blob: b9ec61afe80d973af7d314bf9ff41dc4b75b1405 [file] [log] [blame]
/*
* Copyright (c) 2017, The Linux Foundation. All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/err.h>
#include <linux/platform_device.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/slab.h>
#include <linux/thermal.h>
#include "cpr3-regulator.h"
#define IPQ807x_NPU_FUSE_CORNERS 2
#define IPQ817x_NPU_FUSE_CORNERS 1
#define IPQ807x_NPU_FUSE_STEP_VOLT 8000
#define IPQ807x_NPU_VOLTAGE_FUSE_SIZE 6
#define IPQ807x_NPU_CPR_CLOCK_RATE 19200000
#define IPQ807x_NPU_CPR_TCSR_START 6
#define IPQ807x_NPU_CPR_TCSR_END 7
#define NPU_TSENS 5
u32 g_valid_npu_fuse_count = IPQ807x_NPU_FUSE_CORNERS;
/**
* struct cpr3_ipq807x_npu_fuses - NPU specific fuse data for IPQ807x
* @init_voltage: Initial (i.e. open-loop) voltage fuse parameter value
* for each fuse corner (raw, not converted to a voltage)
* This struct holds the values for all of the fuses read from memory.
*/
struct cpr3_ipq807x_npu_fuses {
u64 init_voltage[IPQ807x_NPU_FUSE_CORNERS];
};
/*
* Constants which define the name of each fuse corner.
*/
enum cpr3_ipq807x_npu_fuse_corner {
CPR3_IPQ807x_NPU_FUSE_CORNER_NOM = 0,
CPR3_IPQ807x_NPU_FUSE_CORNER_TURBO = 1,
};
static const char * const cpr3_ipq807x_npu_fuse_corner_name[] = {
[CPR3_IPQ807x_NPU_FUSE_CORNER_NOM] = "NOM",
[CPR3_IPQ807x_NPU_FUSE_CORNER_TURBO] = "TURBO",
};
/*
* IPQ807x NPU fuse parameter locations:
*
* Structs are organized with the following dimensions:
* Outer: 0 to 1 for fuse corners from lowest to highest corner
* Inner: large enough to hold the longest set of parameter segments which
* fully defines a fuse parameter, +1 (for NULL termination).
* Each segment corresponds to a contiguous group of bits from a
* single fuse row. These segments are concatentated together in
* order to form the full fuse parameter value. The segments for
* a given parameter may correspond to different fuse rows.
*/
static const struct cpr3_fuse_param
ipq807x_npu_init_voltage_param[IPQ807x_NPU_FUSE_CORNERS][2] = {
{{73, 22, 27}, {} },
{{73, 16, 21}, {} },
};
/*
* Open loop voltage fuse reference voltages in microvolts for IPQ807x
*/
static const int
ipq807x_npu_fuse_ref_volt [IPQ807x_NPU_FUSE_CORNERS] = {
912000,
992000,
};
struct cpr3_controller *g_ctrl;
void cpr3_npu_temp_notify(int sensor, int temp, int low_notif)
{
u32 prev_sensor_state;
if (sensor != NPU_TSENS)
return;
prev_sensor_state = g_ctrl->cur_sensor_state;
if (low_notif)
g_ctrl->cur_sensor_state |= BIT(sensor);
else
g_ctrl->cur_sensor_state &= ~BIT(sensor);
if (!prev_sensor_state && g_ctrl->cur_sensor_state)
cpr3_handle_temp_open_loop_adjustment(g_ctrl, true);
else if (prev_sensor_state && !g_ctrl->cur_sensor_state)
cpr3_handle_temp_open_loop_adjustment(g_ctrl, false);
}
/**
* cpr3_ipq807x_npu_read_fuse_data() - load NPU specific fuse parameter values
* @vreg: Pointer to the CPR3 regulator
*
* This function allocates a cpr3_ipq807x_npu_fuses struct, fills it with
* values read out of hardware fuses, and finally copies common fuse values
* into the CPR3 regulator struct.
*
* Return: 0 on success, errno on failure
*/
static int cpr3_ipq807x_npu_read_fuse_data(struct cpr3_regulator *vreg)
{
void __iomem *base = vreg->thread->ctrl->fuse_base;
struct cpr3_ipq807x_npu_fuses *fuse;
int i, rc;
fuse = devm_kzalloc(vreg->thread->ctrl->dev, sizeof(*fuse), GFP_KERNEL);
if (!fuse)
return -ENOMEM;
for (i = 0; i < g_valid_npu_fuse_count; i++) {
rc = cpr3_read_fuse_param(base,
ipq807x_npu_init_voltage_param[i],
&fuse->init_voltage[i]);
if (rc) {
cpr3_err(vreg, "Unable to read fuse-corner %d initial voltage fuse, rc=%d\n",
i, rc);
return rc;
}
}
vreg->fuse_corner_count = g_valid_npu_fuse_count;
vreg->platform_fuses = fuse;
return 0;
}
/**
* cpr3_npu_parse_corner_data() - parse NPU corner data from device tree
* properties of the CPR3 regulator's device node
* @vreg: Pointer to the CPR3 regulator
*
* Return: 0 on success, errno on failure
*/
static int cpr3_npu_parse_corner_data(struct cpr3_regulator *vreg)
{
int rc;
rc = cpr3_parse_common_corner_data(vreg);
if (rc) {
cpr3_err(vreg, "error reading corner data, rc=%d\n", rc);
return rc;
}
return rc;
}
/**
* cpr3_ipq807x_npu_calculate_open_loop_voltages() - calculate the open-loop
* voltage for each corner of a CPR3 regulator
* @vreg: Pointer to the CPR3 regulator
* @temp_correction: Temperature based correction
*
* If open-loop voltage interpolation is allowed in device tree, then
* this function calculates the open-loop voltage for a given corner using
* linear interpolation. This interpolation is performed using the processor
* frequencies of the lower and higher Fmax corners along with their fused
* open-loop voltages.
*
* If open-loop voltage interpolation is not allowed, then this function uses
* the Fmax fused open-loop voltage for all of the corners associated with a
* given fuse corner.
*
* Return: 0 on success, errno on failure
*/
static int cpr3_ipq807x_npu_calculate_open_loop_voltages(
struct cpr3_regulator *vreg, bool temp_correction)
{
struct cpr3_ipq807x_npu_fuses *fuse = vreg->platform_fuses;
struct cpr3_controller *ctrl = vreg->thread->ctrl;
int i, j, rc = 0;
u64 freq_low, volt_low, freq_high, volt_high;
int *fuse_volt;
int *fmax_corner;
fuse_volt = kcalloc(vreg->fuse_corner_count, sizeof(*fuse_volt),
GFP_KERNEL);
fmax_corner = kcalloc(vreg->fuse_corner_count, sizeof(*fmax_corner),
GFP_KERNEL);
if (!fuse_volt || !fmax_corner) {
rc = -ENOMEM;
goto done;
}
for (i = 0; i < vreg->fuse_corner_count; i++) {
if (ctrl->cpr_global_setting == CPR_DISABLED)
fuse_volt[i] = ipq807x_npu_fuse_ref_volt[i];
else
fuse_volt[i] = cpr3_convert_open_loop_voltage_fuse(
ipq807x_npu_fuse_ref_volt[i],
IPQ807x_NPU_FUSE_STEP_VOLT,
fuse->init_voltage[i],
IPQ807x_NPU_VOLTAGE_FUSE_SIZE);
/* Log fused open-loop voltage values for debugging purposes. */
cpr3_info(vreg, "fused %8s: open-loop=%7d uV\n",
cpr3_ipq807x_npu_fuse_corner_name[i],
fuse_volt[i]);
}
rc = cpr3_determine_part_type(vreg,
fuse_volt[CPR3_IPQ807x_NPU_FUSE_CORNER_TURBO]);
if (rc) {
cpr3_err(vreg,
"fused part type detection failed failed, rc=%d\n", rc);
goto done;
}
rc = cpr3_adjust_fused_open_loop_voltages(vreg, fuse_volt);
if (rc) {
cpr3_err(vreg,
"fused open-loop voltage adjustment failed, rc=%d\n",
rc);
goto done;
}
if (temp_correction) {
rc = cpr3_determine_temp_base_open_loop_correction(vreg,
fuse_volt);
if (rc) {
cpr3_err(vreg,
"temp open-loop voltage adj. failed, rc=%d\n",
rc);
goto done;
}
}
for (i = 1; i < vreg->fuse_corner_count; i++) {
if (fuse_volt[i] < fuse_volt[i - 1]) {
cpr3_info(vreg,
"fuse corner %d voltage=%d uV < fuse corner %d \
voltage=%d uV; overriding: fuse corner %d \
voltage=%d\n",
i, fuse_volt[i], i - 1, fuse_volt[i - 1],
i, fuse_volt[i - 1]);
fuse_volt[i] = fuse_volt[i - 1];
}
}
/* Determine highest corner mapped to each fuse corner */
j = vreg->fuse_corner_count - 1;
for (i = vreg->corner_count - 1; i >= 0; i--) {
if (vreg->corner[i].cpr_fuse_corner == j) {
fmax_corner[j] = i;
j--;
}
}
if (j >= 0) {
cpr3_err(vreg, "invalid fuse corner mapping\n");
rc = -EINVAL;
goto done;
}
/*
* Interpolation is not possible for corners mapped to the lowest fuse
* corner so use the fuse corner value directly.
*/
for (i = 0; i <= fmax_corner[0]; i++)
vreg->corner[i].open_loop_volt = fuse_volt[0];
/* Interpolate voltages for the higher fuse corners. */
for (i = 1; i < vreg->fuse_corner_count; i++) {
freq_low = vreg->corner[fmax_corner[i - 1]].proc_freq;
volt_low = fuse_volt[i - 1];
freq_high = vreg->corner[fmax_corner[i]].proc_freq;
volt_high = fuse_volt[i];
for (j = fmax_corner[i - 1] + 1; j <= fmax_corner[i]; j++)
vreg->corner[j].open_loop_volt = cpr3_interpolate(
freq_low, volt_low, freq_high, volt_high,
vreg->corner[j].proc_freq);
}
done:
if (rc == 0) {
cpr3_debug(vreg, "unadjusted per-corner open-loop voltages:\n");
for (i = 0; i < vreg->corner_count; i++)
cpr3_debug(vreg, "open-loop[%2d] = %d uV\n", i,
vreg->corner[i].open_loop_volt);
rc = cpr3_adjust_open_loop_voltages(vreg);
if (rc)
cpr3_err(vreg,
"open-loop voltage adjustment failed, rc=%d\n",
rc);
}
kfree(fuse_volt);
kfree(fmax_corner);
return rc;
}
/**
* cpr3_npu_print_settings() - print out NPU CPR configuration settings into
* the kernel log for debugging purposes
* @vreg: Pointer to the CPR3 regulator
*/
static void cpr3_npu_print_settings(struct cpr3_regulator *vreg)
{
struct cpr3_corner *corner;
int i;
cpr3_debug(vreg,
"Corner: Frequency (Hz), Fuse Corner, Floor (uV), \
Open-Loop (uV), Ceiling (uV)\n");
for (i = 0; i < vreg->corner_count; i++) {
corner = &vreg->corner[i];
cpr3_debug(vreg, "%3d: %10u, %2d, %7d, %7d, %7d\n",
i, corner->proc_freq, corner->cpr_fuse_corner,
corner->floor_volt, corner->open_loop_volt,
corner->ceiling_volt);
}
if (vreg->thread->ctrl->apm)
cpr3_debug(vreg, "APM threshold = %d uV, APM adjust = %d uV\n",
vreg->thread->ctrl->apm_threshold_volt,
vreg->thread->ctrl->apm_adj_volt);
}
/**
* cpr3_ipq807x_npu_calc_temp_based_ol_voltages() - Calculate the open loop
* voltages based on temperature based correction margins
* @vreg: Pointer to the CPR3 regulator
*/
static int
cpr3_ipq807x_npu_calc_temp_based_ol_voltages(struct cpr3_regulator *vreg,
bool temp_correction)
{
int rc, i;
rc = cpr3_ipq807x_npu_calculate_open_loop_voltages(vreg,
temp_correction);
if (rc) {
cpr3_err(vreg,
"unable to calculate open-loop voltages, rc=%d\n", rc);
return rc;
}
rc = cpr3_limit_open_loop_voltages(vreg);
if (rc) {
cpr3_err(vreg, "unable to limit open-loop voltages, rc=%d\n",
rc);
return rc;
}
cpr3_open_loop_voltage_as_ceiling(vreg);
rc = cpr3_limit_floor_voltages(vreg);
if (rc) {
cpr3_err(vreg, "unable to limit floor voltages, rc=%d\n", rc);
return rc;
}
for (i = 0; i < vreg->corner_count; i++) {
if (temp_correction)
vreg->corner[i].cold_temp_open_loop_volt =
vreg->corner[i].open_loop_volt;
else
vreg->corner[i].normal_temp_open_loop_volt =
vreg->corner[i].open_loop_volt;
}
cpr3_npu_print_settings(vreg);
return rc;
}
/**
* cpr3_npu_init_thread() - perform steps necessary to initialize the
* configuration data for a CPR3 thread
* @thread: Pointer to the CPR3 thread
*
* Return: 0 on success, errno on failure
*/
static int cpr3_npu_init_thread(struct cpr3_thread *thread)
{
int rc;
rc = cpr3_parse_common_thread_data(thread);
if (rc) {
cpr3_err(thread->ctrl,
"thread %u CPR thread data from DT- failed, rc=%d\n",
thread->thread_id, rc);
return rc;
}
return 0;
}
/**
* cpr3_npu_init_regulator() - perform all steps necessary to initialize the
* configuration data for a CPR3 regulator
* @vreg: Pointer to the CPR3 regulator
*
* Return: 0 on success, errno on failure
*/
static int cpr3_npu_init_regulator(struct cpr3_regulator *vreg)
{
struct cpr3_ipq807x_npu_fuses *fuse;
int rc, cold_temp = 0;
bool can_adj_cold_temp = cpr3_can_adjust_cold_temp(vreg);
rc = cpr3_ipq807x_npu_read_fuse_data(vreg);
if (rc) {
cpr3_err(vreg, "unable to read CPR fuse data, rc=%d\n", rc);
return rc;
}
fuse = vreg->platform_fuses;
rc = cpr3_npu_parse_corner_data(vreg);
if (rc) {
cpr3_err(vreg,
"Cannot read CPR corner data from DT, rc=%d\n", rc);
return rc;
}
rc = cpr3_mem_acc_init(vreg);
if (rc) {
if (rc != -EPROBE_DEFER)
cpr3_err(vreg,
"Cannot initialize mem-acc regulator settings, rc=%d\n",
rc);
return rc;
}
if (can_adj_cold_temp) {
rc = cpr3_ipq807x_npu_calc_temp_based_ol_voltages(vreg, true);
if (rc) {
cpr3_err(vreg,
"unable to calculate open-loop voltages, rc=%d\n", rc);
return rc;
}
}
rc = cpr3_ipq807x_npu_calc_temp_based_ol_voltages(vreg, false);
if (rc) {
cpr3_err(vreg,
"unable to calculate open-loop voltages, rc=%d\n", rc);
return rc;
}
if (can_adj_cold_temp) {
cpr3_info(vreg,
"Normal and Cold condition init done. Default to normal.\n");
rc = cpr3_get_cold_temp_threshold(vreg, &cold_temp);
if (rc) {
cpr3_err(vreg,
"Get cold temperature threshold failed, rc=%d\n", rc);
return rc;
}
register_low_temp_notif(NPU_TSENS, cold_temp,
cpr3_npu_temp_notify);
}
return rc;
}
/**
* cpr3_npu_init_controller() - perform NPU CPR3 controller specific
* initializations
* @ctrl: Pointer to the CPR3 controller
*
* Return: 0 on success, errno on failure
*/
static int cpr3_npu_init_controller(struct cpr3_controller *ctrl)
{
int rc;
rc = cpr3_parse_open_loop_common_ctrl_data(ctrl);
if (rc) {
if (rc != -EPROBE_DEFER)
cpr3_err(ctrl, "unable to parse common controller data, rc=%d\n",
rc);
return rc;
}
ctrl->cpr_clock_rate = IPQ807x_NPU_CPR_CLOCK_RATE;
ctrl->ctrl_type = CPR_CTRL_TYPE_CPR3;
ctrl->supports_hw_closed_loop = false;
return 0;
}
struct cpr3_npu_regulator_data {
u32 cpr_valid_fuse_count;
};
static const struct cpr3_npu_regulator_data ipq807x_cpr_npu = {
.cpr_valid_fuse_count = IPQ807x_NPU_FUSE_CORNERS
};
static const struct cpr3_npu_regulator_data ipq817x_cpr_npu = {
.cpr_valid_fuse_count = IPQ817x_NPU_FUSE_CORNERS
};
static struct of_device_id cpr3_regulator_match_table[] = {
{
.compatible = "qcom,cpr3-ipq807x-npu-regulator",
.data = &ipq807x_cpr_npu
},
{
.compatible = "cpr3-ipq817x-npu-regulator",
.data = &ipq817x_cpr_npu
},
{}
};
static int cpr3_npu_regulator_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct cpr3_controller *ctrl;
int i, rc;
const struct of_device_id *match;
const struct cpr3_npu_regulator_data *cpr_data;
if (!dev->of_node) {
dev_err(dev, "Device tree node is missing\n");
return -EINVAL;
}
ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
if (!ctrl)
return -ENOMEM;
g_ctrl = ctrl;
match = of_match_device(cpr3_regulator_match_table, &pdev->dev);
if (!match)
return -ENODEV;
cpr_data = match->data;
g_valid_npu_fuse_count = cpr_data->cpr_valid_fuse_count;
dev_info(dev, "NPU CPR valid fuse count: %d\n", g_valid_npu_fuse_count);
ctrl->dev = dev;
/* Set to false later if anything precludes CPR operation. */
ctrl->cpr_allowed_hw = true;
rc = of_property_read_string(dev->of_node, "qcom,cpr-ctrl-name",
&ctrl->name);
if (rc) {
cpr3_err(ctrl, "unable to read qcom,cpr-ctrl-name, rc=%d\n",
rc);
return rc;
}
rc = cpr3_map_fuse_base(ctrl, pdev);
if (rc) {
cpr3_err(ctrl, "could not map fuse base address\n");
return rc;
}
rc = cpr3_read_tcsr_setting(ctrl, pdev, IPQ807x_NPU_CPR_TCSR_START,
IPQ807x_NPU_CPR_TCSR_END);
if (rc) {
cpr3_err(ctrl, "could not read CPR tcsr rsetting\n");
return rc;
}
rc = cpr3_allocate_threads(ctrl, 0, 0);
if (rc) {
cpr3_err(ctrl, "failed to allocate CPR thread array, rc=%d\n",
rc);
return rc;
}
if (ctrl->thread_count != 1) {
cpr3_err(ctrl, "expected 1 thread but found %d\n",
ctrl->thread_count);
return -EINVAL;
}
rc = cpr3_npu_init_controller(ctrl);
if (rc) {
if (rc != -EPROBE_DEFER)
cpr3_err(ctrl, "failed to initialize CPR controller parameters, rc=%d\n",
rc);
return rc;
}
rc = cpr3_npu_init_thread(&ctrl->thread[0]);
if (rc) {
cpr3_err(ctrl, "thread initialization failed, rc=%d\n", rc);
return rc;
}
for (i = 0; i < ctrl->thread[0].vreg_count; i++) {
rc = cpr3_npu_init_regulator(&ctrl->thread[0].vreg[i]);
if (rc) {
cpr3_err(&ctrl->thread[0].vreg[i], "regulator initialization failed, rc=%d\n",
rc);
return rc;
}
}
platform_set_drvdata(pdev, ctrl);
return cpr3_open_loop_regulator_register(pdev, ctrl);
}
static int cpr3_npu_regulator_remove(struct platform_device *pdev)
{
struct cpr3_controller *ctrl = platform_get_drvdata(pdev);
return cpr3_open_loop_regulator_unregister(ctrl);
}
static struct platform_driver cpr3_npu_regulator_driver = {
.driver = {
.name = "qcom,cpr3-npu-regulator",
.of_match_table = cpr3_regulator_match_table,
.owner = THIS_MODULE,
},
.probe = cpr3_npu_regulator_probe,
.remove = cpr3_npu_regulator_remove,
};
static int cpr3_regulator_init(void)
{
return platform_driver_register(&cpr3_npu_regulator_driver);
}
arch_initcall(cpr3_regulator_init);
static void cpr3_regulator_exit(void)
{
platform_driver_unregister(&cpr3_npu_regulator_driver);
}
module_exit(cpr3_regulator_exit);
MODULE_DESCRIPTION("QCOM CPR3 NPU regulator driver");
MODULE_LICENSE("Dual BSD/GPLv2");
MODULE_ALIAS("platform:npu-ipq807x");