blob: 441928def737e297193bb2db05fda6fbc41ae77d [file] [log] [blame]
/* Copyright (c) INRIA and Microsoft Corporation. All rights reserved.
Licensed under the Apache 2.0 License. */
/******************************************************************************/
/* Machine integers (128-bit arithmetic) */
/******************************************************************************/
/* This header contains two things.
*
* First, an implementation of 128-bit arithmetic suitable for 64-bit GCC and
* Clang, i.e. all the operations from FStar.UInt128.
*
* Second, 128-bit operations from C.Endianness (or LowStar.Endianness),
* suitable for any compiler and platform (via a series of ifdefs). This second
* part is unfortunate, and should be fixed by moving {load,store}128_{be,le} to
* FStar.UInt128 to avoid a maze of preprocessor guards and hand-written code.
* */
/* This file is used for both the minimal and generic kremlib distributions. As
* such, it assumes that the machine integers have been bundled the exact same
* way in both cases. */
#ifndef FSTAR_UINT128_GCC64
#define FSTAR_UINT128_GCC64
#include "FStar_UInt128.h"
#include "FStar_UInt_8_16_32_64.h"
#include "LowStar_Endianness.h"
/* GCC + using native unsigned __int128 support */
inline static uint128_t
load128_le(uint8_t *b)
{
uint128_t l = (uint128_t)load64_le(b);
uint128_t h = (uint128_t)load64_le(b + 8);
return (h << 64 | l);
}
inline static void
store128_le(uint8_t *b, uint128_t n)
{
store64_le(b, (uint64_t)n);
store64_le(b + 8, (uint64_t)(n >> 64));
}
inline static uint128_t
load128_be(uint8_t *b)
{
uint128_t h = (uint128_t)load64_be(b);
uint128_t l = (uint128_t)load64_be(b + 8);
return (h << 64 | l);
}
inline static void
store128_be(uint8_t *b, uint128_t n)
{
store64_be(b, (uint64_t)(n >> 64));
store64_be(b + 8, (uint64_t)n);
}
inline static uint128_t
FStar_UInt128_add(uint128_t x, uint128_t y)
{
return x + y;
}
inline static uint128_t
FStar_UInt128_mul(uint128_t x, uint128_t y)
{
return x * y;
}
inline static uint128_t
FStar_UInt128_add_mod(uint128_t x, uint128_t y)
{
return x + y;
}
inline static uint128_t
FStar_UInt128_sub(uint128_t x, uint128_t y)
{
return x - y;
}
inline static uint128_t
FStar_UInt128_sub_mod(uint128_t x, uint128_t y)
{
return x - y;
}
inline static uint128_t
FStar_UInt128_logand(uint128_t x, uint128_t y)
{
return x & y;
}
inline static uint128_t
FStar_UInt128_logor(uint128_t x, uint128_t y)
{
return x | y;
}
inline static uint128_t
FStar_UInt128_logxor(uint128_t x, uint128_t y)
{
return x ^ y;
}
inline static uint128_t
FStar_UInt128_lognot(uint128_t x)
{
return ~x;
}
inline static uint128_t
FStar_UInt128_shift_left(uint128_t x, uint32_t y)
{
return x << y;
}
inline static uint128_t
FStar_UInt128_shift_right(uint128_t x, uint32_t y)
{
return x >> y;
}
inline static uint128_t
FStar_UInt128_uint64_to_uint128(uint64_t x)
{
return (uint128_t)x;
}
inline static uint64_t
FStar_UInt128_uint128_to_uint64(uint128_t x)
{
return (uint64_t)x;
}
inline static uint128_t
FStar_UInt128_mul_wide(uint64_t x, uint64_t y)
{
return ((uint128_t)x) * y;
}
inline static uint128_t
FStar_UInt128_eq_mask(uint128_t x, uint128_t y)
{
uint64_t mask =
FStar_UInt64_eq_mask((uint64_t)(x >> 64), (uint64_t)(y >> 64)) &
FStar_UInt64_eq_mask(x, y);
return ((uint128_t)mask) << 64 | mask;
}
inline static uint128_t
FStar_UInt128_gte_mask(uint128_t x, uint128_t y)
{
uint64_t mask =
(FStar_UInt64_gte_mask(x >> 64, y >> 64) &
~(FStar_UInt64_eq_mask(x >> 64, y >> 64))) |
(FStar_UInt64_eq_mask(x >> 64, y >> 64) & FStar_UInt64_gte_mask(x, y));
return ((uint128_t)mask) << 64 | mask;
}
inline static uint64_t
FStar_UInt128___proj__Mkuint128__item__low(uint128_t x)
{
return (uint64_t)x;
}
inline static uint64_t
FStar_UInt128___proj__Mkuint128__item__high(uint128_t x)
{
return (uint64_t)(x >> 64);
}
inline static uint128_t
FStar_UInt128_add_underspec(uint128_t x, uint128_t y)
{
return x + y;
}
inline static uint128_t
FStar_UInt128_sub_underspec(uint128_t x, uint128_t y)
{
return x - y;
}
inline static bool
FStar_UInt128_eq(uint128_t x, uint128_t y)
{
return x == y;
}
inline static bool
FStar_UInt128_gt(uint128_t x, uint128_t y)
{
return x > y;
}
inline static bool
FStar_UInt128_lt(uint128_t x, uint128_t y)
{
return x < y;
}
inline static bool
FStar_UInt128_gte(uint128_t x, uint128_t y)
{
return x >= y;
}
inline static bool
FStar_UInt128_lte(uint128_t x, uint128_t y)
{
return x <= y;
}
inline static uint128_t
FStar_UInt128_mul32(uint64_t x, uint32_t y)
{
return (uint128_t)x * (uint128_t)y;
}
#endif