blob: 863a113ee0beddbb97c08b51e3ac2d164057d5f8 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Qualcomm Peripheral Image Loader
*
* Copyright (C) 2016 Linaro Ltd
* Copyright (C) 2015 Sony Mobile Communications Inc
* Copyright (c) 2012-2013, The Linux Foundation. All rights reserved.
*/
#include <linux/device.h>
#include <linux/elf.h>
#include <linux/firmware.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/qcom_scm.h>
#include <linux/sizes.h>
#include <linux/slab.h>
#include <linux/soc/qcom/mdt_loader.h>
#include <linux/dma-mapping.h>
#include "../../remoteproc/qcom_common.h"
#define PDSEG_PAS_ID 0xD
static bool mdt_phdr_valid(const struct elf32_phdr *phdr)
{
if (phdr->p_type != PT_LOAD)
return false;
if ((phdr->p_flags & QCOM_MDT_TYPE_MASK) == QCOM_MDT_TYPE_HASH)
return false;
if (!phdr->p_memsz)
return false;
return true;
}
/**
* qcom_mdt_get_size() - acquire size of the memory region needed to load mdt
* @fw: firmware object for the mdt file
*
* Returns size of the loaded firmware blob, or -EINVAL on failure.
*/
ssize_t qcom_mdt_get_size(const struct firmware *fw)
{
const struct elf32_phdr *phdrs;
const struct elf32_phdr *phdr;
const struct elf32_hdr *ehdr;
phys_addr_t min_addr = PHYS_ADDR_MAX;
phys_addr_t max_addr = 0;
int i;
ehdr = (struct elf32_hdr *)fw->data;
phdrs = (struct elf32_phdr *)(ehdr + 1);
for (i = 0; i < ehdr->e_phnum; i++) {
phdr = &phdrs[i];
if (!mdt_phdr_valid(phdr))
continue;
if (phdr->p_paddr < min_addr)
min_addr = phdr->p_paddr;
if (phdr->p_paddr + phdr->p_memsz > max_addr)
max_addr = ALIGN(phdr->p_paddr + phdr->p_memsz, SZ_4K);
}
return min_addr < max_addr ? max_addr - min_addr : -EINVAL;
}
EXPORT_SYMBOL_GPL(qcom_mdt_get_size);
/**
* qcom_mdt_read_metadata() - read header and metadata from mdt or mbn
* @fw: firmware of mdt header or mbn
* @data_len: length of the read metadata blob
*
* The mechanism that performs the authentication of the loading firmware
* expects an ELF header directly followed by the segment of hashes, with no
* padding inbetween. This function allocates a chunk of memory for this pair
* and copy the two pieces into the buffer.
*
* In the case of split firmware the hash is found directly following the ELF
* header, rather than at p_offset described by the second program header.
*
* The caller is responsible to free (kfree()) the returned pointer.
*
* Return: pointer to data, or ERR_PTR()
*/
void *qcom_mdt_read_metadata(const struct firmware *fw, size_t *data_len)
{
const struct elf32_phdr *phdrs;
const struct elf32_hdr *ehdr;
size_t hash_offset;
size_t hash_size;
size_t ehdr_size;
void *data;
ehdr = (struct elf32_hdr *)fw->data;
phdrs = (struct elf32_phdr *)(ehdr + 1);
if (ehdr->e_phnum < 2)
return ERR_PTR(-EINVAL);
if (phdrs[0].p_type == PT_LOAD || phdrs[1].p_type == PT_LOAD)
return ERR_PTR(-EINVAL);
if ((phdrs[1].p_flags & QCOM_MDT_TYPE_MASK) != QCOM_MDT_TYPE_HASH)
return ERR_PTR(-EINVAL);
ehdr_size = phdrs[0].p_filesz;
hash_size = phdrs[1].p_filesz;
data = kmalloc(ehdr_size + hash_size, GFP_KERNEL);
if (!data)
return ERR_PTR(-ENOMEM);
/* Is the header and hash already packed */
if (ehdr_size + hash_size == fw->size)
hash_offset = phdrs[0].p_filesz;
else
hash_offset = phdrs[1].p_offset;
memcpy(data, fw->data, ehdr_size);
memcpy(data + ehdr_size, fw->data + hash_offset, hash_size);
*data_len = ehdr_size + hash_size;
return data;
}
EXPORT_SYMBOL_GPL(qcom_mdt_read_metadata);
struct region {
u64 addr;
unsigned blk_size;
};
struct pdseg_dma_mem_info {
struct region *tz_addr;
int blocks;
dma_addr_t tz_dma;
dma_addr_t dma_blk_arr_addr_phys;
u64 *dma_blk_arr_addr;
void **pt;
};
static int allocate_dma_mem(struct device *dev,
struct pdseg_dma_mem_info *pd_dma,
int max_size)
{
dma_addr_t dma_tmp = 0;
int i;
pd_dma->blocks = DIV_ROUND_UP(max_size, PAGE_SIZE);
pd_dma->tz_addr = dma_alloc_coherent(dev, sizeof(struct region),
&pd_dma->tz_dma, GFP_DMA);
if (!pd_dma->tz_addr) {
pr_err("Error in dma alloc\n");
return -ENOMEM;
}
pd_dma->dma_blk_arr_addr = dma_alloc_coherent(dev,
(pd_dma->blocks * sizeof(u64)),
&pd_dma->dma_blk_arr_addr_phys, GFP_DMA);
if (!pd_dma->dma_blk_arr_addr) {
pr_err("Error in dma alloc\n");
goto free_tz_dma_alloc;
}
memcpy(&pd_dma->tz_addr->addr, &pd_dma->dma_blk_arr_addr_phys,
sizeof(dma_addr_t));
pd_dma->pt = kzalloc(pd_dma->blocks * sizeof(void *), GFP_KERNEL);
if (!pd_dma->pt) {
pr_err("Error in memory alloc\n");
goto free_dma_blk_arr_alloc;
}
for (i = 0; i < pd_dma->blocks; i++) {
pd_dma->pt[i] = dma_alloc_coherent(dev, PAGE_SIZE,
&dma_tmp, GFP_DMA);
if (!pd_dma->pt[i]) {
pr_err("Error in dma alloc i:%d - blocks:%d\n", i,
pd_dma->blocks);
goto free_mem_alloc;
}
memcpy(&pd_dma->dma_blk_arr_addr[i], &dma_tmp,
sizeof(dma_addr_t));
}
pd_dma->tz_addr->blk_size = PAGE_SIZE;
return 0;
free_mem_alloc:
i = 0;
while (i < pd_dma->blocks && pd_dma->pt[i]) {
memcpy(&dma_tmp, &pd_dma->dma_blk_arr_addr[i],
sizeof(dma_addr_t));
dma_free_coherent(dev, PAGE_SIZE, pd_dma->pt[i], dma_tmp);
i++;
}
kfree(pd_dma->pt);
free_dma_blk_arr_alloc:
dma_free_coherent(dev, (pd_dma->blocks * sizeof(u64)),
pd_dma->dma_blk_arr_addr,
pd_dma->dma_blk_arr_addr_phys);
free_tz_dma_alloc:
dma_free_coherent(dev, sizeof(struct region), pd_dma->tz_addr,
pd_dma->tz_dma);
return -ENOMEM;
}
static void free_dma_mem(struct device *dev, struct pdseg_dma_mem_info *pd_dma)
{
int i;
dma_addr_t dma_tmp = 0;
for (i = 0; i < pd_dma->blocks; i++) {
memcpy(&dma_tmp, &pd_dma->dma_blk_arr_addr[i],
sizeof(dma_addr_t));
dma_free_coherent(dev, PAGE_SIZE, pd_dma->pt[i],
dma_tmp);
}
dma_free_coherent(dev, (pd_dma->blocks * sizeof(u64)),
pd_dma->dma_blk_arr_addr,
pd_dma->dma_blk_arr_addr_phys);
dma_free_coherent(dev, sizeof(struct region), pd_dma->tz_addr,
pd_dma->tz_dma);
kfree(pd_dma->pt);
}
static int memcpy_pdseg_to_dma_blk(const char *fw_name, struct device *dev,
int ph_no, struct pdseg_dma_mem_info *pd_dma, size_t filesz)
{
const struct firmware *seg_fw;
int ret, offset_tmp = 0, tmp = 0;
size_t size = 0;
ret = request_firmware(&seg_fw, fw_name, dev);
if (ret) {
dev_err(dev, "failed to load %s\n", fw_name);
return ret;
}
size = seg_fw->size < PAGE_SIZE ?
seg_fw->size : PAGE_SIZE;
while (tmp < pd_dma->blocks && size) {
memset_io(pd_dma->pt[tmp], 0,
PAGE_SIZE);
memcpy_toio(pd_dma->pt[tmp],
seg_fw->data + offset_tmp,
size);
tmp++;
offset_tmp += size;
if ((seg_fw->size - offset_tmp) < PAGE_SIZE)
size = seg_fw->size - offset_tmp;
}
release_firmware(seg_fw);
ret = qti_scm_pdseg_memcpy_v2(PDSEG_PAS_ID, ph_no, pd_dma->tz_dma,
tmp);
if (ret) {
dev_err(dev, "pd seg memcpy scm failed\n");
return ret;
}
return ret;
}
int get_pd_fw_info(struct device *dev, const struct firmware *fw,
phys_addr_t mem_phys, size_t mem_size, u8 pd_asid,
struct qcom_pd_fw_info *fw_info)
{
const struct elf32_phdr *phdrs;
const struct elf32_phdr *phdr;
const struct elf32_hdr *ehdr;
phys_addr_t mem_reloc;
phys_addr_t min_addr = PHYS_ADDR_MAX;
phys_addr_t max_addr = 0;
ssize_t offset;
bool relocate = false;
int ret = 0, i;
if (!fw || !mem_phys || !mem_size)
return -EINVAL;
ehdr = (struct elf32_hdr *)fw->data;
phdrs = (struct elf32_phdr *)(ehdr + 1);
for (i = 0; i < ehdr->e_phnum; i++) {
phdr = &phdrs[i];
if (!mdt_phdr_valid(phdr))
continue;
/*
* While doing PD specific reloading, load only that PD
* specific writeable entries. Skip others
*/
if (pd_asid && ((QCOM_MDT_PF_ASID(phdr->p_flags) != pd_asid) ||
((phdr->p_flags & PF_W) == 0)))
continue;
if (phdr->p_flags & QCOM_MDT_RELOCATABLE)
relocate = true;
if (phdr->p_paddr < min_addr)
min_addr = phdr->p_paddr;
if (phdr->p_paddr + phdr->p_memsz > max_addr)
max_addr = ALIGN(phdr->p_paddr + phdr->p_memsz, SZ_4K);
}
if (relocate) {
/*
* The image is relocatable, so offset each segment based on
* the lowest segment address.
*/
mem_reloc = min_addr;
} else {
/*
* Image is not relocatable, so offset each segment based on
* the allocated physical chunk of memory.
*/
mem_reloc = mem_phys;
}
for (i = 0; i < ehdr->e_phnum; i++) {
phdr = &phdrs[i];
if (!mdt_phdr_valid(phdr))
continue;
/*
* While doing PD specific reloading, load only that PD
* specific writeable entries. Skip others
*/
if (pd_asid && ((QCOM_MDT_PF_ASID(phdr->p_flags) != pd_asid) ||
((phdr->p_flags & PF_W) == 0)))
continue;
offset = phdr->p_paddr - mem_reloc;
if (offset < 0 || offset + phdr->p_memsz > mem_size) {
dev_err(dev, "segment outside memory range\n");
ret = -EINVAL;
break;
}
if (!fw_info->paddr)
fw_info->paddr = mem_phys + offset;
fw_info->size += phdr->p_memsz;
}
return ret;
}
EXPORT_SYMBOL(get_pd_fw_info);
static int __qcom_mdt_load(struct device *dev, const struct firmware *fw,
const char *firmware, int pas_id, void *mem_region,
phys_addr_t mem_phys, size_t mem_size,
phys_addr_t *reloc_base, bool pas_init)
{
const struct elf32_phdr *phdrs;
const struct elf32_phdr *phdr;
const struct elf32_hdr *ehdr;
const struct firmware *seg_fw;
phys_addr_t mem_reloc;
phys_addr_t min_addr = PHYS_ADDR_MAX;
phys_addr_t max_addr = 0;
size_t metadata_len;
size_t fw_name_len;
ssize_t offset;
void *metadata;
char *fw_name;
bool relocate = false;
void *ptr;
int ret = 0;
int i;
u8 pd_asid;
int max_size = 0;
struct pdseg_dma_mem_info pd_dma = {0};
if (!fw || !mem_region || !mem_phys || !mem_size)
return -EINVAL;
pd_asid = qcom_get_pd_asid(dev->of_node);
ehdr = (struct elf32_hdr *)fw->data;
phdrs = (struct elf32_phdr *)(ehdr + 1);
fw_name_len = strlen(firmware);
if (fw_name_len <= 4)
return -EINVAL;
fw_name = kstrdup(firmware, GFP_KERNEL);
if (!fw_name)
return -ENOMEM;
if (pas_init && !pd_asid) {
metadata = qcom_mdt_read_metadata(fw, &metadata_len);
if (IS_ERR(metadata)) {
ret = PTR_ERR(metadata);
goto out;
}
ret = qcom_scm_pas_init_image(pas_id, metadata, metadata_len);
kfree(metadata);
if (ret) {
dev_err(dev, "invalid firmware metadata\n");
goto out;
}
}
for (i = 0; i < ehdr->e_phnum; i++) {
phdr = &phdrs[i];
if (!mdt_phdr_valid(phdr))
continue;
/*
* While doing PD specific reloading, load only that PD
* specific writeable entries. Skip others
*/
if (pd_asid && ((QCOM_MDT_PF_ASID(phdr->p_flags) != pd_asid) ||
((phdr->p_flags & PF_W) == 0)))
continue;
if (phdr->p_flags & QCOM_MDT_RELOCATABLE)
relocate = true;
if (phdr->p_paddr < min_addr)
min_addr = phdr->p_paddr;
if (phdr->p_paddr + phdr->p_memsz > max_addr)
max_addr = ALIGN(phdr->p_paddr + phdr->p_memsz, SZ_4K);
if (pd_asid && (max_size < phdr->p_memsz))
max_size = phdr->p_memsz;
}
if (pas_init && pd_asid) {
ret = allocate_dma_mem(dev, &pd_dma, max_size);
if (ret)
goto out;
}
if (relocate) {
if (pas_init) {
ret = qcom_scm_pas_mem_setup(pas_id, mem_phys,
max_addr - min_addr);
if (ret) {
dev_err(dev, "unable to setup relocation\n");
goto out;
}
}
/*
* The image is relocatable, so offset each segment based on
* the lowest segment address.
*/
mem_reloc = min_addr;
} else {
/*
* Image is not relocatable, so offset each segment based on
* the allocated physical chunk of memory.
*/
mem_reloc = mem_phys;
}
for (i = 0; i < ehdr->e_phnum; i++) {
phdr = &phdrs[i];
if (!mdt_phdr_valid(phdr))
continue;
/*
* While doing PD specific reloading, load only that PD
* specific writeable entries. Skip others
*/
if (pd_asid && ((QCOM_MDT_PF_ASID(phdr->p_flags) != pd_asid) ||
((phdr->p_flags & PF_W) == 0)))
continue;
offset = phdr->p_paddr - mem_reloc;
if (offset < 0 || offset + phdr->p_memsz > mem_size) {
dev_err(dev, "segment outside memory range\n");
ret = -EINVAL;
break;
}
if (!(pas_init && pd_asid))
ptr = mem_region + offset;
if (phdr->p_filesz && phdr->p_offset < fw->size && !pd_asid) {
/* Firmware is large enough to be non-split */
if (phdr->p_offset + phdr->p_filesz > fw->size) {
dev_err(dev,
"failed to load segment %d from truncated file %s\n",
i, firmware);
ret = -EINVAL;
break;
}
memcpy(ptr, fw->data + phdr->p_offset, phdr->p_filesz);
} else if (phdr->p_filesz) {
/* Firmware not large enough, load split-out segments */
sprintf(fw_name + fw_name_len - 3, "b%02d", i);
if (pas_init && pd_asid) {
ret = memcpy_pdseg_to_dma_blk(fw_name, dev, i,
&pd_dma, phdr->p_filesz);
if (ret)
goto free_dma;
continue;
}
ret = request_firmware_into_buf(&seg_fw, fw_name, dev,
ptr, phdr->p_filesz);
if (ret) {
dev_err(dev, "failed to load %s\n", fw_name);
break;
}
release_firmware(seg_fw);
}
if (phdr->p_memsz > phdr->p_filesz && !pd_asid)
memset(ptr + phdr->p_filesz, 0, phdr->p_memsz - phdr->p_filesz);
}
free_dma:
if (pas_init && pd_asid)
free_dma_mem(dev, &pd_dma);
if (reloc_base)
*reloc_base = mem_reloc;
out:
kfree(fw_name);
return ret;
}
/**
* qcom_mdt_load() - load the firmware which header is loaded as fw
* @dev: device handle to associate resources with
* @fw: firmware object for the mdt file
* @firmware: name of the firmware, for construction of segment file names
* @pas_id: PAS identifier
* @mem_region: allocated memory region to load firmware into
* @mem_phys: physical address of allocated memory region
* @mem_size: size of the allocated memory region
* @reloc_base: adjusted physical address after relocation
*
* Returns 0 on success, negative errno otherwise.
*/
int qcom_mdt_load(struct device *dev, const struct firmware *fw,
const char *firmware, int pas_id, void *mem_region,
phys_addr_t mem_phys, size_t mem_size,
phys_addr_t *reloc_base)
{
return __qcom_mdt_load(dev, fw, firmware, pas_id, mem_region, mem_phys,
mem_size, reloc_base, true);
}
EXPORT_SYMBOL_GPL(qcom_mdt_load);
/**
* qcom_mdt_load_no_init() - load the firmware which header is loaded as fw
* @dev: device handle to associate resources with
* @fw: firmware object for the mdt file
* @firmware: name of the firmware, for construction of segment file names
* @pas_id: PAS identifier
* @mem_region: allocated memory region to load firmware into
* @mem_phys: physical address of allocated memory region
* @mem_size: size of the allocated memory region
* @reloc_base: adjusted physical address after relocation
*
* Returns 0 on success, negative errno otherwise.
*/
int qcom_mdt_load_no_init(struct device *dev, const struct firmware *fw,
const char *firmware, int pas_id,
void *mem_region, phys_addr_t mem_phys,
size_t mem_size, phys_addr_t *reloc_base)
{
return __qcom_mdt_load(dev, fw, firmware, pas_id, mem_region, mem_phys,
mem_size, reloc_base, false);
}
EXPORT_SYMBOL_GPL(qcom_mdt_load_no_init);
MODULE_DESCRIPTION("Firmware parser for Qualcomm MDT format");
MODULE_LICENSE("GPL v2");