pld = data; // pld aliases sc_buf
RB_SC_CLRCRC();
write_unlock(&sc_bufrwl);
return count;
}
/* Support CPU frequency accessors only when the tag format has been asserted */
#if defined(CONFIG_ATH79)
/* Use the same letter-based nomenclature as RouterBOOT */
static struct sc_u32tvs const sc_cpufreq_indexes_ath79_9x[] = {
RB_SC_TVS(RB_CPU_FREQ_IDX_ATH79_9X_A, "a"),
RB_SC_TVS(RB_CPU_FREQ_IDX_ATH79_9X_B, "b"),
RB_SC_TVS(RB_CPU_FREQ_IDX_ATH79_9X_C, "c"),
RB_SC_TVS(RB_CPU_FREQ_IDX_ATH79_9X_D, "d"),
RB_SC_TVS(RB_CPU_FREQ_IDX_ATH79_9X_E, "e"),
RB_SC_TVS(RB_CPU_FREQ_IDX_ATH79_9X_F, "f"),
};
static struct sc_u32tvs const sc_cpufreq_indexes_ath79_7x[] = {
RB_SC_TVS(RB_CPU_FREQ_IDX_ATH79_7X_A, "a"),
RB_SC_TVS(RB_CPU_FREQ_IDX_ATH79_7X_B, "b"),
RB_SC_TVS(RB_CPU_FREQ_IDX_ATH79_7X_C, "c"),
RB_SC_TVS(RB_CPU_FREQ_IDX_ATH79_7X_D, "d"),
RB_SC_TVS(RB_CPU_FREQ_IDX_ATH79_7X_E, "e"),
RB_SC_TVS(RB_CPU_FREQ_IDX_ATH79_7X_F, "f"),
RB_SC_TVS(RB_CPU_FREQ_IDX_ATH79_7X_G, "g"),
RB_SC_TVS(RB_CPU_FREQ_IDX_ATH79_7X_H, "h"),
};
static int sc_tag_cpufreq_ath79_arraysize(void)
{
int idx_max;
if (ATH79_SOC_AR7161 == ath79_soc)
idx_max = RB_CPU_FREQ_IDX_ATH79_7X_AR7161_MAX+1;
else if (soc_is_ar724x())
idx_max = RB_CPU_FREQ_IDX_ATH79_7X_AR724X_MAX+1;
else if (soc_is_ar9344())
idx_max = RB_CPU_FREQ_IDX_ATH79_9X_AR9334_MAX+1;
else if (soc_is_qca953x())
idx_max = RB_CPU_FREQ_IDX_ATH79_9X_QCA953X_MAX+1;
else if (soc_is_qca9556())
idx_max = RB_CPU_FREQ_IDX_ATH79_9X_QCA9556_MAX+1;
else if (soc_is_qca9558())
idx_max = RB_CPU_FREQ_IDX_ATH79_9X_QCA9558_MAX+1;
else
idx_max = -EOPNOTSUPP;
return idx_max;
}
static ssize_t sc_tag_show_cpufreq_indexes(const u8 *pld, u16 pld_len, char *buf)
{
const struct sc_u32tvs *tvs;
if (soc_is_ar71xx() || soc_is_ar724x())
tvs = sc_cpufreq_indexes_ath79_7x;
else
tvs = sc_cpufreq_indexes_ath79_9x;
return sc_tag_show_u32tvs(pld, pld_len, buf, tvs, sc_tag_cpufreq_ath79_arraysize());
}
static ssize_t sc_tag_store_cpufreq_indexes(const u8 *pld, u16 pld_len, const char *buf, size_t count)
{
const struct sc_u32tvs *tvs;
if (soc_is_ar71xx() || soc_is_ar724x())
tvs = sc_cpufreq_indexes_ath79_7x;
else
tvs = sc_cpufreq_indexes_ath79_9x;
return sc_tag_store_u32tvs(pld, pld_len, buf, count, tvs, sc_tag_cpufreq_ath79_arraysize());
}
#else
/* By default we only show the raw value to help with reverse-engineering */
#define sc_tag_show_cpufreq_indexes routerboot_tag_show_u32s
#define sc_tag_store_cpufreq_indexes NULL
#endif
static ssize_t sc_attr_show(struct kobject *kobj, struct kobj_attribute *attr,
char *buf);
static ssize_t sc_attr_store(struct kobject *kobj, struct kobj_attribute *attr,
const char *buf, size_t count);
/* Array of known tags to publish in sysfs */
static struct sc_attr {
const u16 tag_id;
/* sysfs tag show attribute. Must lock sc_buf when dereferencing pld */
ssize_t (* const tshow)(const u8 *pld, u16 pld_len, char *buf);
/* sysfs tag store attribute. Must lock sc_buf when dereferencing pld */
ssize_t (* const tstore)(const u8 *pld, u16 pld_len, const char *buf, size_t count);
struct kobj_attribute kattr;
u16 pld_ofs;
u16 pld_len;
} sc_attrs[] = {
{
.tag_id = RB_SCID_UART_SPEED,
.tshow = sc_tag_show_uartspeeds,
.tstore = sc_tag_store_uartspeeds,
.kattr = __ATTR(uart_speed, RB_SC_RMODE|RB_SC_WMODE, sc_attr_show, sc_attr_store),
}, {
.tag_id = RB_SCID_BOOT_DELAY,
.tshow = sc_tag_show_bootdelays,
.tstore = sc_tag_store_bootdelays,
.kattr = __ATTR(boot_delay, RB_SC_RMODE|RB_SC_WMODE, sc_attr_show, sc_attr_store),
}, {
.tag_id = RB_SCID_BOOT_DEVICE,
.tshow = sc_tag_show_bootdevices,
.tstore = sc_tag_store_bootdevices,
.kattr = __ATTR(boot_device, RB_SC_RMODE|RB_SC_WMODE, sc_attr_show, sc_attr_store),
}, {
.tag_id = RB_SCID_BOOT_KEY,
.tshow = sc_tag_show_bootkey,
.tstore = sc_tag_store_bootkey,
.kattr = __ATTR(boot_key, RB_SC_RMODE|RB_SC_WMODE, sc_attr_show, sc_attr_store),
}, {
.tag_id = RB_SCID_CPU_MODE,
.tshow = sc_tag_show_cpumode,
.tstore = sc_tag_store_cpumode,
.kattr = __ATTR(cpu_mode, RB_SC_RMODE|RB_SC_WMODE, sc_attr_show, sc_attr_store),
}, {
.tag_id = RB_SCID_BIOS_VERSION,
.tshow = routerboot_tag_show_string,
.tstore = NULL,
.kattr = __ATTR(bios_version, RB_SC_RMODE, sc_attr_show, NULL),
}, {
.tag_id = RB_SCID_BOOT_PROTOCOL,
.tshow = sc_tag_show_bootproto,
.tstore = sc_tag_store_bootproto,
.kattr = __ATTR(boot_proto, RB_SC_RMODE|RB_SC_WMODE, sc_attr_show, sc_attr_store),
}, {
.tag_id = RB_SCID_CPU_FREQ_IDX,
.tshow = sc_tag_show_cpufreq_indexes,
.tstore = sc_tag_store_cpufreq_indexes,
.kattr = __ATTR(cpufreq_index, RB_SC_RMODE|RB_SC_WMODE, sc_attr_show, sc_attr_store),
}, {
.tag_id = RB_SCID_BOOTER,
.tshow = sc_tag_show_booter,
.tstore = sc_tag_store_booter,
.kattr = __ATTR(booter, RB_SC_RMODE|RB_SC_WMODE, sc_attr_show, sc_attr_store),
}, {
.tag_id = RB_SCID_SILENT_BOOT,
.tshow = sc_tag_show_silent_boot,
.tstore = sc_tag_store_silent_boot,
.kattr = __ATTR(silent_boot, RB_SC_RMODE|RB_SC_WMODE, sc_attr_show, sc_attr_store),
},
};
static ssize_t sc_attr_show(struct kobject *kobj, struct kobj_attribute *attr,
char *buf)
{
const struct sc_attr *sc_attr;
const u8 *pld;
u16 pld_len;
sc_attr = container_of(attr, typeof(*sc_attr), kattr);
if (!sc_attr->pld_len)
return -ENOENT;
pld = sc_buf + sc_attr->pld_ofs; // pld aliases sc_buf -> lock!
pld_len = sc_attr->pld_len;
return sc_attr->tshow(pld, pld_len, buf);
}
static ssize_t sc_attr_store(struct kobject *kobj, struct kobj_attribute *attr,
const char *buf, size_t count)
{
const struct sc_attr *sc_attr;
const u8 *pld;
u16 pld_len;
if (!RB_SC_HAS_WRITE_SUPPORT)
return -EOPNOTSUPP;
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
sc_attr = container_of(attr, typeof(*sc_attr), kattr);
if (!sc_attr->tstore)
return -EOPNOTSUPP;
if (!sc_attr->pld_len)
return -ENOENT;
pld = sc_buf + sc_attr->pld_ofs; // pld aliases sc_buf -> lock!
pld_len = sc_attr->pld_len;
return sc_attr->tstore(pld, pld_len, buf, count);
}
/*
* Shows the current buffer status:
* "clean": the buffer is in sync with the mtd data
* "dirty": the buffer is out of sync with the mtd data
*/
static ssize_t sc_commit_show(struct kobject *kobj, struct kobj_attribute *attr,
char *buf)
{
const char *str;
char *out = buf;
u32 crc;
read_lock(&sc_bufrwl);
crc = RB_SC_GETCRC();
read_unlock(&sc_bufrwl);
str = (crc) ? "clean" : "dirty";
out += sprintf(out, "%s\n", str);
return out - buf;
}
/*
* Performs buffer flushing:
* This routine expects an input compatible with kstrtobool().
* - a "false" input discards the current changes and reads data back from mtd.
* - a "true" input commits the current changes to mtd.
* If there is no pending changes, this routine is a no-op.
* Handling failures is left as an exercise to userspace.
*/
static ssize_t sc_commit_store(struct kobject *kobj, struct kobj_attribute *attr,
const char *buf, size_t count)
{
struct mtd_info *mtd;
struct erase_info ei;
size_t bytes_rw, ret = count;
bool flush;
u32 crc;
if (!RB_SC_HAS_WRITE_SUPPORT)
return -EOPNOTSUPP;
read_lock(&sc_bufrwl);
crc = RB_SC_GETCRC();
read_unlock(&sc_bufrwl);
if (crc)
return count; // NO-OP
ret = kstrtobool(buf, &flush);
if (ret)
return ret;
mtd = get_mtd_device_nm(RB_MTD_SOFT_CONFIG); // TODO allow override
if (IS_ERR(mtd))
return -ENODEV;
write_lock(&sc_bufrwl);
if (!flush) // reread
ret = mtd_read(mtd, 0, mtd->size, &bytes_rw, sc_buf);
else { // crc32 + commit
/*
* CRC32 is computed on the entire buffer, excluding the CRC
* value itself. CRC is already null when we reach this point,
* so we can compute the CRC32 on the buffer as is.
* The expected CRC32 is Ethernet FCS style, meaning the seed is
* ~0 and the final result is also bitflipped.
*/
crc = ~crc32(~0, sc_buf, sc_buflen);
RB_SC_SETCRC(crc);
/*
* The soft_config partition is assumed to be entirely contained
* in a single eraseblock.
*/
ei.addr = 0;
ei.len = mtd->size;
ret = mtd_erase(mtd, &ei);
if (!ret)
ret = mtd_write(mtd, 0, mtd->size, &bytes_rw, sc_buf);
/*
* Handling mtd_write() failure here is a tricky situation. The
* proposed approach is to let userspace deal with retrying,
* with the caveat that it must try to flush the buffer again as
* rereading the mtd contents could potentially read garbage.
* The rationale is: even if we keep a shadow buffer of the
* original content, there is no guarantee that we will ever be
* able to write it anyway.
* Regardless, it appears that RouterBOOT will ignore an invalid
* soft_config (including a completely wiped segment) and will
* write back factory defaults when it happens.
*/
}
write_unlock(&sc_bufrwl);
if (ret)
goto mtdfail;
if (bytes_rw != sc_buflen) {
ret = -EIO;
goto mtdfail;
}
return count;
mtdfail:
RB_SC_CLRCRC(); // mark buffer content as dirty/invalid
return ret;
}
static struct kobj_attribute sc_kattrcommit = __ATTR(commit, RB_SC_RMODE|RB_SC_WMODE, sc_commit_show, sc_commit_store);
int __init rb_softconfig_init(struct kobject *rb_kobj)
{
struct mtd_info *mtd;
size_t bytes_read, buflen;
const u8 *buf;
int i, ret;
u32 magic;
sc_buf = NULL;
sc_kobj = NULL;
// TODO allow override
mtd = get_mtd_device_nm(RB_MTD_SOFT_CONFIG);
if (IS_ERR(mtd))
return -ENODEV;
sc_buflen = mtd->size;
sc_buf = kmalloc(sc_buflen, GFP_KERNEL);
if (!sc_buf)
return -ENOMEM;
ret = mtd_read(mtd, 0, sc_buflen, &bytes_read, sc_buf);
if (ret)
goto fail;
if (bytes_read != sc_buflen) {
ret = -EIO;
goto fail;
}
/* Check we have what we expect */
magic = *(const u32 *)sc_buf;
if (RB_MAGIC_SOFT != magic) {
ret = -EINVAL;
goto fail;
}
/* Skip magic and 32bit CRC located immediately after */
buf = sc_buf + (sizeof(magic) + sizeof(u32));
buflen = sc_buflen - (sizeof(magic) + sizeof(u32));
/* Populate sysfs */
ret = -ENOMEM;
sc_kobj = kobject_create_and_add(RB_MTD_SOFT_CONFIG, rb_kobj);
if (!sc_kobj)
goto fail;
rwlock_init(&sc_bufrwl);
/* Locate and publish all known tags */
for (i = 0; i < ARRAY_SIZE(sc_attrs); i++) {
ret = routerboot_tag_find(buf, buflen, sc_attrs[i].tag_id,
&sc_attrs[i].pld_ofs, &sc_attrs[i].pld_len);
if (ret) {
sc_attrs[i].pld_ofs = sc_attrs[i].pld_len = 0;
continue;
}
/* Account for skipped magic and crc32 */
sc_attrs[i].pld_ofs += sizeof(magic) + sizeof(u32);
ret = sysfs_create_file(sc_kobj, &sc_attrs[i].kattr.attr);
if (ret)
pr_warn(RB_SC_PR_PFX "Could not create %s sysfs entry (%d)\n",
sc_attrs[i].kattr.attr.name, ret);
}
/* Finally add the 'commit' attribute */
if (RB_SC_HAS_WRITE_SUPPORT) {
ret = sysfs_create_file(sc_kobj, &sc_kattrcommit.attr);
if (ret) {
pr_err(RB_SC_PR_PFX "Could not create %s sysfs entry (%d), aborting!\n",
sc_kattrcommit.attr.name, ret);
goto sysfsfail; // required attribute
}
}
pr_info("MikroTik RouterBOARD software configuration sysfs driver v" RB_SOFTCONFIG_VER "\n");
return 0;
sysfsfail:
kobject_put(sc_kobj);
sc_kobj = NULL;
fail:
kfree(sc_buf);
sc_buf = NULL;
return ret;
}
void __exit rb_softconfig_exit(void)
{
kobject_put(sc_kobj);
kfree(sc_buf);
}