blob: f2c3a218b6deeebebaa0a6628a4a1de160862b9a [file] [log] [blame]
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* SSL3 Protocol
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/* TODO(ekr): Implement HelloVerifyRequest on server side. OK for now. */
#include "cert.h"
#include "ssl.h"
#include "cryptohi.h" /* for DSAU_ stuff */
#include "keyhi.h"
#include "secder.h"
#include "secitem.h"
#include "sechash.h"
#include "sslimpl.h"
#include "sslproto.h"
#include "sslerr.h"
#include "ssl3ext.h"
#include "ssl3exthandle.h"
#include "tls13ech.h"
#include "tls13exthandle.h"
#include "tls13psk.h"
#include "tls13subcerts.h"
#include "prtime.h"
#include "prinrval.h"
#include "prerror.h"
#include "pratom.h"
#include "prthread.h"
#include "nss.h"
#include "nssoptions.h"
#include "pk11func.h"
#include "secmod.h"
#include "blapi.h"
#include <stdio.h>
static PK11SymKey *ssl3_GenerateRSAPMS(sslSocket *ss, ssl3CipherSpec *spec,
PK11SlotInfo *serverKeySlot);
static SECStatus ssl3_ComputeMasterSecret(sslSocket *ss, PK11SymKey *pms,
PK11SymKey **msp);
static SECStatus ssl3_DeriveConnectionKeys(sslSocket *ss,
PK11SymKey *masterSecret);
static SECStatus ssl3_HandshakeFailure(sslSocket *ss);
static SECStatus ssl3_SendCertificate(sslSocket *ss);
static SECStatus ssl3_SendCertificateRequest(sslSocket *ss);
static SECStatus ssl3_SendNextProto(sslSocket *ss);
static SECStatus ssl3_SendFinished(sslSocket *ss, PRInt32 flags);
static SECStatus ssl3_SendServerHelloDone(sslSocket *ss);
static SECStatus ssl3_SendServerKeyExchange(sslSocket *ss);
static SECStatus ssl3_HandleClientHelloPart2(sslSocket *ss,
SECItem *suites,
sslSessionID *sid,
const PRUint8 *msg,
unsigned int len);
static SECStatus ssl3_HandleServerHelloPart2(sslSocket *ss,
const SECItem *sidBytes,
int *retErrCode);
static SECStatus ssl3_HandlePostHelloHandshakeMessage(sslSocket *ss,
PRUint8 *b,
PRUint32 length);
static SECStatus ssl3_FlushHandshakeMessages(sslSocket *ss, PRInt32 flags);
static CK_MECHANISM_TYPE ssl3_GetHashMechanismByHashType(SSLHashType hashType);
static CK_MECHANISM_TYPE ssl3_GetMgfMechanismByHashType(SSLHashType hash);
PRBool ssl_IsRsaPssSignatureScheme(SSLSignatureScheme scheme);
PRBool ssl_IsRsaeSignatureScheme(SSLSignatureScheme scheme);
PRBool ssl_IsRsaPkcs1SignatureScheme(SSLSignatureScheme scheme);
PRBool ssl_IsDsaSignatureScheme(SSLSignatureScheme scheme);
static SECStatus ssl3_UpdateDefaultHandshakeHashes(sslSocket *ss,
const unsigned char *b,
unsigned int l);
const PRUint32 kSSLSigSchemePolicy =
NSS_USE_ALG_IN_SSL_KX | NSS_USE_ALG_IN_ANY_SIGNATURE;
const PRUint8 ssl_hello_retry_random[] = {
0xCF, 0x21, 0xAD, 0x74, 0xE5, 0x9A, 0x61, 0x11,
0xBE, 0x1D, 0x8C, 0x02, 0x1E, 0x65, 0xB8, 0x91,
0xC2, 0xA2, 0x11, 0x16, 0x7A, 0xBB, 0x8C, 0x5E,
0x07, 0x9E, 0x09, 0xE2, 0xC8, 0xA8, 0x33, 0x9C
};
PR_STATIC_ASSERT(PR_ARRAY_SIZE(ssl_hello_retry_random) == SSL3_RANDOM_LENGTH);
/* This list of SSL3 cipher suites is sorted in descending order of
* precedence (desirability). It only includes cipher suites we implement.
* This table is modified by SSL3_SetPolicy(). The ordering of cipher suites
* in this table must match the ordering in SSL_ImplementedCiphers (sslenum.c)
*
* Important: See bug 946147 before enabling, reordering, or adding any cipher
* suites to this list.
*/
/* clang-format off */
static ssl3CipherSuiteCfg cipherSuites[ssl_V3_SUITES_IMPLEMENTED] = {
/* cipher_suite policy enabled isPresent */
/* Special TLS 1.3 suites. */
{ TLS_AES_128_GCM_SHA256, SSL_ALLOWED, PR_TRUE, PR_FALSE },
{ TLS_CHACHA20_POLY1305_SHA256, SSL_ALLOWED, PR_TRUE, PR_FALSE },
{ TLS_AES_256_GCM_SHA384, SSL_ALLOWED, PR_TRUE, PR_FALSE },
{ TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, SSL_ALLOWED, PR_TRUE, PR_FALSE},
{ TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, SSL_ALLOWED, PR_TRUE, PR_FALSE},
{ TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, SSL_ALLOWED, PR_TRUE, PR_FALSE},
{ TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, SSL_ALLOWED, PR_TRUE, PR_FALSE},
{ TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, SSL_ALLOWED, PR_TRUE, PR_FALSE},
{ TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384, SSL_ALLOWED, PR_TRUE, PR_FALSE},
/* TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA is out of order to work around
* bug 946147.
*/
{ TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, SSL_ALLOWED, PR_TRUE, PR_FALSE},
{ TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, SSL_ALLOWED, PR_TRUE, PR_FALSE},
{ TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, SSL_ALLOWED, PR_TRUE, PR_FALSE},
{ TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256, SSL_ALLOWED, PR_TRUE, PR_FALSE},
{ TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256, SSL_ALLOWED, PR_TRUE, PR_FALSE},
{ TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA, SSL_ALLOWED, PR_TRUE, PR_FALSE},
{ TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384, SSL_ALLOWED, PR_FALSE, PR_FALSE},
{ TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384, SSL_ALLOWED, PR_FALSE, PR_FALSE},
{ TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
{ TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
{ TLS_ECDHE_ECDSA_WITH_RC4_128_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
{ TLS_ECDHE_RSA_WITH_RC4_128_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
{ TLS_DHE_RSA_WITH_AES_128_GCM_SHA256, SSL_ALLOWED, PR_TRUE, PR_FALSE},
{ TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256,SSL_ALLOWED,PR_TRUE, PR_FALSE},
{ TLS_DHE_DSS_WITH_AES_128_GCM_SHA256, SSL_ALLOWED, PR_FALSE, PR_FALSE},
{ TLS_DHE_RSA_WITH_AES_256_GCM_SHA384, SSL_ALLOWED, PR_TRUE, PR_FALSE},
{ TLS_DHE_DSS_WITH_AES_256_GCM_SHA384, SSL_ALLOWED, PR_FALSE, PR_FALSE},
{ TLS_DHE_RSA_WITH_AES_128_CBC_SHA, SSL_ALLOWED, PR_TRUE, PR_FALSE},
{ TLS_DHE_DSS_WITH_AES_128_CBC_SHA, SSL_ALLOWED, PR_TRUE, PR_FALSE},
{ TLS_DHE_RSA_WITH_AES_128_CBC_SHA256, SSL_ALLOWED, PR_TRUE, PR_FALSE},
{ TLS_DHE_DSS_WITH_AES_128_CBC_SHA256, SSL_ALLOWED, PR_FALSE, PR_FALSE},
{ TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
{ TLS_DHE_DSS_WITH_CAMELLIA_128_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
{ TLS_DHE_RSA_WITH_AES_256_CBC_SHA, SSL_ALLOWED, PR_TRUE, PR_FALSE},
{ TLS_DHE_DSS_WITH_AES_256_CBC_SHA, SSL_ALLOWED, PR_TRUE, PR_FALSE},
{ TLS_DHE_RSA_WITH_AES_256_CBC_SHA256, SSL_ALLOWED, PR_TRUE, PR_FALSE},
{ TLS_DHE_DSS_WITH_AES_256_CBC_SHA256, SSL_ALLOWED, PR_FALSE, PR_FALSE},
{ TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
{ TLS_DHE_DSS_WITH_CAMELLIA_256_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
{ TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA, SSL_ALLOWED, PR_TRUE, PR_FALSE},
{ TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA, SSL_ALLOWED, PR_TRUE, PR_FALSE},
{ TLS_DHE_DSS_WITH_RC4_128_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
{ TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
{ TLS_ECDH_RSA_WITH_AES_128_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
{ TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
{ TLS_ECDH_RSA_WITH_AES_256_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
{ TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
{ TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
{ TLS_ECDH_ECDSA_WITH_RC4_128_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
{ TLS_ECDH_RSA_WITH_RC4_128_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
/* RSA */
{ TLS_RSA_WITH_AES_128_GCM_SHA256, SSL_ALLOWED, PR_TRUE, PR_FALSE},
{ TLS_RSA_WITH_AES_256_GCM_SHA384, SSL_ALLOWED, PR_TRUE, PR_FALSE},
{ TLS_RSA_WITH_AES_128_CBC_SHA, SSL_ALLOWED, PR_TRUE, PR_FALSE},
{ TLS_RSA_WITH_AES_128_CBC_SHA256, SSL_ALLOWED, PR_TRUE, PR_FALSE},
{ TLS_RSA_WITH_CAMELLIA_128_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
{ TLS_RSA_WITH_AES_256_CBC_SHA, SSL_ALLOWED, PR_TRUE, PR_FALSE},
{ TLS_RSA_WITH_AES_256_CBC_SHA256, SSL_ALLOWED, PR_TRUE, PR_FALSE},
{ TLS_RSA_WITH_CAMELLIA_256_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
{ TLS_RSA_WITH_SEED_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
{ TLS_RSA_WITH_3DES_EDE_CBC_SHA, SSL_ALLOWED, PR_TRUE, PR_FALSE},
{ TLS_RSA_WITH_RC4_128_SHA, SSL_ALLOWED, PR_TRUE, PR_FALSE},
{ TLS_RSA_WITH_RC4_128_MD5, SSL_ALLOWED, PR_TRUE, PR_FALSE},
/* 56-bit DES "domestic" cipher suites */
{ TLS_DHE_RSA_WITH_DES_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
{ TLS_DHE_DSS_WITH_DES_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
{ TLS_RSA_WITH_DES_CBC_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
/* ciphersuites with no encryption */
{ TLS_ECDHE_ECDSA_WITH_NULL_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
{ TLS_ECDHE_RSA_WITH_NULL_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
{ TLS_ECDH_RSA_WITH_NULL_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
{ TLS_ECDH_ECDSA_WITH_NULL_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
{ TLS_RSA_WITH_NULL_SHA, SSL_ALLOWED, PR_FALSE, PR_FALSE},
{ TLS_RSA_WITH_NULL_SHA256, SSL_ALLOWED, PR_FALSE, PR_FALSE},
{ TLS_RSA_WITH_NULL_MD5, SSL_ALLOWED, PR_FALSE, PR_FALSE},
};
/* clang-format on */
/* This is the default supported set of signature schemes. The order of the
* hashes here is all that is important, since that will (sometimes) determine
* which hash we use. The key pair (i.e., cert) is the primary thing that
* determines what we use and this doesn't affect how we select key pairs. The
* order of signature types is based on the same rules for ordering we use for
* cipher suites just for consistency.
*/
static const SSLSignatureScheme defaultSignatureSchemes[] = {
ssl_sig_ecdsa_secp256r1_sha256,
ssl_sig_ecdsa_secp384r1_sha384,
ssl_sig_ecdsa_secp521r1_sha512,
ssl_sig_ecdsa_sha1,
ssl_sig_rsa_pss_rsae_sha256,
ssl_sig_rsa_pss_rsae_sha384,
ssl_sig_rsa_pss_rsae_sha512,
ssl_sig_rsa_pkcs1_sha256,
ssl_sig_rsa_pkcs1_sha384,
ssl_sig_rsa_pkcs1_sha512,
ssl_sig_rsa_pkcs1_sha1,
ssl_sig_dsa_sha256,
ssl_sig_dsa_sha384,
ssl_sig_dsa_sha512,
ssl_sig_dsa_sha1
};
PR_STATIC_ASSERT(PR_ARRAY_SIZE(defaultSignatureSchemes) <=
MAX_SIGNATURE_SCHEMES);
/* Verify that SSL_ImplementedCiphers and cipherSuites are in consistent order.
*/
#ifdef DEBUG
void
ssl3_CheckCipherSuiteOrderConsistency()
{
unsigned int i;
PORT_Assert(SSL_NumImplementedCiphers == PR_ARRAY_SIZE(cipherSuites));
for (i = 0; i < PR_ARRAY_SIZE(cipherSuites); ++i) {
PORT_Assert(SSL_ImplementedCiphers[i] == cipherSuites[i].cipher_suite);
}
}
#endif
static const /*SSL3ClientCertificateType */ PRUint8 certificate_types[] = {
ct_RSA_sign,
ct_ECDSA_sign,
ct_DSS_sign,
};
static SSL3Statistics ssl3stats;
static const ssl3KEADef kea_defs[] =
{
/* indexed by SSL3KeyExchangeAlgorithm */
/* kea exchKeyType signKeyType authKeyType ephemeral oid */
{ kea_null, ssl_kea_null, nullKey, ssl_auth_null, PR_FALSE, 0 },
{ kea_rsa, ssl_kea_rsa, nullKey, ssl_auth_rsa_decrypt, PR_FALSE, SEC_OID_TLS_RSA },
{ kea_dh_dss, ssl_kea_dh, dsaKey, ssl_auth_dsa, PR_FALSE, SEC_OID_TLS_DH_DSS },
{ kea_dh_rsa, ssl_kea_dh, rsaKey, ssl_auth_rsa_sign, PR_FALSE, SEC_OID_TLS_DH_RSA },
{ kea_dhe_dss, ssl_kea_dh, dsaKey, ssl_auth_dsa, PR_TRUE, SEC_OID_TLS_DHE_DSS },
{ kea_dhe_rsa, ssl_kea_dh, rsaKey, ssl_auth_rsa_sign, PR_TRUE, SEC_OID_TLS_DHE_RSA },
{ kea_dh_anon, ssl_kea_dh, nullKey, ssl_auth_null, PR_TRUE, SEC_OID_TLS_DH_ANON },
{ kea_ecdh_ecdsa, ssl_kea_ecdh, nullKey, ssl_auth_ecdh_ecdsa, PR_FALSE, SEC_OID_TLS_ECDH_ECDSA },
{ kea_ecdhe_ecdsa, ssl_kea_ecdh, ecKey, ssl_auth_ecdsa, PR_TRUE, SEC_OID_TLS_ECDHE_ECDSA },
{ kea_ecdh_rsa, ssl_kea_ecdh, nullKey, ssl_auth_ecdh_rsa, PR_FALSE, SEC_OID_TLS_ECDH_RSA },
{ kea_ecdhe_rsa, ssl_kea_ecdh, rsaKey, ssl_auth_rsa_sign, PR_TRUE, SEC_OID_TLS_ECDHE_RSA },
{ kea_ecdh_anon, ssl_kea_ecdh, nullKey, ssl_auth_null, PR_TRUE, SEC_OID_TLS_ECDH_ANON },
{ kea_ecdhe_psk, ssl_kea_ecdh_psk, nullKey, ssl_auth_psk, PR_TRUE, SEC_OID_TLS_ECDHE_PSK },
{ kea_dhe_psk, ssl_kea_dh_psk, nullKey, ssl_auth_psk, PR_TRUE, SEC_OID_TLS_DHE_PSK },
{ kea_tls13_any, ssl_kea_tls13_any, nullKey, ssl_auth_tls13_any, PR_TRUE, SEC_OID_TLS13_KEA_ANY },
};
/* must use ssl_LookupCipherSuiteDef to access */
static const ssl3CipherSuiteDef cipher_suite_defs[] =
{
/* cipher_suite bulk_cipher_alg mac_alg key_exchange_alg prf_hash */
/* Note that the prf_hash_alg is the hash function used by the PRF, see sslimpl.h. */
{ TLS_NULL_WITH_NULL_NULL, cipher_null, ssl_mac_null, kea_null, ssl_hash_none },
{ TLS_RSA_WITH_NULL_MD5, cipher_null, ssl_mac_md5, kea_rsa, ssl_hash_none },
{ TLS_RSA_WITH_NULL_SHA, cipher_null, ssl_mac_sha, kea_rsa, ssl_hash_none },
{ TLS_RSA_WITH_NULL_SHA256, cipher_null, ssl_hmac_sha256, kea_rsa, ssl_hash_sha256 },
{ TLS_RSA_WITH_RC4_128_MD5, cipher_rc4, ssl_mac_md5, kea_rsa, ssl_hash_none },
{ TLS_RSA_WITH_RC4_128_SHA, cipher_rc4, ssl_mac_sha, kea_rsa, ssl_hash_none },
{ TLS_RSA_WITH_DES_CBC_SHA, cipher_des, ssl_mac_sha, kea_rsa, ssl_hash_none },
{ TLS_RSA_WITH_3DES_EDE_CBC_SHA, cipher_3des, ssl_mac_sha, kea_rsa, ssl_hash_none },
{ TLS_DHE_DSS_WITH_DES_CBC_SHA, cipher_des, ssl_mac_sha, kea_dhe_dss, ssl_hash_none },
{ TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA,
cipher_3des, ssl_mac_sha, kea_dhe_dss, ssl_hash_none },
{ TLS_DHE_DSS_WITH_RC4_128_SHA, cipher_rc4, ssl_mac_sha, kea_dhe_dss, ssl_hash_none },
{ TLS_DHE_RSA_WITH_DES_CBC_SHA, cipher_des, ssl_mac_sha, kea_dhe_rsa, ssl_hash_none },
{ TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA,
cipher_3des, ssl_mac_sha, kea_dhe_rsa, ssl_hash_none },
/* New TLS cipher suites */
{ TLS_RSA_WITH_AES_128_CBC_SHA, cipher_aes_128, ssl_mac_sha, kea_rsa, ssl_hash_none },
{ TLS_RSA_WITH_AES_128_CBC_SHA256, cipher_aes_128, ssl_hmac_sha256, kea_rsa, ssl_hash_sha256 },
{ TLS_DHE_DSS_WITH_AES_128_CBC_SHA, cipher_aes_128, ssl_mac_sha, kea_dhe_dss, ssl_hash_none },
{ TLS_DHE_RSA_WITH_AES_128_CBC_SHA, cipher_aes_128, ssl_mac_sha, kea_dhe_rsa, ssl_hash_none },
{ TLS_DHE_RSA_WITH_AES_128_CBC_SHA256, cipher_aes_128, ssl_hmac_sha256, kea_dhe_rsa, ssl_hash_sha256 },
{ TLS_RSA_WITH_AES_256_CBC_SHA, cipher_aes_256, ssl_mac_sha, kea_rsa, ssl_hash_none },
{ TLS_RSA_WITH_AES_256_CBC_SHA256, cipher_aes_256, ssl_hmac_sha256, kea_rsa, ssl_hash_sha256 },
{ TLS_DHE_DSS_WITH_AES_256_CBC_SHA, cipher_aes_256, ssl_mac_sha, kea_dhe_dss, ssl_hash_none },
{ TLS_DHE_RSA_WITH_AES_256_CBC_SHA, cipher_aes_256, ssl_mac_sha, kea_dhe_rsa, ssl_hash_none },
{ TLS_DHE_RSA_WITH_AES_256_CBC_SHA256, cipher_aes_256, ssl_hmac_sha256, kea_dhe_rsa, ssl_hash_sha256 },
{ TLS_DHE_RSA_WITH_AES_256_GCM_SHA384, cipher_aes_256_gcm, ssl_mac_aead, kea_dhe_rsa, ssl_hash_sha384 },
{ TLS_RSA_WITH_SEED_CBC_SHA, cipher_seed, ssl_mac_sha, kea_rsa, ssl_hash_none },
{ TLS_RSA_WITH_CAMELLIA_128_CBC_SHA, cipher_camellia_128, ssl_mac_sha, kea_rsa, ssl_hash_none },
{ TLS_DHE_DSS_WITH_CAMELLIA_128_CBC_SHA,
cipher_camellia_128, ssl_mac_sha, kea_dhe_dss, ssl_hash_none },
{ TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA,
cipher_camellia_128, ssl_mac_sha, kea_dhe_rsa, ssl_hash_none },
{ TLS_RSA_WITH_CAMELLIA_256_CBC_SHA, cipher_camellia_256, ssl_mac_sha, kea_rsa, ssl_hash_none },
{ TLS_DHE_DSS_WITH_CAMELLIA_256_CBC_SHA,
cipher_camellia_256, ssl_mac_sha, kea_dhe_dss, ssl_hash_none },
{ TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA,
cipher_camellia_256, ssl_mac_sha, kea_dhe_rsa, ssl_hash_none },
{ TLS_DHE_RSA_WITH_AES_128_GCM_SHA256, cipher_aes_128_gcm, ssl_mac_aead, kea_dhe_rsa, ssl_hash_sha256 },
{ TLS_RSA_WITH_AES_128_GCM_SHA256, cipher_aes_128_gcm, ssl_mac_aead, kea_rsa, ssl_hash_sha256 },
{ TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, cipher_aes_128_gcm, ssl_mac_aead, kea_ecdhe_rsa, ssl_hash_sha256 },
{ TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, cipher_aes_128_gcm, ssl_mac_aead, kea_ecdhe_ecdsa, ssl_hash_sha256 },
{ TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, cipher_aes_256_gcm, ssl_mac_aead, kea_ecdhe_ecdsa, ssl_hash_sha384 },
{ TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384, cipher_aes_256_gcm, ssl_mac_aead, kea_ecdhe_rsa, ssl_hash_sha384 },
{ TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384, cipher_aes_256, ssl_hmac_sha384, kea_ecdhe_ecdsa, ssl_hash_sha384 },
{ TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384, cipher_aes_256, ssl_hmac_sha384, kea_ecdhe_rsa, ssl_hash_sha384 },
{ TLS_DHE_DSS_WITH_AES_128_GCM_SHA256, cipher_aes_128_gcm, ssl_mac_aead, kea_dhe_dss, ssl_hash_sha256 },
{ TLS_DHE_DSS_WITH_AES_128_CBC_SHA256, cipher_aes_128, ssl_hmac_sha256, kea_dhe_dss, ssl_hash_sha256 },
{ TLS_DHE_DSS_WITH_AES_256_CBC_SHA256, cipher_aes_256, ssl_hmac_sha256, kea_dhe_dss, ssl_hash_sha256 },
{ TLS_DHE_DSS_WITH_AES_256_GCM_SHA384, cipher_aes_256_gcm, ssl_mac_aead, kea_dhe_dss, ssl_hash_sha384 },
{ TLS_RSA_WITH_AES_256_GCM_SHA384, cipher_aes_256_gcm, ssl_mac_aead, kea_rsa, ssl_hash_sha384 },
{ TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256, cipher_chacha20, ssl_mac_aead, kea_dhe_rsa, ssl_hash_sha256 },
{ TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, cipher_chacha20, ssl_mac_aead, kea_ecdhe_rsa, ssl_hash_sha256 },
{ TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, cipher_chacha20, ssl_mac_aead, kea_ecdhe_ecdsa, ssl_hash_sha256 },
{ TLS_ECDH_ECDSA_WITH_NULL_SHA, cipher_null, ssl_mac_sha, kea_ecdh_ecdsa, ssl_hash_none },
{ TLS_ECDH_ECDSA_WITH_RC4_128_SHA, cipher_rc4, ssl_mac_sha, kea_ecdh_ecdsa, ssl_hash_none },
{ TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA, cipher_3des, ssl_mac_sha, kea_ecdh_ecdsa, ssl_hash_none },
{ TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA, cipher_aes_128, ssl_mac_sha, kea_ecdh_ecdsa, ssl_hash_none },
{ TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA, cipher_aes_256, ssl_mac_sha, kea_ecdh_ecdsa, ssl_hash_none },
{ TLS_ECDHE_ECDSA_WITH_NULL_SHA, cipher_null, ssl_mac_sha, kea_ecdhe_ecdsa, ssl_hash_none },
{ TLS_ECDHE_ECDSA_WITH_RC4_128_SHA, cipher_rc4, ssl_mac_sha, kea_ecdhe_ecdsa, ssl_hash_none },
{ TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA, cipher_3des, ssl_mac_sha, kea_ecdhe_ecdsa, ssl_hash_none },
{ TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, cipher_aes_128, ssl_mac_sha, kea_ecdhe_ecdsa, ssl_hash_none },
{ TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256, cipher_aes_128, ssl_hmac_sha256, kea_ecdhe_ecdsa, ssl_hash_sha256 },
{ TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, cipher_aes_256, ssl_mac_sha, kea_ecdhe_ecdsa, ssl_hash_none },
{ TLS_ECDH_RSA_WITH_NULL_SHA, cipher_null, ssl_mac_sha, kea_ecdh_rsa, ssl_hash_none },
{ TLS_ECDH_RSA_WITH_RC4_128_SHA, cipher_rc4, ssl_mac_sha, kea_ecdh_rsa, ssl_hash_none },
{ TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA, cipher_3des, ssl_mac_sha, kea_ecdh_rsa, ssl_hash_none },
{ TLS_ECDH_RSA_WITH_AES_128_CBC_SHA, cipher_aes_128, ssl_mac_sha, kea_ecdh_rsa, ssl_hash_none },
{ TLS_ECDH_RSA_WITH_AES_256_CBC_SHA, cipher_aes_256, ssl_mac_sha, kea_ecdh_rsa, ssl_hash_none },
{ TLS_ECDHE_RSA_WITH_NULL_SHA, cipher_null, ssl_mac_sha, kea_ecdhe_rsa, ssl_hash_none },
{ TLS_ECDHE_RSA_WITH_RC4_128_SHA, cipher_rc4, ssl_mac_sha, kea_ecdhe_rsa, ssl_hash_none },
{ TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA, cipher_3des, ssl_mac_sha, kea_ecdhe_rsa, ssl_hash_none },
{ TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, cipher_aes_128, ssl_mac_sha, kea_ecdhe_rsa, ssl_hash_none },
{ TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256, cipher_aes_128, ssl_hmac_sha256, kea_ecdhe_rsa, ssl_hash_sha256 },
{ TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA, cipher_aes_256, ssl_mac_sha, kea_ecdhe_rsa, ssl_hash_none },
{ TLS_AES_128_GCM_SHA256, cipher_aes_128_gcm, ssl_mac_aead, kea_tls13_any, ssl_hash_sha256 },
{ TLS_CHACHA20_POLY1305_SHA256, cipher_chacha20, ssl_mac_aead, kea_tls13_any, ssl_hash_sha256 },
{ TLS_AES_256_GCM_SHA384, cipher_aes_256_gcm, ssl_mac_aead, kea_tls13_any, ssl_hash_sha384 },
};
static const CK_MECHANISM_TYPE auth_alg_defs[] = {
CKM_INVALID_MECHANISM, /* ssl_auth_null */
CKM_RSA_PKCS, /* ssl_auth_rsa_decrypt */
CKM_DSA, /* ? _SHA1 */ /* ssl_auth_dsa */
CKM_INVALID_MECHANISM, /* ssl_auth_kea (unused) */
CKM_ECDSA, /* ssl_auth_ecdsa */
CKM_ECDH1_DERIVE, /* ssl_auth_ecdh_rsa */
CKM_ECDH1_DERIVE, /* ssl_auth_ecdh_ecdsa */
CKM_RSA_PKCS, /* ssl_auth_rsa_sign */
CKM_RSA_PKCS_PSS, /* ssl_auth_rsa_pss */
CKM_NSS_HKDF_SHA256, /* ssl_auth_psk (just check for HKDF) */
CKM_INVALID_MECHANISM /* ssl_auth_tls13_any */
};
PR_STATIC_ASSERT(PR_ARRAY_SIZE(auth_alg_defs) == ssl_auth_size);
static const CK_MECHANISM_TYPE kea_alg_defs[] = {
CKM_INVALID_MECHANISM, /* ssl_kea_null */
CKM_RSA_PKCS, /* ssl_kea_rsa */
CKM_DH_PKCS_DERIVE, /* ssl_kea_dh */
CKM_INVALID_MECHANISM, /* ssl_kea_fortezza (unused) */
CKM_ECDH1_DERIVE, /* ssl_kea_ecdh */
CKM_ECDH1_DERIVE, /* ssl_kea_ecdh_psk */
CKM_DH_PKCS_DERIVE, /* ssl_kea_dh_psk */
CKM_INVALID_MECHANISM, /* ssl_kea_tls13_any */
};
PR_STATIC_ASSERT(PR_ARRAY_SIZE(kea_alg_defs) == ssl_kea_size);
typedef struct SSLCipher2MechStr {
SSLCipherAlgorithm calg;
CK_MECHANISM_TYPE cmech;
} SSLCipher2Mech;
/* indexed by type SSLCipherAlgorithm */
static const SSLCipher2Mech alg2Mech[] = {
/* calg, cmech */
{ ssl_calg_null, CKM_INVALID_MECHANISM },
{ ssl_calg_rc4, CKM_RC4 },
{ ssl_calg_rc2, CKM_RC2_CBC },
{ ssl_calg_des, CKM_DES_CBC },
{ ssl_calg_3des, CKM_DES3_CBC },
{ ssl_calg_idea, CKM_IDEA_CBC },
{ ssl_calg_fortezza, CKM_SKIPJACK_CBC64 },
{ ssl_calg_aes, CKM_AES_CBC },
{ ssl_calg_camellia, CKM_CAMELLIA_CBC },
{ ssl_calg_seed, CKM_SEED_CBC },
{ ssl_calg_aes_gcm, CKM_AES_GCM },
{ ssl_calg_chacha20, CKM_CHACHA20_POLY1305 },
};
const PRUint8 tls12_downgrade_random[] = { 0x44, 0x4F, 0x57, 0x4E,
0x47, 0x52, 0x44, 0x01 };
const PRUint8 tls1_downgrade_random[] = { 0x44, 0x4F, 0x57, 0x4E,
0x47, 0x52, 0x44, 0x00 };
PR_STATIC_ASSERT(sizeof(tls12_downgrade_random) ==
sizeof(tls1_downgrade_random));
/* The ECCWrappedKeyInfo structure defines how various pieces of
* information are laid out within wrappedSymmetricWrappingkey
* for ECDH key exchange. Since wrappedSymmetricWrappingkey is
* a 512-byte buffer (see sslimpl.h), the variable length field
* in ECCWrappedKeyInfo can be at most (512 - 8) = 504 bytes.
*
* XXX For now, NSS only supports named elliptic curves of size 571 bits
* or smaller. The public value will fit within 145 bytes and EC params
* will fit within 12 bytes. We'll need to revisit this when NSS
* supports arbitrary curves.
*/
#define MAX_EC_WRAPPED_KEY_BUFLEN 504
typedef struct ECCWrappedKeyInfoStr {
PRUint16 size; /* EC public key size in bits */
PRUint16 encodedParamLen; /* length (in bytes) of DER encoded EC params */
PRUint16 pubValueLen; /* length (in bytes) of EC public value */
PRUint16 wrappedKeyLen; /* length (in bytes) of the wrapped key */
PRUint8 var[MAX_EC_WRAPPED_KEY_BUFLEN]; /* this buffer contains the */
/* EC public-key params, the EC public value and the wrapped key */
} ECCWrappedKeyInfo;
CK_MECHANISM_TYPE
ssl3_Alg2Mech(SSLCipherAlgorithm calg)
{
PORT_Assert(alg2Mech[calg].calg == calg);
return alg2Mech[calg].cmech;
}
#if defined(TRACE)
static char *
ssl3_DecodeHandshakeType(int msgType)
{
char *rv;
static char line[40];
switch (msgType) {
case ssl_hs_hello_request:
rv = "hello_request (0)";
break;
case ssl_hs_client_hello:
rv = "client_hello (1)";
break;
case ssl_hs_server_hello:
rv = "server_hello (2)";
break;
case ssl_hs_hello_verify_request:
rv = "hello_verify_request (3)";
break;
case ssl_hs_new_session_ticket:
rv = "new_session_ticket (4)";
break;
case ssl_hs_end_of_early_data:
rv = "end_of_early_data (5)";
break;
case ssl_hs_hello_retry_request:
rv = "hello_retry_request (6)";
break;
case ssl_hs_encrypted_extensions:
rv = "encrypted_extensions (8)";
break;
case ssl_hs_certificate:
rv = "certificate (11)";
break;
case ssl_hs_server_key_exchange:
rv = "server_key_exchange (12)";
break;
case ssl_hs_certificate_request:
rv = "certificate_request (13)";
break;
case ssl_hs_server_hello_done:
rv = "server_hello_done (14)";
break;
case ssl_hs_certificate_verify:
rv = "certificate_verify (15)";
break;
case ssl_hs_client_key_exchange:
rv = "client_key_exchange (16)";
break;
case ssl_hs_finished:
rv = "finished (20)";
break;
case ssl_hs_certificate_status:
rv = "certificate_status (22)";
break;
case ssl_hs_key_update:
rv = "key_update (24)";
break;
default:
sprintf(line, "*UNKNOWN* handshake type! (%d)", msgType);
rv = line;
}
return rv;
}
static char *
ssl3_DecodeContentType(int msgType)
{
char *rv;
static char line[40];
switch (msgType) {
case ssl_ct_change_cipher_spec:
rv = "change_cipher_spec (20)";
break;
case ssl_ct_alert:
rv = "alert (21)";
break;
case ssl_ct_handshake:
rv = "handshake (22)";
break;
case ssl_ct_application_data:
rv = "application_data (23)";
break;
case ssl_ct_ack:
rv = "ack (26)";
break;
default:
sprintf(line, "*UNKNOWN* record type! (%d)", msgType);
rv = line;
}
return rv;
}
#endif
SSL3Statistics *
SSL_GetStatistics(void)
{
return &ssl3stats;
}
typedef struct tooLongStr {
#if defined(IS_LITTLE_ENDIAN)
PRInt32 low;
PRInt32 high;
#else
PRInt32 high;
PRInt32 low;
#endif
} tooLong;
void
SSL_AtomicIncrementLong(long *x)
{
if ((sizeof *x) == sizeof(PRInt32)) {
PR_ATOMIC_INCREMENT((PRInt32 *)x);
} else {
tooLong *tl = (tooLong *)x;
if (PR_ATOMIC_INCREMENT(&tl->low) == 0)
PR_ATOMIC_INCREMENT(&tl->high);
}
}
PRBool
ssl3_CipherSuiteAllowedForVersionRange(ssl3CipherSuite cipherSuite,
const SSLVersionRange *vrange)
{
switch (cipherSuite) {
case TLS_DHE_RSA_WITH_AES_256_CBC_SHA256:
case TLS_RSA_WITH_AES_256_CBC_SHA256:
case TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256:
case TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384:
case TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256:
case TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384:
case TLS_DHE_RSA_WITH_AES_128_CBC_SHA256:
case TLS_RSA_WITH_AES_128_CBC_SHA256:
case TLS_RSA_WITH_AES_128_GCM_SHA256:
case TLS_RSA_WITH_AES_256_GCM_SHA384:
case TLS_DHE_DSS_WITH_AES_128_CBC_SHA256:
case TLS_DHE_DSS_WITH_AES_256_CBC_SHA256:
case TLS_RSA_WITH_NULL_SHA256:
case TLS_DHE_DSS_WITH_AES_128_GCM_SHA256:
case TLS_DHE_DSS_WITH_AES_256_GCM_SHA384:
case TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256:
case TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384:
case TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256:
case TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384:
case TLS_DHE_RSA_WITH_AES_128_GCM_SHA256:
case TLS_DHE_RSA_WITH_AES_256_GCM_SHA384:
case TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256:
case TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256:
case TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256:
return vrange->max >= SSL_LIBRARY_VERSION_TLS_1_2 &&
vrange->min < SSL_LIBRARY_VERSION_TLS_1_3;
/* RFC 4492: ECC cipher suites need TLS extensions to negotiate curves and
* point formats.*/
case TLS_ECDH_ECDSA_WITH_NULL_SHA:
case TLS_ECDH_ECDSA_WITH_RC4_128_SHA:
case TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA:
case TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA:
case TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA:
case TLS_ECDHE_ECDSA_WITH_NULL_SHA:
case TLS_ECDHE_ECDSA_WITH_RC4_128_SHA:
case TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA:
case TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA:
case TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA:
case TLS_ECDH_RSA_WITH_NULL_SHA:
case TLS_ECDH_RSA_WITH_RC4_128_SHA:
case TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA:
case TLS_ECDH_RSA_WITH_AES_128_CBC_SHA:
case TLS_ECDH_RSA_WITH_AES_256_CBC_SHA:
case TLS_ECDHE_RSA_WITH_NULL_SHA:
case TLS_ECDHE_RSA_WITH_RC4_128_SHA:
case TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA:
case TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA:
case TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA:
return vrange->max >= SSL_LIBRARY_VERSION_TLS_1_0 &&
vrange->min < SSL_LIBRARY_VERSION_TLS_1_3;
case TLS_AES_128_GCM_SHA256:
case TLS_AES_256_GCM_SHA384:
case TLS_CHACHA20_POLY1305_SHA256:
return vrange->max >= SSL_LIBRARY_VERSION_TLS_1_3;
default:
return vrange->min < SSL_LIBRARY_VERSION_TLS_1_3;
}
}
/* return pointer to ssl3CipherSuiteDef for suite, or NULL */
/* XXX This does a linear search. A binary search would be better. */
const ssl3CipherSuiteDef *
ssl_LookupCipherSuiteDef(ssl3CipherSuite suite)
{
int cipher_suite_def_len =
sizeof(cipher_suite_defs) / sizeof(cipher_suite_defs[0]);
int i;
for (i = 0; i < cipher_suite_def_len; i++) {
if (cipher_suite_defs[i].cipher_suite == suite)
return &cipher_suite_defs[i];
}
PORT_Assert(PR_FALSE); /* We should never get here. */
PORT_SetError(SSL_ERROR_UNKNOWN_CIPHER_SUITE);
return NULL;
}
/* Find the cipher configuration struct associate with suite */
/* XXX This does a linear search. A binary search would be better. */
static ssl3CipherSuiteCfg *
ssl_LookupCipherSuiteCfgMutable(ssl3CipherSuite suite,
ssl3CipherSuiteCfg *suites)
{
int i;
for (i = 0; i < ssl_V3_SUITES_IMPLEMENTED; i++) {
if (suites[i].cipher_suite == suite)
return &suites[i];
}
/* return NULL and let the caller handle it. */
PORT_SetError(SSL_ERROR_UNKNOWN_CIPHER_SUITE);
return NULL;
}
const ssl3CipherSuiteCfg *
ssl_LookupCipherSuiteCfg(ssl3CipherSuite suite, const ssl3CipherSuiteCfg *suites)
{
return ssl_LookupCipherSuiteCfgMutable(suite,
CONST_CAST(ssl3CipherSuiteCfg, suites));
}
static PRBool
ssl_NamedGroupTypeEnabled(const sslSocket *ss, SSLKEAType keaType)
{
unsigned int i;
for (i = 0; i < SSL_NAMED_GROUP_COUNT; ++i) {
if (ss->namedGroupPreferences[i] &&
ss->namedGroupPreferences[i]->keaType == keaType) {
return PR_TRUE;
}
}
return PR_FALSE;
}
static PRBool
ssl_KEAEnabled(const sslSocket *ss, SSLKEAType keaType)
{
switch (keaType) {
case ssl_kea_rsa:
return PR_TRUE;
case ssl_kea_dh:
case ssl_kea_dh_psk: {
if (ss->sec.isServer && !ss->opt.enableServerDhe) {
return PR_FALSE;
}
if (ss->sec.isServer) {
/* If the server requires named FFDHE groups, then the client
* must have included an FFDHE group. peerSupportsFfdheGroups
* is set to true in ssl_HandleSupportedGroupsXtn(). */
if (ss->opt.requireDHENamedGroups &&
!ss->xtnData.peerSupportsFfdheGroups) {
return PR_FALSE;
}
/* We can use the weak DH group if all of these are true:
* 1. We don't require named groups.
* 2. The peer doesn't support named groups.
* 3. This isn't TLS 1.3.
* 4. The weak group is enabled. */
if (!ss->opt.requireDHENamedGroups &&
!ss->xtnData.peerSupportsFfdheGroups &&
ss->version < SSL_LIBRARY_VERSION_TLS_1_3 &&
ss->ssl3.dheWeakGroupEnabled) {
return PR_TRUE;
}
} else {
if (ss->version < SSL_LIBRARY_VERSION_TLS_1_3 &&
!ss->opt.requireDHENamedGroups) {
/* The client enables DHE cipher suites even if no DHE groups
* are enabled. Only if this isn't TLS 1.3 and named groups
* are not required. */
return PR_TRUE;
}
}
return ssl_NamedGroupTypeEnabled(ss, ssl_kea_dh);
}
case ssl_kea_ecdh:
case ssl_kea_ecdh_psk:
return ssl_NamedGroupTypeEnabled(ss, ssl_kea_ecdh);
case ssl_kea_tls13_any:
return PR_TRUE;
case ssl_kea_fortezza:
default:
PORT_Assert(0);
}
return PR_FALSE;
}
static PRBool
ssl_HasCert(const sslSocket *ss, PRUint16 maxVersion, SSLAuthType authType)
{
PRCList *cursor;
if (authType == ssl_auth_null || authType == ssl_auth_psk || authType == ssl_auth_tls13_any) {
return PR_TRUE;
}
for (cursor = PR_NEXT_LINK(&ss->serverCerts);
cursor != &ss->serverCerts;
cursor = PR_NEXT_LINK(cursor)) {
sslServerCert *cert = (sslServerCert *)cursor;
if (!cert->serverKeyPair ||
!cert->serverKeyPair->privKey ||
!cert->serverCertChain ||
!SSL_CERT_IS(cert, authType)) {
continue;
}
/* When called from ssl3_config_match_init(), all the EC curves will be
* enabled, so this will essentially do nothing (unless we implement
* curve configuration). However, once we have seen the
* supported_groups extension and this is called from config_match(),
* this will filter out certificates with an unsupported curve.
*
* If we might negotiate TLS 1.3, skip this test as group configuration
* doesn't affect choices in TLS 1.3.
*/
if (maxVersion < SSL_LIBRARY_VERSION_TLS_1_3 &&
(authType == ssl_auth_ecdsa ||
authType == ssl_auth_ecdh_ecdsa ||
authType == ssl_auth_ecdh_rsa) &&
!ssl_NamedGroupEnabled(ss, cert->namedCurve)) {
continue;
}
return PR_TRUE;
}
if (authType == ssl_auth_rsa_sign) {
return ssl_HasCert(ss, maxVersion, ssl_auth_rsa_pss);
}
return PR_FALSE;
}
/* return true if the scheme is allowed by policy, This prevents
* failures later when our actual signatures are rejected by
* policy by either ssl code, or lower level NSS code */
static PRBool
ssl_SchemePolicyOK(SSLSignatureScheme scheme, PRUint32 require)
{
/* Hash policy. */
PRUint32 policy;
SECOidTag hashOID = ssl3_HashTypeToOID(ssl_SignatureSchemeToHashType(scheme));
SECOidTag sigOID;
/* policy bits needed to enable a SignatureScheme */
SECStatus rv = NSS_GetAlgorithmPolicy(hashOID, &policy);
if (rv == SECSuccess &&
(policy & require) != require) {
return PR_FALSE;
}
/* ssl_SignatureSchemeToAuthType reports rsa for rsa_pss_rsae, but we
* actually implement pss signatures when we sign, so just use RSA_PSS
* for all RSA PSS Siganture schemes */
if (ssl_IsRsaPssSignatureScheme(scheme)) {
sigOID = SEC_OID_PKCS1_RSA_PSS_SIGNATURE;
} else {
sigOID = ssl3_AuthTypeToOID(ssl_SignatureSchemeToAuthType(scheme));
}
/* Signature Policy. */
rv = NSS_GetAlgorithmPolicy(sigOID, &policy);
if (rv == SECSuccess &&
(policy & require) != require) {
return PR_FALSE;
}
return PR_TRUE;
}
/* Check that a signature scheme is accepted.
* Both by policy and by having a token that supports it. */
static PRBool
ssl_SignatureSchemeAccepted(PRUint16 minVersion,
SSLSignatureScheme scheme,
PRBool forCert)
{
/* Disable RSA-PSS schemes if there are no tokens to verify them. */
if (ssl_IsRsaPssSignatureScheme(scheme)) {
if (!PK11_TokenExists(auth_alg_defs[ssl_auth_rsa_pss])) {
return PR_FALSE;
}
} else if (!forCert && ssl_IsRsaPkcs1SignatureScheme(scheme)) {
/* Disable PKCS#1 signatures if we are limited to TLS 1.3.
* We still need to advertise PKCS#1 signatures in CH and CR
* for certificate signatures.
*/
if (minVersion >= SSL_LIBRARY_VERSION_TLS_1_3) {
return PR_FALSE;
}
} else if (ssl_IsDsaSignatureScheme(scheme)) {
/* DSA: not in TLS 1.3, and check policy. */
if (minVersion >= SSL_LIBRARY_VERSION_TLS_1_3) {
return PR_FALSE;
}
}
return ssl_SchemePolicyOK(scheme, kSSLSigSchemePolicy);
}
static SECStatus
ssl_CheckSignatureSchemes(sslSocket *ss)
{
if (ss->vrange.max < SSL_LIBRARY_VERSION_TLS_1_2) {
return SECSuccess;
}
/* If this is a server using TLS 1.3, we just need to have one signature
* scheme for which we have a usable certificate.
*
* Note: Certificates for earlier TLS versions are checked along with the
* cipher suite in ssl3_config_match_init. */
if (ss->sec.isServer && ss->vrange.max >= SSL_LIBRARY_VERSION_TLS_1_3) {
PRBool foundCert = PR_FALSE;
for (unsigned int i = 0; i < ss->ssl3.signatureSchemeCount; ++i) {
SSLAuthType authType =
ssl_SignatureSchemeToAuthType(ss->ssl3.signatureSchemes[i]);
if (ssl_HasCert(ss, ss->vrange.max, authType)) {
foundCert = PR_TRUE;
break;
}
}
if (!foundCert) {
PORT_SetError(SSL_ERROR_NO_SUPPORTED_SIGNATURE_ALGORITHM);
return SECFailure;
}
}
/* Ensure that there is a signature scheme that can be accepted.*/
for (unsigned int i = 0; i < ss->ssl3.signatureSchemeCount; ++i) {
if (ssl_SignatureSchemeAccepted(ss->vrange.min,
ss->ssl3.signatureSchemes[i],
PR_FALSE /* forCert */)) {
return SECSuccess;
}
}
PORT_SetError(SSL_ERROR_NO_SUPPORTED_SIGNATURE_ALGORITHM);
return SECFailure;
}
/* For a server, check that a signature scheme that can be used with the
* provided authType is both enabled and usable. */
static PRBool
ssl_HasSignatureScheme(const sslSocket *ss, SSLAuthType authType)
{
PORT_Assert(ss->sec.isServer);
PORT_Assert(ss->ssl3.hs.preliminaryInfo & ssl_preinfo_version);
PORT_Assert(authType != ssl_auth_null);
PORT_Assert(authType != ssl_auth_tls13_any);
if (ss->version < SSL_LIBRARY_VERSION_TLS_1_2 ||
authType == ssl_auth_rsa_decrypt ||
authType == ssl_auth_ecdh_rsa ||
authType == ssl_auth_ecdh_ecdsa) {
return PR_TRUE;
}
for (unsigned int i = 0; i < ss->ssl3.signatureSchemeCount; ++i) {
SSLSignatureScheme scheme = ss->ssl3.signatureSchemes[i];
SSLAuthType schemeAuthType = ssl_SignatureSchemeToAuthType(scheme);
PRBool acceptable = authType == schemeAuthType ||
(schemeAuthType == ssl_auth_rsa_pss &&
authType == ssl_auth_rsa_sign);
if (acceptable && ssl_SignatureSchemeAccepted(ss->version, scheme, PR_FALSE /* forCert */)) {
return PR_TRUE;
}
}
return PR_FALSE;
}
/* Initialize the suite->isPresent value for config_match
* Returns count of enabled ciphers supported by extant tokens,
* regardless of policy or user preference.
* If this returns zero, the user cannot do SSL v3.
*/
unsigned int
ssl3_config_match_init(sslSocket *ss)
{
ssl3CipherSuiteCfg *suite;
const ssl3CipherSuiteDef *cipher_def;
SSLCipherAlgorithm cipher_alg;
CK_MECHANISM_TYPE cipher_mech;
SSLAuthType authType;
SSLKEAType keaType;
unsigned int i;
unsigned int numPresent = 0;
unsigned int numEnabled = 0;
PORT_Assert(ss);
if (!ss) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return 0;
}
if (SSL_ALL_VERSIONS_DISABLED(&ss->vrange)) {
return 0;
}
if (ss->sec.isServer && ss->psk &&
PR_CLIST_IS_EMPTY(&ss->serverCerts) &&
(ss->opt.requestCertificate || ss->opt.requireCertificate)) {
/* PSK and certificate auth cannot be combined. */
PORT_SetError(SSL_ERROR_NO_CERTIFICATE);
return 0;
}
if (ssl_CheckSignatureSchemes(ss) != SECSuccess) {
return 0; /* Code already set. */
}
ssl_FilterSupportedGroups(ss);
for (i = 0; i < ssl_V3_SUITES_IMPLEMENTED; i++) {
suite = &ss->cipherSuites[i];
if (suite->enabled) {
++numEnabled;
/* We need the cipher defs to see if we have a token that can handle
* this cipher. It isn't part of the static definition.
*/
cipher_def = ssl_LookupCipherSuiteDef(suite->cipher_suite);
if (!cipher_def) {
suite->isPresent = PR_FALSE;
continue;
}
cipher_alg = ssl_GetBulkCipherDef(cipher_def)->calg;
cipher_mech = ssl3_Alg2Mech(cipher_alg);
/* Mark the suites that are backed by real tokens, certs and keys */
suite->isPresent = PR_TRUE;
authType = kea_defs[cipher_def->key_exchange_alg].authKeyType;
if (authType != ssl_auth_null && authType != ssl_auth_tls13_any) {
if (ss->sec.isServer &&
!(ssl_HasCert(ss, ss->vrange.max, authType) &&
ssl_HasSignatureScheme(ss, authType))) {
suite->isPresent = PR_FALSE;
} else if (!PK11_TokenExists(auth_alg_defs[authType])) {
suite->isPresent = PR_FALSE;
}
}
keaType = kea_defs[cipher_def->key_exchange_alg].exchKeyType;
if (keaType != ssl_kea_null &&
keaType != ssl_kea_tls13_any &&
!PK11_TokenExists(kea_alg_defs[keaType])) {
suite->isPresent = PR_FALSE;
}
if (cipher_alg != ssl_calg_null &&
!PK11_TokenExists(cipher_mech)) {
suite->isPresent = PR_FALSE;
}
if (suite->isPresent) {
++numPresent;
}
}
}
PORT_Assert(numPresent > 0 || numEnabled == 0);
if (numPresent == 0) {
PORT_SetError(SSL_ERROR_NO_CIPHERS_SUPPORTED);
}
return numPresent;
}
/* Return PR_TRUE if suite is usable. This if the suite is permitted by policy,
* enabled, has a certificate (as needed), has a viable key agreement method, is
* usable with the negotiated TLS version, and is otherwise usable. */
PRBool
ssl3_config_match(const ssl3CipherSuiteCfg *suite, PRUint8 policy,
const SSLVersionRange *vrange, const sslSocket *ss)
{
const ssl3CipherSuiteDef *cipher_def;
const ssl3KEADef *kea_def;
if (!suite) {
PORT_Assert(suite);
return PR_FALSE;
}
PORT_Assert(policy != SSL_NOT_ALLOWED);
if (policy == SSL_NOT_ALLOWED)
return PR_FALSE;
if (!suite->enabled || !suite->isPresent)
return PR_FALSE;
if ((suite->policy == SSL_NOT_ALLOWED) ||
(suite->policy > policy))
return PR_FALSE;
PORT_Assert(ss != NULL);
cipher_def = ssl_LookupCipherSuiteDef(suite->cipher_suite);
PORT_Assert(cipher_def != NULL);
kea_def = &kea_defs[cipher_def->key_exchange_alg];
PORT_Assert(kea_def != NULL);
if (!ssl_KEAEnabled(ss, kea_def->exchKeyType)) {
return PR_FALSE;
}
if (ss->sec.isServer && !ssl_HasCert(ss, vrange->max, kea_def->authKeyType)) {
return PR_FALSE;
}
/* If a PSK is selected, disable suites that use a different hash than
* the PSK. We advertise non-PSK-compatible suites in the CH, as we could
* fallback to certificate auth. The client handler will check hash
* compatibility before committing to use the PSK. */
if (ss->xtnData.selectedPsk) {
if (ss->xtnData.selectedPsk->hash != cipher_def->prf_hash) {
return PR_FALSE;
}
}
return ssl3_CipherSuiteAllowedForVersionRange(suite->cipher_suite, vrange);
}
/* For TLS 1.3, when resuming, check for a ciphersuite that is both compatible
* with the identified ciphersuite and enabled. */
static PRBool
tls13_ResumptionCompatible(sslSocket *ss, ssl3CipherSuite suite)
{
SSLVersionRange vrange = { SSL_LIBRARY_VERSION_TLS_1_3,
SSL_LIBRARY_VERSION_TLS_1_3 };
SSLHashType hash = tls13_GetHashForCipherSuite(suite);
for (unsigned int i = 0; i < PR_ARRAY_SIZE(cipher_suite_defs); i++) {
if (cipher_suite_defs[i].prf_hash == hash) {
const ssl3CipherSuiteCfg *suiteCfg =
ssl_LookupCipherSuiteCfg(cipher_suite_defs[i].cipher_suite,
ss->cipherSuites);
if (suite && ssl3_config_match(suiteCfg, ss->ssl3.policy, &vrange, ss)) {
return PR_TRUE;
}
}
}
return PR_FALSE;
}
/*
* Null compression, mac and encryption functions
*/
SECStatus
Null_Cipher(void *ctx, unsigned char *output, unsigned int *outputLen, unsigned int maxOutputLen,
const unsigned char *input, unsigned int inputLen)
{
if (inputLen > maxOutputLen) {
*outputLen = 0; /* Match PK11_CipherOp in setting outputLen */
PORT_SetError(SEC_ERROR_OUTPUT_LEN);
return SECFailure;
}
*outputLen = inputLen;
if (inputLen > 0 && input != output) {
PORT_Memcpy(output, input, inputLen);
}
return SECSuccess;
}
/*
* SSL3 Utility functions
*/
static void
ssl_SetSpecVersions(sslSocket *ss, ssl3CipherSpec *spec)
{
spec->version = ss->version;
if (ss->version >= SSL_LIBRARY_VERSION_TLS_1_3) {
tls13_SetSpecRecordVersion(ss, spec);
} else if (IS_DTLS(ss)) {
spec->recordVersion = dtls_TLSVersionToDTLSVersion(ss->version);
} else {
spec->recordVersion = ss->version;
}
}
/* allowLargerPeerVersion controls whether the function will select the
* highest enabled SSL version or fail when peerVersion is greater than the
* highest enabled version.
*
* If allowLargerPeerVersion is true, peerVersion is the peer's highest
* enabled version rather than the peer's selected version.
*/
SECStatus
ssl3_NegotiateVersion(sslSocket *ss, SSL3ProtocolVersion peerVersion,
PRBool allowLargerPeerVersion)
{
SSL3ProtocolVersion negotiated;
/* Prevent negotiating to a lower version in response to a TLS 1.3 HRR. */
if (ss->ssl3.hs.helloRetry) {
PORT_SetError(SSL_ERROR_UNSUPPORTED_VERSION);
return SECFailure;
}
if (SSL_ALL_VERSIONS_DISABLED(&ss->vrange)) {
PORT_SetError(SSL_ERROR_SSL_DISABLED);
return SECFailure;
}
if (peerVersion < ss->vrange.min ||
(peerVersion > ss->vrange.max && !allowLargerPeerVersion)) {
PORT_SetError(SSL_ERROR_UNSUPPORTED_VERSION);
return SECFailure;
}
negotiated = PR_MIN(peerVersion, ss->vrange.max);
PORT_Assert(ssl3_VersionIsSupported(ss->protocolVariant, negotiated));
if (ss->firstHsDone && ss->version != negotiated) {
PORT_SetError(SSL_ERROR_UNSUPPORTED_VERSION);
return SECFailure;
}
ss->version = negotiated;
return SECSuccess;
}
/* Used by the client when the server produces a version number.
* This reads, validates, and normalizes the value. */
SECStatus
ssl_ClientReadVersion(sslSocket *ss, PRUint8 **b, unsigned int *len,
SSL3ProtocolVersion *version)
{
SSL3ProtocolVersion v;
PRUint32 temp;
SECStatus rv;
rv = ssl3_ConsumeHandshakeNumber(ss, &temp, 2, b, len);
if (rv != SECSuccess) {
return SECFailure; /* alert has been sent */
}
v = (SSL3ProtocolVersion)temp;
if (IS_DTLS(ss)) {
v = dtls_DTLSVersionToTLSVersion(v);
/* Check for failure. */
if (!v || v > SSL_LIBRARY_VERSION_MAX_SUPPORTED) {
SSL3_SendAlert(ss, alert_fatal, illegal_parameter);
return SECFailure;
}
}
/* You can't negotiate TLS 1.3 this way. */
if (v >= SSL_LIBRARY_VERSION_TLS_1_3) {
SSL3_SendAlert(ss, alert_fatal, illegal_parameter);
return SECFailure;
}
*version = v;
return SECSuccess;
}
SECStatus
ssl3_GetNewRandom(SSL3Random random)
{
SECStatus rv;
rv = PK11_GenerateRandom(random, SSL3_RANDOM_LENGTH);
if (rv != SECSuccess) {
ssl_MapLowLevelError(SSL_ERROR_GENERATE_RANDOM_FAILURE);
}
return rv;
}
SECStatus
ssl3_SignHashesWithPrivKey(SSL3Hashes *hash, SECKEYPrivateKey *key,
SSLSignatureScheme scheme, PRBool isTls, SECItem *buf)
{
SECStatus rv = SECFailure;
PRBool doDerEncode = PR_FALSE;
PRBool useRsaPss = ssl_IsRsaPssSignatureScheme(scheme);
SECItem hashItem;
buf->data = NULL;
switch (SECKEY_GetPrivateKeyType(key)) {
case rsaKey:
hashItem.data = hash->u.raw;
hashItem.len = hash->len;
break;
case dsaKey:
doDerEncode = isTls;
/* ssl_hash_none is used to specify the MD5/SHA1 concatenated hash.
* In that case, we use just the SHA1 part. */
if (hash->hashAlg == ssl_hash_none) {
hashItem.data = hash->u.s.sha;
hashItem.len = sizeof(hash->u.s.sha);
} else {
hashItem.data = hash->u.raw;
hashItem.len = hash->len;
}
break;
case ecKey:
doDerEncode = PR_TRUE;
/* ssl_hash_none is used to specify the MD5/SHA1 concatenated hash.
* In that case, we use just the SHA1 part. */
if (hash->hashAlg == ssl_hash_none) {
hashItem.data = hash->u.s.sha;
hashItem.len = sizeof(hash->u.s.sha);
} else {
hashItem.data = hash->u.raw;
hashItem.len = hash->len;
}
break;
default:
PORT_SetError(SEC_ERROR_INVALID_KEY);
goto done;
}
PRINT_BUF(60, (NULL, "hash(es) to be signed", hashItem.data, hashItem.len));
if (useRsaPss || hash->hashAlg == ssl_hash_none) {
CK_MECHANISM_TYPE mech = PK11_MapSignKeyType(key->keyType);
int signatureLen = PK11_SignatureLen(key);
SECItem *params = NULL;
CK_RSA_PKCS_PSS_PARAMS pssParams;
SECItem pssParamsItem = { siBuffer,
(unsigned char *)&pssParams,
sizeof(pssParams) };
if (signatureLen <= 0) {
PORT_SetError(SEC_ERROR_INVALID_KEY);
goto done;
}
buf->len = (unsigned)signatureLen;
buf->data = (unsigned char *)PORT_Alloc(signatureLen);
if (!buf->data)
goto done; /* error code was set. */
if (useRsaPss) {
pssParams.hashAlg = ssl3_GetHashMechanismByHashType(hash->hashAlg);
pssParams.mgf = ssl3_GetMgfMechanismByHashType(hash->hashAlg);
pssParams.sLen = hashItem.len;
params = &pssParamsItem;
mech = CKM_RSA_PKCS_PSS;
}
rv = PK11_SignWithMechanism(key, mech, params, buf, &hashItem);
} else {
SECOidTag hashOID = ssl3_HashTypeToOID(hash->hashAlg);
rv = SGN_Digest(key, hashOID, buf, &hashItem);
}
if (rv != SECSuccess) {
ssl_MapLowLevelError(SSL_ERROR_SIGN_HASHES_FAILURE);
} else if (doDerEncode) {
SECItem derSig = { siBuffer, NULL, 0 };
/* This also works for an ECDSA signature */
rv = DSAU_EncodeDerSigWithLen(&derSig, buf, buf->len);
if (rv == SECSuccess) {
PORT_Free(buf->data); /* discard unencoded signature. */
*buf = derSig; /* give caller encoded signature. */
} else if (derSig.data) {
PORT_Free(derSig.data);
}
}
PRINT_BUF(60, (NULL, "signed hashes", (unsigned char *)buf->data, buf->len));
done:
if (rv != SECSuccess && buf->data) {
PORT_Free(buf->data);
buf->data = NULL;
}
return rv;
}
/* Called by ssl3_SendServerKeyExchange and ssl3_SendCertificateVerify */
SECStatus
ssl3_SignHashes(sslSocket *ss, SSL3Hashes *hash, SECKEYPrivateKey *key,
SECItem *buf)
{
SECStatus rv = SECFailure;
PRBool isTLS = (PRBool)(ss->version > SSL_LIBRARY_VERSION_3_0);
SSLSignatureScheme scheme = ss->ssl3.hs.signatureScheme;
rv = ssl3_SignHashesWithPrivKey(hash, key, scheme, isTLS, buf);
if (rv != SECSuccess) {
return SECFailure;
}
if (ss->sec.isServer) {
ss->sec.signatureScheme = scheme;
ss->sec.authType = ssl_SignatureSchemeToAuthType(scheme);
}
return SECSuccess;
}
/* Called from ssl3_VerifySignedHashes and tls13_HandleCertificateVerify. */
SECStatus
ssl_VerifySignedHashesWithPubKey(sslSocket *ss, SECKEYPublicKey *key,
SSLSignatureScheme scheme,
SSL3Hashes *hash, SECItem *buf)
{
SECItem *signature = NULL;
SECStatus rv = SECFailure;
SECItem hashItem;
SECOidTag encAlg;
SECOidTag hashAlg;
void *pwArg = ss->pkcs11PinArg;
PRBool isRsaPssScheme = ssl_IsRsaPssSignatureScheme(scheme);
PRINT_BUF(60, (NULL, "check signed hashes", buf->data, buf->len));
hashAlg = ssl3_HashTypeToOID(hash->hashAlg);
switch (SECKEY_GetPublicKeyType(key)) {
case rsaKey:
encAlg = SEC_OID_PKCS1_RSA_ENCRYPTION;
hashItem.data = hash->u.raw;
hashItem.len = hash->len;
if (scheme == ssl_sig_none) {
scheme = ssl_sig_rsa_pkcs1_sha1md5;
}
break;
case dsaKey:
encAlg = SEC_OID_ANSIX9_DSA_SIGNATURE;
/* ssl_hash_none is used to specify the MD5/SHA1 concatenated hash.
* In that case, we use just the SHA1 part. */
if (hash->hashAlg == ssl_hash_none) {
hashItem.data = hash->u.s.sha;
hashItem.len = sizeof(hash->u.s.sha);
} else {
hashItem.data = hash->u.raw;
hashItem.len = hash->len;
}
/* Allow DER encoded DSA signatures in SSL 3.0 */
if (ss->ssl3.prSpec->version > SSL_LIBRARY_VERSION_3_0 ||
buf->len != SECKEY_SignatureLen(key)) {
signature = DSAU_DecodeDerSigToLen(buf, SECKEY_SignatureLen(key));
if (!signature) {
PORT_SetError(SSL_ERROR_BAD_HANDSHAKE_HASH_VALUE);
goto loser;
}
buf = signature;
}
if (scheme == ssl_sig_none) {
scheme = ssl_sig_dsa_sha1;
}
break;
case ecKey:
encAlg = SEC_OID_ANSIX962_EC_PUBLIC_KEY;
/* ssl_hash_none is used to specify the MD5/SHA1 concatenated hash.
* In that case, we use just the SHA1 part.
* ECDSA signatures always encode the integers r and s using ASN.1
* (unlike DSA where ASN.1 encoding is used with TLS but not with
* SSL3). So we can use VFY_VerifyDigestDirect for ECDSA.
*/
if (hash->hashAlg == ssl_hash_none) {
hashAlg = SEC_OID_SHA1;
hashItem.data = hash->u.s.sha;
hashItem.len = sizeof(hash->u.s.sha);
} else {
hashItem.data = hash->u.raw;
hashItem.len = hash->len;
}
if (scheme == ssl_sig_none) {
scheme = ssl_sig_ecdsa_sha1;
}
break;
default:
PORT_SetError(SEC_ERROR_UNSUPPORTED_KEYALG);
goto loser;
}
PRINT_BUF(60, (NULL, "hash(es) to be verified",
hashItem.data, hashItem.len));
if (isRsaPssScheme ||
hashAlg == SEC_OID_UNKNOWN ||
SECKEY_GetPublicKeyType(key) == dsaKey) {
/* VFY_VerifyDigestDirect requires DSA signatures to be DER-encoded.
* DSA signatures are DER-encoded in TLS but not in SSL3 and the code
* above always removes the DER encoding of DSA signatures when
* present. Thus DSA signatures are always verified with PK11_Verify.
*/
CK_MECHANISM_TYPE mech = PK11_MapSignKeyType(key->keyType);
SECItem *params = NULL;
CK_RSA_PKCS_PSS_PARAMS pssParams;
SECItem pssParamsItem = { siBuffer,
(unsigned char *)&pssParams,
sizeof(pssParams) };
if (isRsaPssScheme) {
pssParams.hashAlg = ssl3_GetHashMechanismByHashType(hash->hashAlg);
pssParams.mgf = ssl3_GetMgfMechanismByHashType(hash->hashAlg);
pssParams.sLen = hashItem.len;
params = &pssParamsItem;
mech = CKM_RSA_PKCS_PSS;
}
rv = PK11_VerifyWithMechanism(key, mech, params, buf, &hashItem, pwArg);
} else {
rv = VFY_VerifyDigestDirect(&hashItem, key, buf, encAlg, hashAlg,
pwArg);
}
if (signature) {
SECITEM_FreeItem(signature, PR_TRUE);
}
if (rv != SECSuccess) {
ssl_MapLowLevelError(SSL_ERROR_BAD_HANDSHAKE_HASH_VALUE);
}
if (!ss->sec.isServer) {
ss->sec.signatureScheme = scheme;
ss->sec.authType = ssl_SignatureSchemeToAuthType(scheme);
}
loser:
#ifdef UNSAFE_FUZZER_MODE
rv = SECSuccess;
PORT_SetError(0);
#endif
return rv;
}
/* Called from ssl3_HandleServerKeyExchange, ssl3_HandleCertificateVerify */
SECStatus
ssl3_VerifySignedHashes(sslSocket *ss, SSLSignatureScheme scheme, SSL3Hashes *hash,
SECItem *buf)
{
SECKEYPublicKey *pubKey =
SECKEY_ExtractPublicKey(&ss->sec.peerCert->subjectPublicKeyInfo);
if (pubKey == NULL) {
ssl_MapLowLevelError(SSL_ERROR_EXTRACT_PUBLIC_KEY_FAILURE);
return SECFailure;
}
SECStatus rv = ssl_VerifySignedHashesWithPubKey(ss, pubKey, scheme,
hash, buf);
SECKEY_DestroyPublicKey(pubKey);
return rv;
}
/* Caller must set hiLevel error code. */
/* Called from ssl3_ComputeDHKeyHash
* which are called from ssl3_HandleServerKeyExchange.
*
* hashAlg: ssl_hash_none indicates the pre-1.2, MD5/SHA1 combination hash.
*/
SECStatus
ssl3_ComputeCommonKeyHash(SSLHashType hashAlg,
PRUint8 *hashBuf, unsigned int bufLen,
SSL3Hashes *hashes)
{
SECStatus rv;
SECOidTag hashOID;
PRUint32 policy;
if (hashAlg == ssl_hash_none) {
if ((NSS_GetAlgorithmPolicy(SEC_OID_SHA1, &policy) == SECSuccess) &&
!(policy & NSS_USE_ALG_IN_SSL_KX)) {
ssl_MapLowLevelError(SSL_ERROR_UNSUPPORTED_HASH_ALGORITHM);
return SECFailure;
}
rv = PK11_HashBuf(SEC_OID_MD5, hashes->u.s.md5, hashBuf, bufLen);
if (rv != SECSuccess) {
ssl_MapLowLevelError(SSL_ERROR_MD5_DIGEST_FAILURE);
return rv;
}
rv = PK11_HashBuf(SEC_OID_SHA1, hashes->u.s.sha, hashBuf, bufLen);
if (rv != SECSuccess) {
ssl_MapLowLevelError(SSL_ERROR_SHA_DIGEST_FAILURE);
return rv;
}
hashes->len = MD5_LENGTH + SHA1_LENGTH;
} else {
hashOID = ssl3_HashTypeToOID(hashAlg);
if ((NSS_GetAlgorithmPolicy(hashOID, &policy) == SECSuccess) &&
!(policy & NSS_USE_ALG_IN_SSL_KX)) {
ssl_MapLowLevelError(SSL_ERROR_UNSUPPORTED_HASH_ALGORITHM);
return SECFailure;
}
hashes->len = HASH_ResultLenByOidTag(hashOID);
if (hashes->len == 0 || hashes->len > sizeof(hashes->u.raw)) {
ssl_MapLowLevelError(SSL_ERROR_UNSUPPORTED_HASH_ALGORITHM);
return SECFailure;
}
rv = PK11_HashBuf(hashOID, hashes->u.raw, hashBuf, bufLen);
if (rv != SECSuccess) {
ssl_MapLowLevelError(SSL_ERROR_DIGEST_FAILURE);
return rv;
}
}
hashes->hashAlg = hashAlg;
return SECSuccess;
}
/* Caller must set hiLevel error code. */
/* Called from ssl3_HandleServerKeyExchange. */
static SECStatus
ssl3_ComputeDHKeyHash(sslSocket *ss, SSLHashType hashAlg, SSL3Hashes *hashes,
SECItem dh_p, SECItem dh_g, SECItem dh_Ys, PRBool padY)
{
sslBuffer buf = SSL_BUFFER_EMPTY;
SECStatus rv;
unsigned int yLen;
unsigned int i;
PORT_Assert(dh_p.data);
PORT_Assert(dh_g.data);
PORT_Assert(dh_Ys.data);
rv = sslBuffer_Append(&buf, ss->ssl3.hs.client_random, SSL3_RANDOM_LENGTH);
if (rv != SECSuccess) {
goto loser;
}
rv = sslBuffer_Append(&buf, ss->ssl3.hs.server_random, SSL3_RANDOM_LENGTH);
if (rv != SECSuccess) {
goto loser;
}
/* p */
rv = sslBuffer_AppendVariable(&buf, dh_p.data, dh_p.len, 2);
if (rv != SECSuccess) {
goto loser;
}
/* g */
rv = sslBuffer_AppendVariable(&buf, dh_g.data, dh_g.len, 2);
if (rv != SECSuccess) {
goto loser;
}
/* y - complicated by padding */
yLen = padY ? dh_p.len : dh_Ys.len;
rv = sslBuffer_AppendNumber(&buf, yLen, 2);
if (rv != SECSuccess) {
goto loser;
}
/* If we're padding Y, dh_Ys can't be longer than dh_p. */
PORT_Assert(!padY || dh_p.len >= dh_Ys.len);
for (i = dh_Ys.len; i < yLen; ++i) {
rv = sslBuffer_AppendNumber(&buf, 0, 1);
if (rv != SECSuccess) {
goto loser;
}
}
rv = sslBuffer_Append(&buf, dh_Ys.data, dh_Ys.len);
if (rv != SECSuccess) {
goto loser;
}
rv = ssl3_ComputeCommonKeyHash(hashAlg, SSL_BUFFER_BASE(&buf),
SSL_BUFFER_LEN(&buf), hashes);
if (rv != SECSuccess) {
goto loser;
}
PRINT_BUF(95, (NULL, "DHkey hash: ", SSL_BUFFER_BASE(&buf),
SSL_BUFFER_LEN(&buf)));
if (hashAlg == ssl_hash_none) {
PRINT_BUF(95, (NULL, "DHkey hash: MD5 result",
hashes->u.s.md5, MD5_LENGTH));
PRINT_BUF(95, (NULL, "DHkey hash: SHA1 result",
hashes->u.s.sha, SHA1_LENGTH));
} else {
PRINT_BUF(95, (NULL, "DHkey hash: result",
hashes->u.raw, hashes->len));
}
sslBuffer_Clear(&buf);
return SECSuccess;
loser:
sslBuffer_Clear(&buf);
return SECFailure;
}
static SECStatus
ssl3_SetupPendingCipherSpec(sslSocket *ss, SSLSecretDirection direction,
const ssl3CipherSuiteDef *suiteDef,
ssl3CipherSpec **specp)
{
ssl3CipherSpec *spec;
const ssl3CipherSpec *prev;
prev = (direction == ssl_secret_write) ? ss->ssl3.cwSpec : ss->ssl3.crSpec;
if (prev->epoch == PR_UINT16_MAX) {
PORT_SetError(SSL_ERROR_RENEGOTIATION_NOT_ALLOWED);
return SECFailure;
}
spec = ssl_CreateCipherSpec(ss, direction);
if (!spec) {
return SECFailure;
}
spec->cipherDef = ssl_GetBulkCipherDef(suiteDef);
spec->macDef = ssl_GetMacDef(ss, suiteDef);
spec->epoch = prev->epoch + 1;
spec->nextSeqNum = 0;
if (IS_DTLS(ss) && direction == ssl_secret_read) {
dtls_InitRecvdRecords(&spec->recvdRecords);
}
ssl_SetSpecVersions(ss, spec);
ssl_SaveCipherSpec(ss, spec);
*specp = spec;
return SECSuccess;
}
/* Fill in the pending cipher spec with info from the selected ciphersuite.
** This is as much initialization as we can do without having key material.
** Called from ssl3_HandleServerHello(), ssl3_SendServerHello()
** Caller must hold the ssl3 handshake lock.
** Acquires & releases SpecWriteLock.
*/
SECStatus
ssl3_SetupBothPendingCipherSpecs(sslSocket *ss)
{
ssl3CipherSuite suite = ss->ssl3.hs.cipher_suite;
SSL3KeyExchangeAlgorithm kea;
const ssl3CipherSuiteDef *suiteDef;
SECStatus rv;
PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
PORT_Assert(ss->version < SSL_LIBRARY_VERSION_TLS_1_3);
ssl_GetSpecWriteLock(ss); /*******************************/
/* This hack provides maximal interoperability with SSL 3 servers. */
if (ss->ssl3.cwSpec->macDef->mac == ssl_mac_null) {
/* SSL records are not being MACed. */
ss->ssl3.cwSpec->version = ss->version;
}
SSL_TRC(3, ("%d: SSL3[%d]: Set XXX Pending Cipher Suite to 0x%04x",
SSL_GETPID(), ss->fd, suite));
suiteDef = ssl_LookupCipherSuiteDef(suite);
if (suiteDef == NULL) {
goto loser;
}
if (IS_DTLS(ss)) {
/* Double-check that we did not pick an RC4 suite */
PORT_Assert(suiteDef->bulk_cipher_alg != cipher_rc4);
}
ss->ssl3.hs.suite_def = suiteDef;
kea = suiteDef->key_exchange_alg;
ss->ssl3.hs.kea_def = &kea_defs[kea];
PORT_Assert(ss->ssl3.hs.kea_def->kea == kea);
rv = ssl3_SetupPendingCipherSpec(ss, ssl_secret_read, suiteDef,
&ss->ssl3.prSpec);
if (rv != SECSuccess) {
goto loser;
}
rv = ssl3_SetupPendingCipherSpec(ss, ssl_secret_write, suiteDef,
&ss->ssl3.pwSpec);
if (rv != SECSuccess) {
goto loser;
}
if (ssl3_ExtensionNegotiated(ss, ssl_record_size_limit_xtn)) {
ss->ssl3.prSpec->recordSizeLimit = PR_MIN(MAX_FRAGMENT_LENGTH,
ss->opt.recordSizeLimit);
ss->ssl3.pwSpec->recordSizeLimit = PR_MIN(MAX_FRAGMENT_LENGTH,
ss->xtnData.recordSizeLimit);
}
ssl_ReleaseSpecWriteLock(ss); /*******************************/
return SECSuccess;
loser:
ssl_ReleaseSpecWriteLock(ss);
return SECFailure;
}
/* ssl3_BuildRecordPseudoHeader writes the SSL/TLS pseudo-header (the data which
* is included in the MAC or AEAD additional data) to |buf|. See
* https://tools.ietf.org/html/rfc5246#section-6.2.3.3 for the definition of the
* AEAD additional data.
*
* TLS pseudo-header includes the record's version field, SSL's doesn't. Which
* pseudo-header definition to use should be decided based on the version of
* the protocol that was negotiated when the cipher spec became current, NOT
* based on the version value in the record itself, and the decision is passed
* to this function as the |includesVersion| argument. But, the |version|
* argument should be the record's version value.
*/
static SECStatus
ssl3_BuildRecordPseudoHeader(DTLSEpoch epoch,
sslSequenceNumber seqNum,
SSLContentType ct,
PRBool includesVersion,
SSL3ProtocolVersion version,
PRBool isDTLS,
int length,
sslBuffer *buf)
{
SECStatus rv;
if (isDTLS) {
rv = sslBuffer_AppendNumber(buf, epoch, 2);
if (rv != SECSuccess) {
return SECFailure;
}
rv = sslBuffer_AppendNumber(buf, seqNum, 6);
} else {
rv = sslBuffer_AppendNumber(buf, seqNum, 8);
}
if (rv != SECSuccess) {
return SECFailure;
}
rv = sslBuffer_AppendNumber(buf, ct, 1);
if (rv != SECSuccess) {
return SECFailure;
}
/* SSL3 MAC doesn't include the record's version field. */
if (includesVersion) {
/* TLS MAC and AEAD additional data include version. */
rv = sslBuffer_AppendNumber(buf, version, 2);
if (rv != SECSuccess) {
return SECFailure;
}
}
rv = sslBuffer_AppendNumber(buf, length, 2);
if (rv != SECSuccess) {
return SECFailure;
}
return SECSuccess;
}
/* Initialize encryption and MAC contexts for pending spec.
* Master Secret already is derived.
* Caller holds Spec write lock.
*/
static SECStatus
ssl3_InitPendingContexts(sslSocket *ss, ssl3CipherSpec *spec)
{
CK_MECHANISM_TYPE encMechanism;
CK_ATTRIBUTE_TYPE encMode;
SECItem macParam;
CK_ULONG macLength;
SECItem iv;
SSLCipherAlgorithm calg;
PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
PORT_Assert(ss->opt.noLocks || ssl_HaveSpecWriteLock(ss));
calg = spec->cipherDef->calg;
PORT_Assert(alg2Mech[calg].calg == calg);
if (spec->cipherDef->type != type_aead) {
macLength = spec->macDef->mac_size;
/*
** Now setup the MAC contexts,
** crypto contexts are setup below.
*/
macParam.data = (unsigned char *)&macLength;
macParam.len = sizeof(macLength);
macParam.type = siBuffer;
spec->keyMaterial.macContext = PK11_CreateContextBySymKey(
spec->macDef->mmech, CKA_SIGN, spec->keyMaterial.macKey, &macParam);
if (!spec->keyMaterial.macContext) {
ssl_MapLowLevelError(SSL_ERROR_SYM_KEY_CONTEXT_FAILURE);
return SECFailure;
}
}
/*
** Now setup the crypto contexts.
*/
if (calg == ssl_calg_null) {
spec->cipher = Null_Cipher;
return SECSuccess;
}
encMechanism = ssl3_Alg2Mech(calg);
encMode = (spec->direction == ssl_secret_write) ? CKA_ENCRYPT : CKA_DECRYPT;
if (spec->cipherDef->type == type_aead) {
encMode |= CKA_NSS_MESSAGE;
iv.data = NULL;
iv.len = 0;
} else {
spec->cipher = (SSLCipher)PK11_CipherOp;
iv.data = spec->keyMaterial.iv;
iv.len = spec->cipherDef->iv_size;
}
/*
* build the context
*/
spec->cipherContext = PK11_CreateContextBySymKey(encMechanism, encMode,
spec->keyMaterial.key,
&iv);
if (!spec->cipherContext) {
ssl_MapLowLevelError(SSL_ERROR_SYM_KEY_CONTEXT_FAILURE);
return SECFailure;
}
return SECSuccess;
}
/* Complete the initialization of all keys, ciphers, MACs and their contexts
* for the pending Cipher Spec.
* Called from: ssl3_SendClientKeyExchange (for Full handshake)
* ssl3_HandleRSAClientKeyExchange (for Full handshake)
* ssl3_HandleServerHello (for session restart)
* ssl3_HandleClientHello (for session restart)
* Sets error code, but caller probably should override to disambiguate.
*
* If |secret| is a master secret from a previous connection is reused, |derive|
* is PR_FALSE. If the secret is a pre-master secret, then |derive| is PR_TRUE
* and the master secret is derived from |secret|.
*/
SECStatus
ssl3_InitPendingCipherSpecs(sslSocket *ss, PK11SymKey *secret, PRBool derive)
{
PK11SymKey *masterSecret;
ssl3CipherSpec *pwSpec;
ssl3CipherSpec *prSpec;
SECStatus rv;
PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
PORT_Assert(secret);
ssl_GetSpecWriteLock(ss); /**************************************/
PORT_Assert(ss->ssl3.pwSpec);
PORT_Assert(ss->ssl3.cwSpec->epoch == ss->ssl3.crSpec->epoch);
prSpec = ss->ssl3.prSpec;
pwSpec = ss->ssl3.pwSpec;
if (ss->ssl3.cwSpec->epoch == PR_UINT16_MAX) {
/* The problem here is that we have rehandshaked too many
* times (you are not allowed to wrap the epoch). The
* spec says you should be discarding the connection
* and start over, so not much we can do here. */
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
goto loser;
}
if (derive) {
rv = ssl3_ComputeMasterSecret(ss, secret, &masterSecret);
if (rv != SECSuccess) {
goto loser;
}
} else {
masterSecret = secret;
}
PORT_Assert(masterSecret);
rv = ssl3_DeriveConnectionKeys(ss, masterSecret);
if (rv != SECSuccess) {
if (derive) {
/* masterSecret was created here. */
PK11_FreeSymKey(masterSecret);
}
goto loser;
}
/* Both cipher specs maintain a reference to the master secret, since each
* is managed and freed independently. */
prSpec->masterSecret = masterSecret;
pwSpec->masterSecret = PK11_ReferenceSymKey(masterSecret);
rv = ssl3_InitPendingContexts(ss, ss->ssl3.prSpec);
if (rv != SECSuccess) {
goto loser;
}
rv = ssl3_InitPendingContexts(ss, ss->ssl3.pwSpec);
if (rv != SECSuccess) {
goto loser;
}
ssl_ReleaseSpecWriteLock(ss); /******************************/
return SECSuccess;
loser:
ssl_ReleaseSpecWriteLock(ss); /******************************/
ssl_MapLowLevelError(SSL_ERROR_SESSION_KEY_GEN_FAILURE);
return SECFailure;
}
/*
* 60 bytes is 3 times the maximum length MAC size that is supported.
*/
static const unsigned char mac_pad_1[60] = {
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
0x36, 0x36, 0x36, 0x36
};
static const unsigned char mac_pad_2[60] = {
0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c,
0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c,
0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c,
0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c,
0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c,
0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c,
0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c,
0x5c, 0x5c, 0x5c, 0x5c
};
/* Called from: ssl3_SendRecord()
** Caller must already hold the SpecReadLock. (wish we could assert that!)
*/
static SECStatus
ssl3_ComputeRecordMAC(
ssl3CipherSpec *spec,
const unsigned char *header,
unsigned int headerLen,
const PRUint8 *input,
int inputLen,
unsigned char *outbuf,
unsigned int *outLen)
{
PK11Context *context;
int macSize = spec->macDef->mac_size;
SECStatus rv;
PRINT_BUF(95, (NULL, "frag hash1: header", header, headerLen));
PRINT_BUF(95, (NULL, "frag hash1: input", input, inputLen));
if (spec->macDef->mac == ssl_mac_null) {
*outLen = 0;
return SECSuccess;
}
context = spec->keyMaterial.macContext;
rv = PK11_DigestBegin(context);
rv |= PK11_DigestOp(context, header, headerLen);
rv |= PK11_DigestOp(context, input, inputLen);
rv |= PK11_DigestFinal(context, outbuf, outLen, macSize);
PORT_Assert(rv != SECSuccess || *outLen == (unsigned)macSize);
PRINT_BUF(95, (NULL, "frag hash2: result", outbuf, *outLen));
if (rv != SECSuccess) {
rv = SECFailure;
ssl_MapLowLevelError(SSL_ERROR_MAC_COMPUTATION_FAILURE);
}
return rv;
}
/* Called from: ssl3_HandleRecord()
* Caller must already hold the SpecReadLock. (wish we could assert that!)
*
* On entry:
* originalLen >= inputLen >= MAC size
*/
static SECStatus
ssl3_ComputeRecordMACConstantTime(
ssl3CipherSpec *spec,
const unsigned char *header,
unsigned int headerLen,
const PRUint8 *input,
int inputLen,
int originalLen,
unsigned char *outbuf,
unsigned int *outLen)
{
CK_MECHANISM_TYPE macType;
CK_NSS_MAC_CONSTANT_TIME_PARAMS params;
SECItem param, inputItem, outputItem;
int macSize = spec->macDef->mac_size;
SECStatus rv;
PORT_Assert(inputLen >= spec->macDef->mac_size);
PORT_Assert(originalLen >= inputLen);
if (spec->macDef->mac == ssl_mac_null) {
*outLen = 0;
return SECSuccess;
}
macType = CKM_NSS_HMAC_CONSTANT_TIME;
if (spec->version == SSL_LIBRARY_VERSION_3_0) {
macType = CKM_NSS_SSL3_MAC_CONSTANT_TIME;
}
params.macAlg = spec->macDef->mmech;
params.ulBodyTotalLen = originalLen;
params.pHeader = (unsigned char *)header; /* const cast */
params.ulHeaderLen = headerLen;
param.data = (unsigned char *)&params;
param.len = sizeof(params);
param.type = 0;
inputItem.data = (unsigned char *)input;
inputItem.len = inputLen;
inputItem.type = 0;
outputItem.data = outbuf;
outputItem.len = *outLen;
outputItem.type = 0;
rv = PK11_SignWithSymKey(spec->keyMaterial.macKey, macType, &param,
&outputItem, &inputItem);
if (rv != SECSuccess) {
if (PORT_GetError() == SEC_ERROR_INVALID_ALGORITHM) {
/* ssl3_ComputeRecordMAC() expects the MAC to have been removed
* from the input length already. */
return ssl3_ComputeRecordMAC(spec, header, headerLen,
input, inputLen - macSize,
outbuf, outLen);
}
*outLen = 0;
rv = SECFailure;
ssl_MapLowLevelError(SSL_ERROR_MAC_COMPUTATION_FAILURE);
return rv;
}
PORT_Assert(outputItem.len == (unsigned)macSize);
*outLen = outputItem.len;
return rv;
}
static PRBool
ssl3_ClientAuthTokenPresent(sslSessionID *sid)
{
PK11SlotInfo *slot = NULL;
PRBool isPresent = PR_TRUE;
/* we only care if we are doing client auth */
if (!sid || !sid->u.ssl3.clAuthValid) {
return PR_TRUE;
}
/* get the slot */
slot = SECMOD_LookupSlot(sid->u.ssl3.clAuthModuleID,
sid->u.ssl3.clAuthSlotID);
if (slot == NULL ||
!PK11_IsPresent(slot) ||
sid->u.ssl3.clAuthSeries != PK11_GetSlotSeries(slot) ||
sid->u.ssl3.clAuthSlotID != PK11_GetSlotID(slot) ||
sid->u.ssl3.clAuthModuleID != PK11_GetModuleID(slot) ||
(PK11_NeedLogin(slot) && !PK11_IsLoggedIn(slot, NULL))) {
isPresent = PR_FALSE;
}
if (slot) {
PK11_FreeSlot(slot);
}
return isPresent;
}
/* Caller must hold the spec read lock. */
SECStatus
ssl3_MACEncryptRecord(ssl3CipherSpec *cwSpec,
PRBool isServer,
PRBool isDTLS,
SSLContentType ct,
const PRUint8 *pIn,
PRUint32 contentLen,
sslBuffer *wrBuf)
{
SECStatus rv;
PRUint32 macLen = 0;
PRUint32 fragLen;
PRUint32 p1Len, p2Len, oddLen = 0;
unsigned int ivLen = 0;
unsigned char pseudoHeaderBuf[13];
sslBuffer pseudoHeader = SSL_BUFFER(pseudoHeaderBuf);
unsigned int len;
if (cwSpec->cipherDef->type == type_block &&
cwSpec->version >= SSL_LIBRARY_VERSION_TLS_1_1) {
/* Prepend the per-record explicit IV using technique 2b from
* RFC 4346 section 6.2.3.2: The IV is a cryptographically
* strong random number XORed with the CBC residue from the previous
* record.
*/
ivLen = cwSpec->cipherDef->iv_size;
if (ivLen > SSL_BUFFER_SPACE(wrBuf)) {
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
return SECFailure;
}
rv = PK11_GenerateRandom(SSL_BUFFER_NEXT(wrBuf), ivLen);
if (rv != SECSuccess) {
ssl_MapLowLevelError(SSL_ERROR_GENERATE_RANDOM_FAILURE);
return rv;
}
rv = cwSpec->cipher(cwSpec->cipherContext,
SSL_BUFFER_NEXT(wrBuf), /* output */
&len, /* outlen */
ivLen, /* max outlen */
SSL_BUFFER_NEXT(wrBuf), /* input */
ivLen); /* input len */
if (rv != SECSuccess || len != ivLen) {
PORT_SetError(SSL_ERROR_ENCRYPTION_FAILURE);
return SECFailure;
}
rv = sslBuffer_Skip(wrBuf, len, NULL);
PORT_Assert(rv == SECSuccess); /* Can't fail. */
}
rv = ssl3_BuildRecordPseudoHeader(
cwSpec->epoch, cwSpec->nextSeqNum, ct,
cwSpec->version >= SSL_LIBRARY_VERSION_TLS_1_0, cwSpec->recordVersion,
isDTLS, contentLen, &pseudoHeader);
PORT_Assert(rv == SECSuccess);
if (cwSpec->cipherDef->type == type_aead) {
const unsigned int nonceLen = cwSpec->cipherDef->explicit_nonce_size;
const unsigned int tagLen = cwSpec->cipherDef->tag_size;
unsigned int ivOffset = 0;
CK_GENERATOR_FUNCTION gen;
/* ivOut includes the iv and the nonce and is the internal iv/nonce
* for the AEAD function. On Encrypt, this is an in/out parameter */
unsigned char ivOut[MAX_IV_LENGTH];
ivLen = cwSpec->cipherDef->iv_size;
PORT_Assert((ivLen + nonceLen) <= MAX_IV_LENGTH);
PORT_Assert((ivLen + nonceLen) >= sizeof(sslSequenceNumber));
if (nonceLen + contentLen + tagLen > SSL_BUFFER_SPACE(wrBuf)) {
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
return SECFailure;
}
if (nonceLen == 0) {
ivOffset = ivLen - sizeof(sslSequenceNumber);
gen = CKG_GENERATE_COUNTER_XOR;
} else {
ivOffset = ivLen;
gen = CKG_GENERATE_COUNTER;
}
ivOffset = tls13_SetupAeadIv(isDTLS, ivOut, cwSpec->keyMaterial.iv,
ivOffset, ivLen, cwSpec->epoch);
rv = tls13_AEAD(cwSpec->cipherContext,
PR_FALSE,
gen, ivOffset * BPB, /* iv generator params */
ivOut, /* iv in */
ivOut, /* iv out */
ivLen + nonceLen, /* full iv length */
NULL, 0, /* nonce is generated*/
SSL_BUFFER_BASE(&pseudoHeader), /* aad */
SSL_BUFFER_LEN(&pseudoHeader), /* aadlen */
SSL_BUFFER_NEXT(wrBuf) + nonceLen, /* output */
&len, /* out len */
SSL_BUFFER_SPACE(wrBuf) - nonceLen, /* max out */
tagLen,
pIn, contentLen); /* input */
if (rv != SECSuccess) {
PORT_SetError(SSL_ERROR_ENCRYPTION_FAILURE);
return SECFailure;
}
len += nonceLen; /* include the nonce at the beginning */
/* copy out the generated iv if we are using explict nonces */
if (nonceLen) {
PORT_Memcpy(SSL_BUFFER_NEXT(wrBuf), ivOut + ivLen, nonceLen);
}
rv = sslBuffer_Skip(wrBuf, len, NULL);
PORT_Assert(rv == SECSuccess); /* Can't fail. */
} else {
int blockSize = cwSpec->cipherDef->block_size;
/*
* Add the MAC
*/
rv = ssl3_ComputeRecordMAC(cwSpec, SSL_BUFFER_BASE(&pseudoHeader),
SSL_BUFFER_LEN(&pseudoHeader),
pIn, contentLen,
SSL_BUFFER_NEXT(wrBuf) + contentLen, &macLen);
if (rv != SECSuccess) {
ssl_MapLowLevelError(SSL_ERROR_MAC_COMPUTATION_FAILURE);
return SECFailure;
}
p1Len = contentLen;
p2Len = macLen;
fragLen = contentLen + macLen; /* needs to be encrypted */
PORT_Assert(fragLen <= MAX_FRAGMENT_LENGTH + 1024);
/*
* Pad the text (if we're doing a block cipher)
* then Encrypt it
*/
if (cwSpec->cipherDef->type == type_block) {
unsigned char *pBuf;
int padding_length;
int i;
oddLen = contentLen % blockSize;
/* Assume blockSize is a power of two */
padding_length = blockSize - 1 - ((fragLen) & (blockSize - 1));
fragLen += padding_length + 1;
PORT_Assert((fragLen % blockSize) == 0);
/* Pad according to TLS rules (also acceptable to SSL3). */
pBuf = SSL_BUFFER_NEXT(wrBuf) + fragLen - 1;
for (i = padding_length + 1; i > 0; --i) {
*pBuf-- = padding_length;
}
/* now, if contentLen is not a multiple of block size, fix it */
p2Len = fragLen - p1Len;
}
if (p1Len < 256) {
oddLen = p1Len;
p1Len = 0;
} else {
p1Len -= oddLen;
}
if (oddLen) {
p2Len += oddLen;
PORT_Assert((blockSize < 2) ||
(p2Len % blockSize) == 0);
memmove(SSL_BUFFER_NEXT(wrBuf) + p1Len, pIn + p1Len, oddLen);
}
if (p1Len > 0) {
unsigned int cipherBytesPart1 = 0;
rv = cwSpec->cipher(cwSpec->cipherContext,
SSL_BUFFER_NEXT(wrBuf), /* output */
&cipherBytesPart1, /* actual outlen */
p1Len, /* max outlen */
pIn,
p1Len); /* input, and inputlen */
PORT_Assert(rv == SECSuccess && cipherBytesPart1 == p1Len);
if (rv != SECSuccess || cipherBytesPart1 != p1Len) {
PORT_SetError(SSL_ERROR_ENCRYPTION_FAILURE);
return SECFailure;
}
rv = sslBuffer_Skip(wrBuf, p1Len, NULL);
PORT_Assert(rv == SECSuccess);
}
if (p2Len > 0) {
unsigned int cipherBytesPart2 = 0;
rv = cwSpec->cipher(cwSpec->cipherContext,
SSL_BUFFER_NEXT(wrBuf),
&cipherBytesPart2, /* output and actual outLen */
p2Len, /* max outlen */
SSL_BUFFER_NEXT(wrBuf),
p2Len); /* input and inputLen*/
PORT_Assert(rv == SECSuccess && cipherBytesPart2 == p2Len);
if (rv != SECSuccess || cipherBytesPart2 != p2Len) {
PORT_SetError(SSL_ERROR_ENCRYPTION_FAILURE);
return SECFailure;
}
rv = sslBuffer_Skip(wrBuf, p2Len, NULL);
PORT_Assert(rv == SECSuccess);
}
}
return SECSuccess;
}
/* Note: though this can report failure, it shouldn't. */
SECStatus
ssl_InsertRecordHeader(const sslSocket *ss, ssl3CipherSpec *cwSpec,
SSLContentType contentType, sslBuffer *wrBuf,
PRBool *needsLength)
{
SECStatus rv;
#ifndef UNSAFE_FUZZER_MODE
if (cwSpec->version >= SSL_LIBRARY_VERSION_TLS_1_3 &&
cwSpec->epoch > TrafficKeyClearText) {
if (IS_DTLS(ss)) {
return dtls13_InsertCipherTextHeader(ss, cwSpec, wrBuf,
needsLength);
}
contentType = ssl_ct_application_data;
}
#endif
rv = sslBuffer_AppendNumber(wrBuf, contentType, 1);
if (rv != SECSuccess) {
return SECFailure;
}
rv = sslBuffer_AppendNumber(wrBuf, cwSpec->recordVersion, 2);
if (rv != SECSuccess) {
return SECFailure;
}
if (IS_DTLS(ss)) {
rv = sslBuffer_AppendNumber(wrBuf, cwSpec->epoch, 2);
if (rv != SECSuccess) {
return SECFailure;
}
rv = sslBuffer_AppendNumber(wrBuf, cwSpec->nextSeqNum, 6);
if (rv != SECSuccess) {
return SECFailure;
}
}
*needsLength = PR_TRUE;
return SECSuccess;
}
SECStatus
ssl_ProtectRecord(sslSocket *ss, ssl3CipherSpec *cwSpec, SSLContentType ct,
const PRUint8 *pIn, PRUint32 contentLen, sslBuffer *wrBuf)
{
PRBool needsLength;
unsigned int lenOffset;
SECStatus rv;
PORT_Assert(cwSpec->direction == ssl_secret_write);
PORT_Assert(SSL_BUFFER_LEN(wrBuf) == 0);
PORT_Assert(cwSpec->cipherDef->max_records <= RECORD_SEQ_MAX);
if (cwSpec->nextSeqNum >= cwSpec->cipherDef->max_records) {
PORT_Assert(cwSpec->version < SSL_LIBRARY_VERSION_TLS_1_3);
SSL_TRC(3, ("%d: SSL[-]: write sequence number at limit 0x%0llx",
SSL_GETPID(), cwSpec->nextSeqNum));
PORT_SetError(SSL_ERROR_TOO_MANY_RECORDS);
return SECFailure;
}
rv = ssl_InsertRecordHeader(ss, cwSpec, ct, wrBuf, &needsLength);
if (rv != SECSuccess) {
return SECFailure;
}
if (needsLength) {
rv = sslBuffer_Skip(wrBuf, 2, &lenOffset);
if (rv != SECSuccess) {
return SECFailure;
}
}
#ifdef UNSAFE_FUZZER_MODE
{
unsigned int len;
rv = Null_Cipher(NULL, SSL_BUFFER_NEXT(wrBuf), &len,
SSL_BUFFER_SPACE(wrBuf), pIn, contentLen);
if (rv != SECSuccess) {
return SECFailure; /* error was set */
}
rv = sslBuffer_Skip(wrBuf, len, NULL);
PORT_Assert(rv == SECSuccess); /* Can't fail. */
}
#else
if (cwSpec->version >= SSL_LIBRARY_VERSION_TLS_1_3) {
PRUint8 *cipherText = SSL_BUFFER_NEXT(wrBuf);
unsigned int bufLen = SSL_BUFFER_LEN(wrBuf);
rv = tls13_ProtectRecord(ss, cwSpec, ct, pIn, contentLen, wrBuf);
if (rv != SECSuccess) {
return SECFailure;
}
if (IS_DTLS(ss)) {
bufLen = SSL_BUFFER_LEN(wrBuf) - bufLen;
rv = dtls13_MaskSequenceNumber(ss, cwSpec,
SSL_BUFFER_BASE(wrBuf),
cipherText, bufLen);
}
} else {
rv = ssl3_MACEncryptRecord(cwSpec, ss->sec.isServer, IS_DTLS(ss), ct,
pIn, contentLen, wrBuf);
}
#endif
if (rv != SECSuccess) {
return SECFailure; /* error was set */
}
if (needsLength) {
/* Insert the length. */
rv = sslBuffer_InsertLength(wrBuf, lenOffset, 2);
if (rv != SECSuccess) {
PORT_Assert(0); /* Can't fail. */
return SECFailure;
}
}
++cwSpec->nextSeqNum;
return SECSuccess;
}
SECStatus
ssl_ProtectNextRecord(sslSocket *ss, ssl3CipherSpec *spec, SSLContentType ct,
const PRUint8 *pIn, unsigned int nIn,
unsigned int *written)
{
sslBuffer *wrBuf = &ss->sec.writeBuf;
unsigned int contentLen;
unsigned int spaceNeeded;
SECStatus rv;
contentLen = PR_MIN(nIn, spec->recordSizeLimit);
spaceNeeded = contentLen + SSL3_BUFFER_FUDGE;
if (spec->version >= SSL_LIBRARY_VERSION_TLS_1_1 &&
spec->cipherDef->type == type_block) {
spaceNeeded += spec->cipherDef->iv_size;
}
if (spaceNeeded > SSL_BUFFER_SPACE(wrBuf)) {
rv = sslBuffer_Grow(wrBuf, spaceNeeded);
if (rv != SECSuccess) {
SSL_DBG(("%d: SSL3[%d]: failed to expand write buffer to %d",
SSL_GETPID(), ss->fd, spaceNeeded));
return SECFailure;
}
}
rv = ssl_ProtectRecord(ss, spec, ct, pIn, contentLen, wrBuf);
if (rv != SECSuccess) {
return SECFailure;
}
PRINT_BUF(50, (ss, "send (encrypted) record data:",
SSL_BUFFER_BASE(wrBuf), SSL_BUFFER_LEN(wrBuf)));
*written = contentLen;
return SECSuccess;
}
/* Process the plain text before sending it.
* Returns the number of bytes of plaintext that were successfully sent
* plus the number of bytes of plaintext that were copied into the
* output (write) buffer.
* Returns -1 on an error. PR_WOULD_BLOCK_ERROR is set if the error is blocking
* and not terminal.
*
* Notes on the use of the private ssl flags:
* (no private SSL flags)
* Attempt to make and send SSL records for all plaintext
* If non-blocking and a send gets WOULD_BLOCK,
* or if the pending (ciphertext) buffer is not empty,
* then buffer remaining bytes of ciphertext into pending buf,
* and continue to do that for all succssive records until all
* bytes are used.
* ssl_SEND_FLAG_FORCE_INTO_BUFFER
* As above, except this suppresses all write attempts, and forces
* all ciphertext into the pending ciphertext buffer.
* ssl_SEND_FLAG_USE_EPOCH (for DTLS)
* Forces the use of the provided epoch
*/
PRInt32
ssl3_SendRecord(sslSocket *ss,
ssl3CipherSpec *cwSpec, /* non-NULL for DTLS retransmits */
SSLContentType ct,
const PRUint8 *pIn, /* input buffer */
PRInt32 nIn, /* bytes of input */
PRInt32 flags)
{
sslBuffer *wrBuf = &ss->sec.writeBuf;
ssl3CipherSpec *spec;
SECStatus rv;
PRInt32 totalSent = 0;
SSL_TRC(3, ("%d: SSL3[%d] SendRecord type: %s nIn=%d",
SSL_GETPID(), ss->fd, ssl3_DecodeContentType(ct),
nIn));
PRINT_BUF(50, (ss, "Send record (plain text)", pIn, nIn));
PORT_Assert(ss->opt.noLocks || ssl_HaveXmitBufLock(ss));
PORT_Assert(SSL_BUFFER_LEN(wrBuf) == 0);
if (ss->ssl3.fatalAlertSent) {
SSL_TRC(3, ("%d: SSL3[%d] Suppress write, fatal alert already sent",
SSL_GETPID(), ss->fd));
if (ct != ssl_ct_alert) {
/* If we are sending an alert, then we already have an
* error, so don't overwrite. */
PORT_SetError(SSL_ERROR_HANDSHAKE_FAILED);
}
return -1;
}
/* check for Token Presence */
if (!ssl3_ClientAuthTokenPresent(ss->sec.ci.sid)) {
PORT_SetError(SSL_ERROR_TOKEN_INSERTION_REMOVAL);
return -1;
}
if (ss->recordWriteCallback) {
PRUint16 epoch;
ssl_GetSpecReadLock(ss);
epoch = ss->ssl3.cwSpec->epoch;
ssl_ReleaseSpecReadLock(ss);
rv = ss->recordWriteCallback(ss->fd, epoch, ct, pIn, nIn,
ss->recordWriteCallbackArg);
if (rv != SECSuccess) {
return -1;
}
return nIn;
}
if (cwSpec) {
/* cwSpec can only be set for retransmissions of the DTLS handshake. */
PORT_Assert(IS_DTLS(ss) &&
(ct == ssl_ct_handshake ||
ct == ssl_ct_change_cipher_spec));
spec = cwSpec;
} else {
spec = ss->ssl3.cwSpec;
}
while (nIn > 0) {
unsigned int written = 0;
PRInt32 sent;
ssl_GetSpecReadLock(ss);
rv = ssl_ProtectNextRecord(ss, spec, ct, pIn, nIn, &written);
ssl_ReleaseSpecReadLock(ss);
if (rv != SECSuccess) {
goto loser;
}
PORT_Assert(written > 0);
/* DTLS should not fragment non-application data here. */
if (IS_DTLS(ss) && ct != ssl_ct_application_data) {
PORT_Assert(written == nIn);
}
pIn += written;
nIn -= written;
PORT_Assert(nIn >= 0);
/* If there's still some previously saved ciphertext,
* or the caller doesn't want us to send the data yet,
* then add all our new ciphertext to the amount previously saved.
*/
if ((ss->pendingBuf.len > 0) ||
(flags & ssl_SEND_FLAG_FORCE_INTO_BUFFER)) {
rv = ssl_SaveWriteData(ss, SSL_BUFFER_BASE(wrBuf),
SSL_BUFFER_LEN(wrBuf));
if (rv != SECSuccess) {
/* presumably a memory error, SEC_ERROR_NO_MEMORY */
goto loser;
}
if (!(flags & ssl_SEND_FLAG_FORCE_INTO_BUFFER)) {
ss->handshakeBegun = 1;
sent = ssl_SendSavedWriteData(ss);
if (sent < 0 && PR_GetError() != PR_WOULD_BLOCK_ERROR) {
ssl_MapLowLevelError(SSL_ERROR_SOCKET_WRITE_FAILURE);
goto loser;
}
if (ss->pendingBuf.len) {
flags |= ssl_SEND_FLAG_FORCE_INTO_BUFFER;
}
}
} else {
PORT_Assert(SSL_BUFFER_LEN(wrBuf) > 0);
ss->handshakeBegun = 1;
sent = ssl_DefSend(ss, SSL_BUFFER_BASE(wrBuf),
SSL_BUFFER_LEN(wrBuf),
flags & ~ssl_SEND_FLAG_MASK);
if (sent < 0) {
if (PORT_GetError() != PR_WOULD_BLOCK_ERROR) {
ssl_MapLowLevelError(SSL_ERROR_SOCKET_WRITE_FAILURE);
goto loser;
}
/* we got PR_WOULD_BLOCK_ERROR, which means none was sent. */
sent = 0;
}
if (SSL_BUFFER_LEN(wrBuf) > (unsigned int)sent) {
if (IS_DTLS(ss)) {
/* DTLS just says no in this case. No buffering */
PORT_SetError(PR_WOULD_BLOCK_ERROR);
goto loser;
}
/* now take all the remaining unsent new ciphertext and
* append it to the buffer of previously unsent ciphertext.
*/
rv = ssl_SaveWriteData(ss, SSL_BUFFER_BASE(wrBuf) + sent,
SSL_BUFFER_LEN(wrBuf) - sent);
if (rv != SECSuccess) {
/* presumably a memory error, SEC_ERROR_NO_MEMORY */
goto loser;
}
}
}
wrBuf->len = 0;
totalSent += written;
}
return totalSent;
loser:
/* Don't leave bits of buffer lying around. */
wrBuf->len = 0;
return -1;
}
#define SSL3_PENDING_HIGH_WATER 1024
/* Attempt to send the content of "in" in an SSL application_data record.
* Returns "len" or -1 on failure.
*/
int
ssl3_SendApplicationData(sslSocket *ss, const unsigned char *in,
PRInt32 len, PRInt32 flags)
{
PRInt32 totalSent = 0;
PRInt32 discarded = 0;
PRBool splitNeeded = PR_FALSE;
PORT_Assert(ss->opt.noLocks || ssl_HaveXmitBufLock(ss));
/* These flags for internal use only */
PORT_Assert(!(flags & ssl_SEND_FLAG_NO_RETRANSMIT));
if (len < 0 || !in) {
PORT_SetError(PR_INVALID_ARGUMENT_ERROR);
return -1;
}
if (ss->pendingBuf.len > SSL3_PENDING_HIGH_WATER &&
!ssl_SocketIsBlocking(ss)) {
PORT_Assert(!ssl_SocketIsBlocking(ss));
PORT_SetError(PR_WOULD_BLOCK_ERROR);
return -1;
}
if (ss->appDataBuffered && len) {
PORT_Assert(in[0] == (unsigned char)(ss->appDataBuffered));
if (in[0] != (unsigned char)(ss->appDataBuffered)) {
PORT_SetError(PR_INVALID_ARGUMENT_ERROR);
return -1;
}
in++;
len--;
discarded = 1;
}
/* We will split the first byte of the record into its own record, as
* explained in the documentation for SSL_CBC_RANDOM_IV in ssl.h.
*/
if (len > 1 && ss->opt.cbcRandomIV &&
ss->version < SSL_LIBRARY_VERSION_TLS_1_1 &&
ss->ssl3.cwSpec->cipherDef->type == type_block /* CBC */) {
splitNeeded = PR_TRUE;
}
while (len > totalSent) {
PRInt32 sent, toSend;
if (totalSent > 0) {
/*
* The thread yield is intended to give the reader thread a
* chance to get some cycles while the writer thread is in
* the middle of a large application data write. (See
* Bugzilla bug 127740, comment #1.)
*/
ssl_ReleaseXmitBufLock(ss);
PR_Sleep(PR_INTERVAL_NO_WAIT); /* PR_Yield(); */
ssl_GetXmitBufLock(ss);
}
if (splitNeeded) {
toSend = 1;
splitNeeded = PR_FALSE;
} else {
toSend = PR_MIN(len - totalSent, MAX_FRAGMENT_LENGTH);
}
/*
* Note that the 0 epoch is OK because flags will never require
* its use, as guaranteed by the PORT_Assert above.
*/
sent = ssl3_SendRecord(ss, NULL, ssl_ct_application_data,
in + totalSent, toSend, flags);
if (sent < 0) {
if (totalSent > 0 && PR_GetError() == PR_WOULD_BLOCK_ERROR) {
PORT_Assert(ss->lastWriteBlocked);
break;
}
return -1; /* error code set by ssl3_SendRecord */
}
totalSent += sent;
if (ss->pendingBuf.len) {
/* must be a non-blocking socket */
PORT_Assert(!ssl_SocketIsBlocking(ss));
PORT_Assert(ss->lastWriteBlocked);
break;
}
}
if (ss->pendingBuf.len) {
/* Must be non-blocking. */
PORT_Assert(!ssl_SocketIsBlocking(ss));
if (totalSent > 0) {
ss->appDataBuffered = 0x100 | in[totalSent - 1];
}
totalSent = totalSent + discarded - 1;
if (totalSent <= 0) {
PORT_SetError(PR_WOULD_BLOCK_ERROR);
totalSent = SECFailure;
}
return totalSent;
}
ss->appDataBuffered = 0;
return totalSent + discarded;
}
/* Attempt to send buffered handshake messages.
* Always set sendBuf.len to 0, even when returning SECFailure.
*
* Depending on whether we are doing DTLS or not, this either calls
*
* - ssl3_FlushHandshakeMessages if non-DTLS
* - dtls_FlushHandshakeMessages if DTLS
*
* Called from SSL3_SendAlert(), ssl3_SendChangeCipherSpecs(),
* ssl3_AppendHandshake(), ssl3_SendClientHello(),
* ssl3_SendHelloRequest(), ssl3_SendServerHelloDone(),
* ssl3_SendFinished(),
*/
SECStatus
ssl3_FlushHandshake(sslSocket *ss, PRInt32 flags)
{
if (IS_DTLS(ss)) {
return dtls_FlushHandshakeMessages(ss, flags);
}
return ssl3_FlushHandshakeMessages(ss, flags);
}
/* Attempt to send the content of sendBuf buffer in an SSL handshake record.
* Always set sendBuf.len to 0, even when returning SECFailure.
*
* Called from ssl3_FlushHandshake
*/
static SECStatus
ssl3_FlushHandshakeMessages(sslSocket *ss, PRInt32 flags)
{
static const PRInt32 allowedFlags = ssl_SEND_FLAG_FORCE_INTO_BUFFER;
PRInt32 count = -1;
SECStatus rv;
PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
PORT_Assert(ss->opt.noLocks || ssl_HaveXmitBufLock(ss));
if (!ss->sec.ci.sendBuf.buf || !ss->sec.ci.sendBuf.len)
return SECSuccess;
/* only these flags are allowed */
PORT_Assert(!(flags & ~allowedFlags));
if ((flags & ~allowedFlags) != 0) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
count = ssl3_SendRecord(ss, NULL, ssl_ct_handshake,
ss->sec.ci.sendBuf.buf,
ss->sec.ci.sendBuf.len, flags);
if (count < 0) {
int err = PORT_GetError();
PORT_Assert(err != PR_WOULD_BLOCK_ERROR);
if (err == PR_WOULD_BLOCK_ERROR) {
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
}
rv = SECFailure;
} else if ((unsigned int)count < ss->sec.ci.sendBuf.len) {
/* short write should never happen */
PORT_Assert((unsigned int)count >= ss->sec.ci.sendBuf.len);
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
rv = SECFailure;
} else {
rv = SECSuccess;
}
/* Whether we succeeded or failed, toss the old handshake data. */
ss->sec.ci.sendBuf.len = 0;
return rv;
}
/*
* Called from ssl3_HandleAlert and from ssl3_HandleCertificate when
* the remote client sends a negative response to our certificate request.
* Returns SECFailure if the application has required client auth.
* SECSuccess otherwise.
*/
SECStatus
ssl3_HandleNoCertificate(sslSocket *ss)
{
ssl3_CleanupPeerCerts(ss);
/* If the server has required client-auth blindly but doesn't
* actually look at the certificate it won't know that no
* certificate was presented so we shutdown the socket to ensure
* an error. We only do this if we haven't already completed the
* first handshake because if we're redoing the handshake we
* know the server is paying attention to the certificate.
*/
if ((ss->opt.requireCertificate == SSL_REQUIRE_ALWAYS) ||
(!ss->firstHsDone &&
(ss->opt.requireCertificate == SSL_REQUIRE_FIRST_HANDSHAKE))) {
PRFileDesc *lower;
ssl_UncacheSessionID(ss);
if (ss->version >= SSL_LIBRARY_VERSION_TLS_1_3) {
SSL3_SendAlert(ss, alert_fatal, certificate_required);
} else {
SSL3_SendAlert(ss, alert_fatal, bad_certificate);
}
lower = ss->fd->lower;
#ifdef _WIN32
lower->methods->shutdown(lower, PR_SHUTDOWN_SEND);
#else
lower->methods->shutdown(lower, PR_SHUTDOWN_BOTH);
#endif
PORT_SetError(SSL_ERROR_NO_CERTIFICATE);
return SECFailure;
}
return SECSuccess;
}
/************************************************************************
* Alerts
*/
/*
** Acquires both handshake and XmitBuf locks.
** Called from: ssl3_IllegalParameter <-
** ssl3_HandshakeFailure <-
** ssl3_HandleAlert <- ssl3_HandleRecord.
** ssl3_HandleChangeCipherSpecs <- ssl3_HandleRecord
** ssl3_ConsumeHandshakeVariable <-
** ssl3_HandleHelloRequest <-
** ssl3_HandleServerHello <-
** ssl3_HandleServerKeyExchange <-
** ssl3_HandleCertificateRequest <-
** ssl3_HandleServerHelloDone <-
** ssl3_HandleClientHello <-
** ssl3_HandleV2ClientHello <-
** ssl3_HandleCertificateVerify <-
** ssl3_HandleClientKeyExchange <-
** ssl3_HandleCertificate <-
** ssl3_HandleFinished <-
** ssl3_HandleHandshakeMessage <-
** ssl3_HandlePostHelloHandshakeMessage <-
** ssl3_HandleRecord <-
**
*/
SECStatus
SSL3_SendAlert(sslSocket *ss, SSL3AlertLevel level, SSL3AlertDescription desc)
{
PRUint8 bytes[2];
SECStatus rv;
PRBool needHsLock = !ssl_HaveSSL3HandshakeLock(ss);
/* Check that if I need the HS lock I also need the Xmit lock */
PORT_Assert(!needHsLock || !ssl_HaveXmitBufLock(ss));
SSL_TRC(3, ("%d: SSL3[%d]: send alert record, level=%d desc=%d",
SSL_GETPID(), ss->fd, level, desc));
bytes[0] = level;
bytes[1] = desc;
if (needHsLock) {
ssl_GetSSL3HandshakeLock(ss);
}
if (level == alert_fatal) {
if (ss->sec.ci.sid) {
ssl_UncacheSessionID(ss);
}
}
rv = tls13_SetAlertCipherSpec(ss);
if (rv != SECSuccess) {
if (needHsLock) {
ssl_ReleaseSSL3HandshakeLock(ss);
}
return rv;
}
ssl_GetXmitBufLock(ss);
rv = ssl3_FlushHandshake(ss, ssl_SEND_FLAG_FORCE_INTO_BUFFER);
if (rv == SECSuccess) {
PRInt32 sent;
sent = ssl3_SendRecord(ss, NULL, ssl_ct_alert, bytes, 2,
(desc == no_certificate) ? ssl_SEND_FLAG_FORCE_INTO_BUFFER : 0);
rv = (sent >= 0) ? SECSuccess : (SECStatus)sent;
}
if (level == alert_fatal) {
ss->ssl3.fatalAlertSent = PR_TRUE;
}
ssl_ReleaseXmitBufLock(ss);
if (needHsLock) {
ssl_ReleaseSSL3HandshakeLock(ss);
}
if (rv == SECSuccess && ss->alertSentCallback) {
SSLAlert alert = { level, desc };
ss->alertSentCallback(ss->fd, ss->alertSentCallbackArg, &alert);
}
return rv; /* error set by ssl3_FlushHandshake or ssl3_SendRecord */
}
/*
* Send illegal_parameter alert. Set generic error number.
*/
static SECStatus
ssl3_IllegalParameter(sslSocket *ss)
{
(void)SSL3_SendAlert(ss, alert_fatal, illegal_parameter);
PORT_SetError(ss->sec.isServer ? SSL_ERROR_BAD_CLIENT
: SSL_ERROR_BAD_SERVER);
return SECFailure;
}
/*
* Send handshake_Failure alert. Set generic error number.
*/
static SECStatus
ssl3_HandshakeFailure(sslSocket *ss)
{
(void)SSL3_SendAlert(ss, alert_fatal, handshake_failure);
PORT_SetError(ss->sec.isServer ? SSL_ERROR_BAD_CLIENT
: SSL_ERROR_BAD_SERVER);
return SECFailure;
}
void
ssl3_SendAlertForCertError(sslSocket *ss, PRErrorCode errCode)
{
SSL3AlertDescription desc = bad_certificate;
PRBool isTLS = ss->version >= SSL_LIBRARY_VERSION_3_1_TLS;
switch (errCode) {
case SEC_ERROR_LIBRARY_FAILURE:
desc = unsupported_certificate;
break;
case SEC_ERROR_EXPIRED_CERTIFICATE:
desc = certificate_expired;
break;
case SEC_ERROR_REVOKED_CERTIFICATE:
desc = certificate_revoked;
break;
case SEC_ERROR_INADEQUATE_KEY_USAGE:
case SEC_ERROR_INADEQUATE_CERT_TYPE:
desc = certificate_unknown;
break;
case SEC_ERROR_UNTRUSTED_CERT:
desc = isTLS ? access_denied : certificate_unknown;
break;
case SEC_ERROR_UNKNOWN_ISSUER:
case SEC_ERROR_UNTRUSTED_ISSUER:
desc = isTLS ? unknown_ca : certificate_unknown;
break;
case SEC_ERROR_EXPIRED_ISSUER_CERTIFICATE:
desc = isTLS ? unknown_ca : certificate_expired;
break;
case SEC_ERROR_CERT_NOT_IN_NAME_SPACE:
case SEC_ERROR_PATH_LEN_CONSTRAINT_INVALID:
case SEC_ERROR_CA_CERT_INVALID:
case SEC_ERROR_BAD_SIGNATURE:
default:
desc = bad_certificate;
break;
}
SSL_DBG(("%d: SSL3[%d]: peer certificate is no good: error=%d",
SSL_GETPID(), ss->fd, errCode));
(void)SSL3_SendAlert(ss, alert_fatal, desc);
}
/*
* Send decode_error alert. Set generic error number.
*/
SECStatus
ssl3_DecodeError(sslSocket *ss)
{
(void)SSL3_SendAlert(ss, alert_fatal,
ss->version > SSL_LIBRARY_VERSION_3_0 ? decode_error
: illegal_parameter);
PORT_SetError(ss->sec.isServer ? SSL_ERROR_BAD_CLIENT
: SSL_ERROR_BAD_SERVER);
return SECFailure;
}
/* Called from ssl3_HandleRecord.
** Caller must hold both RecvBuf and Handshake locks.
*/
static SECStatus
ssl3_HandleAlert(sslSocket *ss, sslBuffer *buf)
{
SSL3AlertLevel level;
SSL3AlertDescription desc;
int error;
PORT_Assert(ss->opt.noLocks || ssl_HaveRecvBufLock(ss));
PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
SSL_TRC(3, ("%d: SSL3[%d]: handle alert record", SSL_GETPID(), ss->fd));
if (buf->len != 2) {
(void)ssl3_DecodeError(ss);
PORT_SetError(SSL_ERROR_RX_MALFORMED_ALERT);
return SECFailure;
}
level = (SSL3AlertLevel)buf->buf[0];
desc = (SSL3AlertDescription)buf->buf[1];
buf->len = 0;
SSL_TRC(5, ("%d: SSL3[%d] received alert, level = %d, description = %d",
SSL_GETPID(), ss->fd, level, desc));
if (ss->alertReceivedCallback) {
SSLAlert alert = { level, desc };
ss->alertReceivedCallback(ss->fd, ss->alertReceivedCallbackArg, &alert);
}
switch (desc) {
case close_notify:
ss->recvdCloseNotify = 1;
error = SSL_ERROR_CLOSE_NOTIFY_ALERT;
break;
case unexpected_message:
error = SSL_ERROR_HANDSHAKE_UNEXPECTED_ALERT;
break;
case bad_record_mac:
error = SSL_ERROR_BAD_MAC_ALERT;
break;
case decryption_failed_RESERVED:
error = SSL_ERROR_DECRYPTION_FAILED_ALERT;
break;
case record_overflow:
error = SSL_ERROR_RECORD_OVERFLOW_ALERT;
break;
case decompression_failure:
error = SSL_ERROR_DECOMPRESSION_FAILURE_ALERT;
break;
case handshake_failure:
error = SSL_ERROR_HANDSHAKE_FAILURE_ALERT;
break;
case no_certificate:
error = SSL_ERROR_NO_CERTIFICATE;
break;
case certificate_required:
error = SSL_ERROR_RX_CERTIFICATE_REQUIRED_ALERT;
break;
case bad_certificate:
error = SSL_ERROR_BAD_CERT_ALERT;
break;
case unsupported_certificate:
error = SSL_ERROR_UNSUPPORTED_CERT_ALERT;
break;
case certificate_revoked:
error = SSL_ERROR_REVOKED_CERT_ALERT;
break;
case certificate_expired:
error = SSL_ERROR_EXPIRED_CERT_ALERT;
break;
case certificate_unknown:
error = SSL_ERROR_CERTIFICATE_UNKNOWN_ALERT;
break;
case illegal_parameter:
error = SSL_ERROR_ILLEGAL_PARAMETER_ALERT;
break;
case inappropriate_fallback:
error = SSL_ERROR_INAPPROPRIATE_FALLBACK_ALERT;
break;
/* All alerts below are TLS only. */
case unknown_ca:
error = SSL_ERROR_UNKNOWN_CA_ALERT;
break;
case access_denied:
error = SSL_ERROR_ACCESS_DENIED_ALERT;
break;
case decode_error:
error = SSL_ERROR_DECODE_ERROR_ALERT;
break;
case decrypt_error:
error = SSL_ERROR_DECRYPT_ERROR_ALERT;
break;
case export_restriction:
error = SSL_ERROR_EXPORT_RESTRICTION_ALERT;
break;
case protocol_version:
error = SSL_ERROR_PROTOCOL_VERSION_ALERT;
break;
case insufficient_security:
error = SSL_ERROR_INSUFFICIENT_SECURITY_ALERT;
break;
case internal_error:
error = SSL_ERROR_INTERNAL_ERROR_ALERT;
break;
case user_canceled:
error = SSL_ERROR_USER_CANCELED_ALERT;
break;
case no_renegotiation:
error = SSL_ERROR_NO_RENEGOTIATION_ALERT;
break;
/* Alerts for TLS client hello extensions */
case missing_extension:
error = SSL_ERROR_MISSING_EXTENSION_ALERT;
break;
case unsupported_extension:
error = SSL_ERROR_UNSUPPORTED_EXTENSION_ALERT;
break;
case certificate_unobtainable:
error = SSL_ERROR_CERTIFICATE_UNOBTAINABLE_ALERT;
break;
case unrecognized_name:
error = SSL_ERROR_UNRECOGNIZED_NAME_ALERT;
break;
case bad_certificate_status_response:
error = SSL_ERROR_BAD_CERT_STATUS_RESPONSE_ALERT;
break;
case bad_certificate_hash_value:
error = SSL_ERROR_BAD_CERT_HASH_VALUE_ALERT;
break;
case ech_required:
error = SSL_ERROR_ECH_REQUIRED_ALERT;
break;
default:
error = SSL_ERROR_RX_UNKNOWN_ALERT;
break;
}
if ((ss->version >= SSL_LIBRARY_VERSION_TLS_1_3) &&
(ss->ssl3.hs.ws != wait_server_hello)) {
/* TLS 1.3 requires all but "end of data" alerts to be
* treated as fatal. */
switch (desc) {
case close_notify:
case user_canceled:
break;
default:
level = alert_fatal;
}
}
if (level == alert_fatal) {
ssl_UncacheSessionID(ss);
if ((ss->ssl3.hs.ws == wait_server_hello) &&
(desc == handshake_failure)) {
/* XXX This is a hack. We're assuming that any handshake failure
* XXX on the client hello is a failure to match ciphers.
*/
error = SSL_ERROR_NO_CYPHER_OVERLAP;
}
PORT_SetError(error);
return SECFailure;
}
if ((desc == no_certificate) && (ss->ssl3.hs.ws == wait_client_cert)) {
/* I'm a server. I've requested a client cert. He hasn't got one. */
SECStatus rv;
PORT_Assert(ss->sec.isServer);
ss->ssl3.hs.ws = wait_client_key;
rv = ssl3_HandleNoCertificate(ss);
return rv;
}
return SECSuccess;
}
/*
* Change Cipher Specs
* Called from ssl3_HandleServerHelloDone,
* ssl3_HandleClientHello,
* and ssl3_HandleFinished
*
* Acquires and releases spec write lock, to protect switching the current
* and pending write spec pointers.
*/
SECStatus
ssl3_SendChangeCipherSpecsInt(sslSocket *ss)
{
PRUint8 change = change_cipher_spec_choice;
SECStatus rv;
SSL_TRC(3, ("%d: SSL3[%d]: send change_cipher_spec record",
SSL_GETPID(), ss->fd));
rv = ssl3_FlushHandshake(ss, ssl_SEND_FLAG_FORCE_INTO_BUFFER);
if (rv != SECSuccess) {
return SECFailure; /* error code set by ssl3_FlushHandshake */
}
if (!IS_DTLS(ss)) {
PRInt32 sent;
sent = ssl3_SendRecord(ss, NULL, ssl_ct_change_cipher_spec,
&change, 1, ssl_SEND_FLAG_FORCE_INTO_BUFFER);
if (sent < 0) {
return SECFailure; /* error code set by ssl3_SendRecord */
}
} else {
rv = dtls_QueueMessage(ss, ssl_ct_change_cipher_spec, &change, 1);
if (rv != SECSuccess) {
return SECFailure;
}
}
return SECSuccess;
}
static SECStatus
ssl3_SendChangeCipherSpecs(sslSocket *ss)
{
SECStatus rv;
PORT_Assert(ss->opt.noLocks || ssl_HaveXmitBufLock(ss));
PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
rv = ssl3_SendChangeCipherSpecsInt(ss);
if (rv != SECSuccess) {
return rv; /* Error code set. */
}
/* swap the pending and current write specs. */
ssl_GetSpecWriteLock(ss); /**************************************/
ssl_CipherSpecRelease(ss->ssl3.cwSpec);
ss->ssl3.cwSpec = ss->ssl3.pwSpec;
ss->ssl3.pwSpec = NULL;
SSL_TRC(3, ("%d: SSL3[%d] Set Current Write Cipher Suite to Pending",
SSL_GETPID(), ss->fd));
/* With DTLS, we need to set a holddown timer in case the final
* message got lost */
if (IS_DTLS(ss) && ss->ssl3.crSpec->epoch == ss->ssl3.cwSpec->epoch) {
rv = dtls_StartHolddownTimer(ss);
}
ssl_ReleaseSpecWriteLock(ss); /**************************************/
return rv;
}
/* Called from ssl3_HandleRecord.
** Caller must hold both RecvBuf and Handshake locks.
*
* Acquires and releases spec write lock, to protect switching the current
* and pending write spec pointers.
*/
static SECStatus
ssl3_HandleChangeCipherSpecs(sslSocket *ss, sslBuffer *buf)
{
SSL3WaitState ws = ss->ssl3.hs.ws;
SSL3ChangeCipherSpecChoice change;
PORT_Assert(ss->opt.noLocks || ssl_HaveRecvBufLock(ss));
PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
SSL_TRC(3, ("%d: SSL3[%d]: handle change_cipher_spec record",
SSL_GETPID(), ss->fd));
/* For DTLS: Ignore this if we aren't expecting it. Don't kill a connection
* as a result of receiving trash.
* For TLS: Maybe ignore, but only after checking format. */
if (ws != wait_change_cipher && IS_DTLS(ss)) {
/* Ignore this because it's out of order. */
SSL_TRC(3, ("%d: SSL3[%d]: discard out of order "
"DTLS change_cipher_spec",
SSL_GETPID(), ss->fd));
buf->len = 0;
return SECSuccess;
}
/* Handshake messages should not span ChangeCipherSpec. */
if (ss->ssl3.hs.header_bytes) {
(void)SSL3_SendAlert(ss, alert_fatal, unexpected_message);
PORT_SetError(SSL_ERROR_RX_UNEXPECTED_CHANGE_CIPHER);
return SECFailure;
}
if (buf->len != 1) {
(void)ssl3_DecodeError(ss);
PORT_SetError(SSL_ERROR_RX_MALFORMED_CHANGE_CIPHER);
return SECFailure;
}
change = (SSL3ChangeCipherSpecChoice)buf->buf[0];
if (change != change_cipher_spec_choice) {
/* illegal_parameter is correct here for both SSL3 and TLS. */
(void)ssl3_IllegalParameter(ss);
PORT_SetError(SSL_ERROR_RX_MALFORMED_CHANGE_CIPHER);
return SECFailure;
}
buf->len = 0;
if (ws != wait_change_cipher) {
/* Ignore a CCS for TLS 1.3. This only happens if the server sends a
* HelloRetryRequest. In other cases, the CCS will fail decryption and
* will be discarded by ssl3_HandleRecord(). */
if (ws == wait_server_hello &&
ss->version >= SSL_LIBRARY_VERSION_TLS_1_3 &&
ss->ssl3.hs.helloRetry) {
PORT_Assert(!ss->sec.isServer);
return SECSuccess;
}
/* Note: For a server, we can't test ss->ssl3.hs.helloRetry or
* ss->version because the server might be stateless (and so it won't
* have set either value yet). Set a flag so that at least we will
* guarantee that the server will treat any ClientHello properly. */
if (ws == wait_client_hello &&
ss->vrange.max >= SSL_LIBRARY_VERSION_TLS_1_3 &&
!ss->ssl3.hs.receivedCcs) {
PORT_Assert(ss->sec.isServer);
ss->ssl3.hs.receivedCcs = PR_TRUE;
return SECSuccess;
}
(void)SSL3_SendAlert(ss, alert_fatal, unexpected_message);
PORT_SetError(SSL_ERROR_RX_UNEXPECTED_CHANGE_CIPHER);
return SECFailure;
}
SSL_TRC(3, ("%d: SSL3[%d] Set Current Read Cipher Suite to Pending",
SSL_GETPID(), ss->fd));
ssl_GetSpecWriteLock(ss); /*************************************/
PORT_Assert(ss->ssl3.prSpec);
ssl_CipherSpecRelease(ss->ssl3.crSpec);
ss->ssl3.crSpec = ss->ssl3.prSpec;
ss->ssl3.prSpec = NULL;
ssl_ReleaseSpecWriteLock(ss); /*************************************/
ss->ssl3.hs.ws = wait_finished;
return SECSuccess;
}
static CK_MECHANISM_TYPE
ssl3_GetMgfMechanismByHashType(SSLHashType hash)
{
switch (hash) {
case ssl_hash_sha256:
return CKG_MGF1_SHA256;
case ssl_hash_sha384:
return CKG_MGF1_SHA384;
case ssl_hash_sha512:
return CKG_MGF1_SHA512;
default:
PORT_Assert(0);
}
return CKG_MGF1_SHA256;
}
/* Function valid for >= TLS 1.2, only. */
static CK_MECHANISM_TYPE
ssl3_GetHashMechanismByHashType(SSLHashType hashType)
{
switch (hashType) {
case ssl_hash_sha512:
return CKM_SHA512;
case ssl_hash_sha384:
return CKM_SHA384;
case ssl_hash_sha256:
case ssl_hash_none:
/* ssl_hash_none is for pre-1.2 suites, which use SHA-256. */
return CKM_SHA256;
case ssl_hash_sha1:
return CKM_SHA_1;
default:
PORT_Assert(0);
}
return CKM_SHA256;
}
/* Function valid for >= TLS 1.2, only. */
static CK_MECHANISM_TYPE
ssl3_GetPrfHashMechanism(sslSocket *ss)
{
return ssl3_GetHashMechanismByHashType(ss->ssl3.hs.suite_def->prf_hash);
}
static SSLHashType
ssl3_GetSuitePrfHash(sslSocket *ss)
{
/* ssl_hash_none is for pre-1.2 suites, which use SHA-256. */
if (ss->ssl3.hs.suite_def->prf_hash == ssl_hash_none) {
return ssl_hash_sha256;
}
return ss->ssl3.hs.suite_def->prf_hash;
}
/* This method completes the derivation of the MS from the PMS.
**
** 1. Derive the MS, if possible, else return an error.
**
** 2. Check the version if |pms_version| is non-zero and if wrong,
** return an error.
**
** 3. If |msp| is nonzero, return MS in |*msp|.
** Called from:
** ssl3_ComputeMasterSecretInt
** tls_ComputeExtendedMasterSecretInt
*/
static SECStatus
ssl3_ComputeMasterSecretFinish(sslSocket *ss,
CK_MECHANISM_TYPE master_derive,
CK_MECHANISM_TYPE key_derive,
CK_VERSION *pms_version,
SECItem *params, CK_FLAGS keyFlags,
PK11SymKey *pms, PK11SymKey **msp)
{
PK11SymKey *ms = NULL;
ms = PK11_DeriveWithFlags(pms, master_derive,
params, key_derive,
CKA_DERIVE, 0, keyFlags);
if (!ms) {
ssl_MapLowLevelError(SSL_ERROR_SESSION_KEY_GEN_FAILURE);
return SECFailure;
}
if (pms_version && ss->opt.detectRollBack) {
SSL3ProtocolVersion client_version;
client_version = pms_version->major << 8 | pms_version->minor;
if (IS_DTLS(ss)) {
client_version = dtls_DTLSVersionToTLSVersion(client_version);
}
if (client_version != ss->clientHelloVersion) {
/* Destroy MS. Version roll-back detected. */
PK11_FreeSymKey(ms);
ssl_MapLowLevelError(SSL_ERROR_SESSION_KEY_GEN_FAILURE);
return SECFailure;
}
}
if (msp) {
*msp = ms;
} else {
PK11_FreeSymKey(ms);
}
return SECSuccess;
}
/* Compute the ordinary (pre draft-ietf-tls-session-hash) master
** secret and return it in |*msp|.
**
** Called from: ssl3_ComputeMasterSecret
*/
static SECStatus
ssl3_ComputeMasterSecretInt(sslSocket *ss, PK11SymKey *pms,
PK11SymKey **msp)
{
PRBool isTLS = (PRBool)(ss->version > SSL_LIBRARY_VERSION_3_0);
PRBool isTLS12 = (PRBool)(ss->version >= SSL_LIBRARY_VERSION_TLS_1_2);
/*
* Whenever isDH is true, we need to use CKM_TLS_MASTER_KEY_DERIVE_DH
* which, unlike CKM_TLS_MASTER_KEY_DERIVE, converts arbitrary size
* data into a 48-byte value, and does not expect to return the version.
*/
PRBool isDH = (PRBool)((ss->ssl3.hs.kea_def->exchKeyType == ssl_kea_dh) ||
(ss->ssl3.hs.kea_def->exchKeyType == ssl_kea_ecdh));
CK_MECHANISM_TYPE master_derive;
CK_MECHANISM_TYPE key_derive;
SECItem params;
CK_FLAGS keyFlags;
CK_VERSION pms_version;
CK_VERSION *pms_version_ptr = NULL;
/* master_params may be used as a CK_SSL3_MASTER_KEY_DERIVE_PARAMS */
CK_TLS12_MASTER_KEY_DERIVE_PARAMS master_params;
unsigned int master_params_len;
if (isTLS12) {
if (isDH)
master_derive = CKM_TLS12_MASTER_KEY_DERIVE_DH;
else
master_derive = CKM_TLS12_MASTER_KEY_DERIVE;
key_derive = CKM_TLS12_KEY_AND_MAC_DERIVE;
keyFlags = CKF_SIGN | CKF_VERIFY;
} else if (isTLS) {
if (isDH)
master_derive = CKM_TLS_MASTER_KEY_DERIVE_DH;
else
master_derive = CKM_TLS_MASTER_KEY_DERIVE;
key_derive = CKM_TLS_KEY_AND_MAC_DERIVE;
keyFlags = CKF_SIGN | CKF_VERIFY;
} else {
if (isDH)
master_derive = CKM_SSL3_MASTER_KEY_DERIVE_DH;
else
master_derive = CKM_SSL3_MASTER_KEY_DERIVE;
key_derive = CKM_SSL3_KEY_AND_MAC_DERIVE;
keyFlags = 0;
}
if (!isDH) {
pms_version_ptr = &pms_version;
}
master_params.pVersion = pms_version_ptr;
master_params.RandomInfo.pClientRandom = ss->ssl3.hs.client_random;
master_params.RandomInfo.ulClientRandomLen = SSL3_RANDOM_LENGTH;
master_params.RandomInfo.pServerRandom = ss->ssl3.hs.server_random;
master_params.RandomInfo.ulServerRandomLen = SSL3_RANDOM_LENGTH;
if (isTLS12) {
master_params.prfHashMechanism = ssl3_GetPrfHashMechanism(ss);
master_params_len = sizeof(CK_TLS12_MASTER_KEY_DERIVE_PARAMS);
} else {
/* prfHashMechanism is not relevant with this PRF */
master_params_len = sizeof(CK_SSL3_MASTER_KEY_DERIVE_PARAMS);
}
params.data = (unsigned char *)&master_params;
params.len = master_params_len;
return ssl3_ComputeMasterSecretFinish(ss, master_derive, key_derive,
pms_version_ptr, &params,
keyFlags, pms, msp);
}
/* Compute the draft-ietf-tls-session-hash master
** secret and return it in |*msp|.
**
** Called from: ssl3_ComputeMasterSecret
*/
static SECStatus
tls_ComputeExtendedMasterSecretInt(sslSocket *ss, PK11SymKey *pms,
PK11SymKey **msp)
{
ssl3CipherSpec *pwSpec = ss->ssl3.pwSpec;
CK_NSS_TLS_EXTENDED_MASTER_KEY_DERIVE_PARAMS extended_master_params;
SSL3Hashes hashes;
/*
* Determine whether to use the DH/ECDH or RSA derivation modes.
*/
/*
* TODO(ekr@rtfm.com): Verify that the slot can handle this key expansion
* mode. Bug 1198298 */
PRBool isDH = (PRBool)((ss->ssl3.hs.kea_def->exchKeyType == ssl_kea_dh) ||
(ss->ssl3.hs.kea_def->exchKeyType == ssl_kea_ecdh));
CK_MECHANISM_TYPE master_derive;
CK_MECHANISM_TYPE key_derive;
SECItem params;
const CK_FLAGS keyFlags = CKF_SIGN | CKF_VERIFY;
CK_VERSION pms_version;
CK_VERSION *pms_version_ptr = NULL;
SECStatus rv;
rv = ssl3_ComputeHandshakeHashes(ss, pwSpec, &hashes, 0);
if (rv != SECSuccess) {
PORT_Assert(0); /* Should never fail */
ssl_MapLowLevelError(SSL_ERROR_SESSION_KEY_GEN_FAILURE);
return SECFailure;
}
if (isDH) {
master_derive = CKM_NSS_TLS_EXTENDED_MASTER_KEY_DERIVE_DH;
} else {
master_derive = CKM_NSS_TLS_EXTENDED_MASTER_KEY_DERIVE;
pms_version_ptr = &pms_version;
}
if (ss->version >= SSL_LIBRARY_VERSION_TLS_1_2) {
/* TLS 1.2+ */
extended_master_params.prfHashMechanism = ssl3_GetPrfHashMechanism(ss);
key_derive = CKM_TLS12_KEY_AND_MAC_DERIVE;
} else {
/* TLS < 1.2 */
extended_master_params.prfHashMechanism = CKM_TLS_PRF;
key_derive = CKM_TLS_KEY_AND_MAC_DERIVE;
}
extended_master_params.pVersion = pms_version_ptr;
extended_master_params.pSessionHash = hashes.u.raw;
extended_master_params.ulSessionHashLen = hashes.len;
params.data = (unsigned char *)&extended_master_params;
params.len = sizeof extended_master_params;
return ssl3_ComputeMasterSecretFinish(ss, master_derive, key_derive,
pms_version_ptr, &params,
keyFlags, pms, msp);
}
/* Wrapper method to compute the master secret and return it in |*msp|.
**
** Called from ssl3_ComputeMasterSecret
*/
static SECStatus
ssl3_ComputeMasterSecret(sslSocket *ss, PK11SymKey *pms,
PK11SymKey **msp)
{
PORT_Assert(pms != NULL);
PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
if (ssl3_ExtensionNegotiated(ss, ssl_extended_master_secret_xtn)) {
return tls_ComputeExtendedMasterSecretInt(ss, pms, msp);
} else {
return ssl3_ComputeMasterSecretInt(ss, pms, msp);
}
}
/*
* Derive encryption and MAC Keys (and IVs) from master secret
* Sets a useful error code when returning SECFailure.
*
* Called only from ssl3_InitPendingCipherSpec(),
* which in turn is called from
* ssl3_SendRSAClientKeyExchange (for Full handshake)
* ssl3_SendDHClientKeyExchange (for Full handshake)
* ssl3_HandleClientKeyExchange (for Full handshake)
* ssl3_HandleServerHello (for session restart)
* ssl3_HandleClientHello (for session restart)
* Caller MUST hold the specWriteLock, and SSL3HandshakeLock.
* ssl3_InitPendingCipherSpec does that.
*
*/
static SECStatus
ssl3_DeriveConnectionKeys(sslSocket *ss, PK11SymKey *masterSecret)
{
ssl3CipherSpec *pwSpec = ss->ssl3.pwSpec;
ssl3CipherSpec *prSpec = ss->ssl3.prSpec;
ssl3CipherSpec *clientSpec;
ssl3CipherSpec *serverSpec;
PRBool isTLS = (PRBool)(ss->version > SSL_LIBRARY_VERSION_3_0);
PRBool isTLS12 =
(PRBool)(isTLS && ss->version >= SSL_LIBRARY_VERSION_TLS_1_2);
const ssl3BulkCipherDef *cipher_def = pwSpec->cipherDef;
PK11SlotInfo *slot = NULL;
PK11SymKey *derivedKeyHandle = NULL;
void *pwArg = ss->pkcs11PinArg;
int keySize;
CK_TLS12_KEY_MAT_PARAMS key_material_params; /* may be used as a
* CK_SSL3_KEY_MAT_PARAMS */
unsigned int key_material_params_len;
CK_SSL3_KEY_MAT_OUT returnedKeys;
CK_MECHANISM_TYPE key_derive;
CK_MECHANISM_TYPE bulk_mechanism;
SSLCipherAlgorithm calg;
SECItem params;
PRBool skipKeysAndIVs = (PRBool)(cipher_def->calg == ssl_calg_null);
PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
PORT_Assert(ss->opt.noLocks || ssl_HaveSpecWriteLock(ss));
PORT_Assert(masterSecret);
/* These functions operate in terms of who is writing specs. */
if (ss->sec.isServer) {
clientSpec = prSpec;
serverSpec = pwSpec;
} else {
clientSpec = pwSpec;
serverSpec = prSpec;
}
/*
* generate the key material
*/
if (cipher_def->type == type_block &&
ss->version >= SSL_LIBRARY_VERSION_TLS_1_1) {
/* Block ciphers in >= TLS 1.1 use a per-record, explicit IV. */
key_material_params.ulIVSizeInBits = 0;
PORT_Memset(clientSpec->keyMaterial.iv, 0, cipher_def->iv_size);
PORT_Memset(serverSpec->keyMaterial.iv, 0, cipher_def->iv_size);
}
key_material_params.bIsExport = PR_FALSE;
key_material_params.RandomInfo.pClientRandom = ss->ssl3.hs.client_random;
key_material_params.RandomInfo.ulClientRandomLen = SSL3_RANDOM_LENGTH;
key_material_params.RandomInfo.pServerRandom = ss->ssl3.hs.server_random;
key_material_params.RandomInfo.ulServerRandomLen = SSL3_RANDOM_LENGTH;
key_material_params.pReturnedKeyMaterial = &returnedKeys;
if (skipKeysAndIVs) {
keySize = 0;
returnedKeys.pIVClient = NULL;
returnedKeys.pIVServer = NULL;
key_material_params.ulKeySizeInBits = 0;
key_material_params.ulIVSizeInBits = 0;
} else {
keySize = cipher_def->key_size;
returnedKeys.pIVClient = clientSpec->keyMaterial.iv;
returnedKeys.pIVServer = serverSpec->keyMaterial.iv;
key_material_params.ulKeySizeInBits = cipher_def->secret_key_size * BPB;
key_material_params.ulIVSizeInBits = cipher_def->iv_size * BPB;
}
key_material_params.ulMacSizeInBits = pwSpec->macDef->mac_size * BPB;
calg = cipher_def->calg;
bulk_mechanism = ssl3_Alg2Mech(calg);
if (isTLS12) {
key_derive = CKM_TLS12_KEY_AND_MAC_DERIVE;
key_material_params.prfHashMechanism = ssl3_GetPrfHashMechanism(ss);
key_material_params_len = sizeof(CK_TLS12_KEY_MAT_PARAMS);
} else if (isTLS) {
key_derive = CKM_TLS_KEY_AND_MAC_DERIVE;
key_material_params_len = sizeof(CK_SSL3_KEY_MAT_PARAMS);
} else {
key_derive = CKM_SSL3_KEY_AND_MAC_DERIVE;
key_material_params_len = sizeof(CK_SSL3_KEY_MAT_PARAMS);
}
params.data = (unsigned char *)&key_material_params;
params.len = key_material_params_len;
/* CKM_SSL3_KEY_AND_MAC_DERIVE is defined to set ENCRYPT, DECRYPT, and
* DERIVE by DEFAULT */
derivedKeyHandle = PK11_Derive(masterSecret, key_derive, &params,
bulk_mechanism, CKA_ENCRYPT, keySize);
if (!derivedKeyHandle) {
ssl_MapLowLevelError(SSL_ERROR_SESSION_KEY_GEN_FAILURE);
return SECFailure;
}
/* we really should use the actual mac'ing mechanism here, but we
* don't because these types are used to map keytype anyway and both
* mac's map to the same keytype.
*/
slot = PK11_GetSlotFromKey(derivedKeyHandle);
PK11_FreeSlot(slot); /* slot is held until the key is freed */
clientSpec->keyMaterial.macKey =
PK11_SymKeyFromHandle(slot, derivedKeyHandle, PK11_OriginDerive,
CKM_SSL3_SHA1_MAC, returnedKeys.hClientMacSecret,
PR_TRUE, pwArg);
if (clientSpec->keyMaterial.macKey == NULL) {
goto loser; /* loser sets err */
}
serverSpec->keyMaterial.macKey =
PK11_SymKeyFromHandle(slot, derivedKeyHandle, PK11_OriginDerive,
CKM_SSL3_SHA1_MAC, returnedKeys.hServerMacSecret,
PR_TRUE, pwArg);
if (serverSpec->keyMaterial.macKey == NULL) {
goto loser; /* loser sets err */
}
if (!skipKeysAndIVs) {
clientSpec->keyMaterial.key =
PK11_SymKeyFromHandle(slot, derivedKeyHandle, PK11_OriginDerive,
bulk_mechanism, returnedKeys.hClientKey,
PR_TRUE, pwArg);
if (clientSpec->keyMaterial.key == NULL) {
goto loser; /* loser sets err */
}
serverSpec->keyMaterial.key =
PK11_SymKeyFromHandle(slot, derivedKeyHandle, PK11_OriginDerive,
bulk_mechanism, returnedKeys.hServerKey,
PR_TRUE, pwArg);
if (serverSpec->keyMaterial.key == NULL) {
goto loser; /* loser sets err */
}
}
PK11_FreeSymKey(derivedKeyHandle);
return SECSuccess;
loser:
PK11_FreeSymKey(derivedKeyHandle);
ssl_MapLowLevelError(SSL_ERROR_SESSION_KEY_GEN_FAILURE);
return SECFailure;
}
void
ssl3_CoalesceEchHandshakeHashes(sslSocket *ss)
{
/* |sha| contains the CHOuter transcript, which is the singular
* transcript if not doing ECH. If the server responded with 1.2,
* contexts are not yet initialized. */
if (ss->ssl3.hs.echAccepted) {
if (ss->ssl3.hs.sha) {
PORT_Assert(ss->ssl3.hs.shaEchInner);
PK11_DestroyContext(ss->ssl3.hs.sha, PR_TRUE);
ss->ssl3.hs.sha = ss->ssl3.hs.shaEchInner;
ss->ssl3.hs.shaEchInner = NULL;
}
} else {
if (ss->ssl3.hs.shaEchInner) {
PK11_DestroyContext(ss->ssl3.hs.shaEchInner, PR_TRUE);
ss->ssl3.hs.shaEchInner = NULL;
}
}
}
/* ssl3_InitHandshakeHashes creates handshake hash contexts and hashes in
* buffered messages in ss->ssl3.hs.messages. Called from
* ssl3_NegotiateCipherSuite(), tls13_HandleClientHelloPart2(),
* and ssl3_HandleServerHello. */
SECStatus
ssl3_InitHandshakeHashes(sslSocket *ss)
{
SSL_TRC(30, ("%d: SSL3[%d]: start handshake hashes", SSL_GETPID(), ss->fd));
PORT_Assert(ss->ssl3.hs.hashType == handshake_hash_unknown);
if (ss->version == SSL_LIBRARY_VERSION_TLS_1_2) {
ss->ssl3.hs.hashType = handshake_hash_record;
} else {
PORT_Assert(!ss->ssl3.hs.md5 && !ss->ssl3.hs.sha);
/*
* note: We should probably lookup an SSL3 slot for these
* handshake hashes in hopes that we wind up with the same slots
* that the master secret will wind up in ...
*/
if (ss->version >= SSL_LIBRARY_VERSION_TLS_1_3) {
/* determine the hash from the prf */
const SECOidData *hash_oid =
SECOID_FindOIDByMechanism(ssl3_GetPrfHashMechanism(ss));
/* Get the PKCS #11 mechanism for the Hash from the cipher suite (prf_hash)
* Convert that to the OidTag. We can then use that OidTag to create our
* PK11Context */
PORT_Assert(hash_oid != NULL);
if (hash_oid == NULL) {
ssl_MapLowLevelError(SSL_ERROR_DIGEST_FAILURE);
return SECFailure;
}
ss->ssl3.hs.sha = PK11_CreateDigestContext(hash_oid->offset);
if (ss->ssl3.hs.sha == NULL) {
ssl_MapLowLevelError(SSL_ERROR_SHA_DIGEST_FAILURE);
return SECFailure;
}
ss->ssl3.hs.hashType = handshake_hash_single;
if (PK11_DigestBegin(ss->ssl3.hs.sha) != SECSuccess) {
ssl_MapLowLevelError(SSL_ERROR_DIGEST_FAILURE);
return SECFailure;
}
/* Alternate transcript hash used in Encrypted Client Hello. */
if (!ss->sec.isServer && ss->ssl3.hs.echHpkeCtx) {
ss->ssl3.hs.shaEchInner = PK11_CreateDigestContext(hash_oid->offset);
if (ss->ssl3.hs.shaEchInner == NULL) {
ssl_MapLowLevelError(SSL_ERROR_SHA_DIGEST_FAILURE);
return SECFailure;
}
if (PK11_DigestBegin(ss->ssl3.hs.shaEchInner) != SECSuccess) {
ssl_MapLowLevelError(SSL_ERROR_DIGEST_FAILURE);
return SECFailure;
}
}
} else {
/* Both ss->ssl3.hs.md5 and ss->ssl3.hs.sha should be NULL or
* created successfully. */
ss->ssl3.hs.md5 = PK11_CreateDigestContext(SEC_OID_MD5);
if (ss->ssl3.hs.md5 == NULL) {
ssl_MapLowLevelError(SSL_ERROR_MD5_DIGEST_FAILURE);
return SECFailure;
}
ss->ssl3.hs.sha = PK11_CreateDigestContext(SEC_OID_SHA1);
if (ss->ssl3.hs.sha == NULL) {
PK11_DestroyContext(ss->ssl3.hs.md5, PR_TRUE);
ss->ssl3.hs.md5 = NULL;
ssl_MapLowLevelError(SSL_ERROR_SHA_DIGEST_FAILURE);
return SECFailure;
}
ss->ssl3.hs.hashType = handshake_hash_combo;
if (PK11_DigestBegin(ss->ssl3.hs.md5) != SECSuccess) {
ssl_MapLowLevelError(SSL_ERROR_MD5_DIGEST_FAILURE);
return SECFailure;
}
if (PK11_DigestBegin(ss->ssl3.hs.sha) != SECSuccess) {
ssl_MapLowLevelError(SSL_ERROR_SHA_DIGEST_FAILURE);
return SECFailure;
}
}
}
if (ss->ssl3.hs.hashType != handshake_hash_record &&
ss->ssl3.hs.messages.len > 0) {
/* When doing ECH, ssl3_UpdateHandshakeHashes will store outer messages into
* the both the outer and inner transcripts. ssl3_UpdateDefaultHandshakeHashes
* uses only the default context (which is the outer when doing ECH). */
if (ssl3_UpdateDefaultHandshakeHashes(ss, ss->ssl3.hs.messages.buf,
ss->ssl3.hs.messages.len) != SECSuccess) {
return SECFailure;
}
/* When doing ECH, deriving accept_confirmation requires all messages
* up to SH, then a synthetic SH. Don't free the buffers just yet. */
if (!ss->ssl3.hs.echHpkeCtx) {
sslBuffer_Clear(&ss->ssl3.hs.messages);
}
}
if (ss->ssl3.hs.shaEchInner &&
ss->ssl3.hs.echInnerMessages.len > 0) {
if (PK11_DigestOp(ss->ssl3.hs.shaEchInner, ss->ssl3.hs.echInnerMessages.buf,
ss->ssl3.hs.echInnerMessages.len) != SECSuccess) {
ssl_MapLowLevelError(SSL_ERROR_DIGEST_FAILURE);
return SECFailure;
}
if (!ss->ssl3.hs.echHpkeCtx) {
sslBuffer_Clear(&ss->ssl3.hs.echInnerMessages);
}
}
return SECSuccess;
}
void
ssl3_RestartHandshakeHashes(sslSocket *ss)
{
SSL_TRC(30, ("%d: SSL3[%d]: reset handshake hashes",
SSL_GETPID(), ss->fd));
ss->ssl3.hs.hashType = handshake_hash_unknown;
ss->ssl3.hs.messages.len = 0;
ss->ssl3.hs.echInnerMessages.len = 0;
if (ss->ssl3.hs.md5) {
PK11_DestroyContext(ss->ssl3.hs.md5, PR_TRUE);
ss->ssl3.hs.md5 = NULL;
}
if (ss->ssl3.hs.sha) {
PK11_DestroyContext(ss->ssl3.hs.sha, PR_TRUE);
ss->ssl3.hs.sha = NULL;
}
if (ss->ssl3.hs.shaEchInner) {
PK11_DestroyContext(ss->ssl3.hs.shaEchInner, PR_TRUE);
ss->ssl3.hs.shaEchInner = NULL;
}
if (ss->ssl3.hs.shaPostHandshake) {
PK11_DestroyContext(ss->ssl3.hs.shaPostHandshake, PR_TRUE);
ss->ssl3.hs.shaPostHandshake = NULL;
}
}
/* Add the provided bytes to the handshake hash context. When doing
* TLS 1.3 ECH, |target| may be provided to specify only the inner/outer
* transcript, else the input is added to both contexts. This happens
* only on the client. On the server, only the default context is used. */
SECStatus
ssl3_UpdateHandshakeHashesInt(sslSocket *ss, const unsigned char *b,
unsigned int l, sslBuffer *target)
{
SECStatus rv = SECSuccess;
PRBool explicit = (target != NULL);
PRBool appendToEchInner = !ss->sec.isServer &&
ss->ssl3.hs.echHpkeCtx &&
!explicit;
PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
PORT_Assert(target != &ss->ssl3.hs.echInnerMessages ||
!ss->sec.isServer);
if (target == NULL) {
/* Default context. */
target = &ss->ssl3.hs.messages;
}
/* With TLS 1.3, and versions TLS.1.1 and older, we keep the hash(es)
* always up to date. However, we must initially buffer the handshake
* messages, until we know what to do.
* If ss->ssl3.hs.hashType != handshake_hash_unknown,
* it means we know what to do. We calculate (hash our input),
* and we stop appending to the buffer.
*
* With TLS 1.2, we always append all handshake messages,
* and never update the hash, because the hash function we must use for
* certificate_verify might be different from the hash function we use
* when signing other handshake hashes. */
if (ss->ssl3.hs.hashType == handshake_hash_unknown ||
ss->ssl3.hs.hashType == handshake_hash_record) {
rv = sslBuffer_Append(target, b, l);
if (rv != SECSuccess) {
return SECFailure;
}
if (appendToEchInner) {
return sslBuffer_Append(&ss->ssl3.hs.echInnerMessages, b, l);
}
return SECSuccess;
}
PRINT_BUF(90, (ss, "handshake hash input:", b, l));
if (ss->ssl3.hs.hashType == handshake_hash_single) {
PORT_Assert(ss->version >= SSL_LIBRARY_VERSION_TLS_1_3);
if (target == &ss->ssl3.hs.messages) {
rv = PK11_DigestOp(ss->ssl3.hs.sha, b, l);
if (rv != SECSuccess) {
ssl_MapLowLevelError(SSL_ERROR_DIGEST_FAILURE);
return rv;
}
}
if (ss->ssl3.hs.shaEchInner &&
(target == &ss->ssl3.hs.echInnerMessages || !explicit)) {
rv = PK11_DigestOp(ss->ssl3.hs.shaEchInner, b, l);
if (rv != SECSuccess) {
ssl_MapLowLevelError(SSL_ERROR_DIGEST_FAILURE);
return rv;
}
}
} else if (ss->ssl3.hs.hashType == handshake_hash_combo) {
rv = PK11_DigestOp(ss->ssl3.hs.md5, b, l);
if (rv != SECSuccess) {
ssl_MapLowLevelError(SSL_ERROR_MD5_DIGEST_FAILURE);
return rv;
}
rv = PK11_DigestOp(ss->ssl3.hs.sha, b, l);
if (rv != SECSuccess) {
ssl_MapLowLevelError(SSL_ERROR_SHA_DIGEST_FAILURE);
return rv;
}
}
return rv;
}
static SECStatus
ssl3_UpdateDefaultHandshakeHashes(sslSocket *ss, const unsigned char *b,
unsigned int l)
{
return ssl3_UpdateHandshakeHashesInt(ss, b, l,
&ss->ssl3.hs.messages);
}
static SECStatus
ssl3_UpdateInnerHandshakeHashes(sslSocket *ss, const unsigned char *b,
unsigned int l)
{
return ssl3_UpdateHandshakeHashesInt(ss, b, l,
&ss->ssl3.hs.echInnerMessages);
}
/*
* Handshake messages
*/
/* Called from ssl3_InitHandshakeHashes()
** ssl3_AppendHandshake()
** ssl3_HandleV2ClientHello()
** ssl3_HandleHandshakeMessage()
** Caller must hold the ssl3Handshake lock.
*/
SECStatus
ssl3_UpdateHandshakeHashes(sslSocket *ss, const unsigned char *b, unsigned int l)
{
return ssl3_UpdateHandshakeHashesInt(ss, b, l, NULL);
}
SECStatus
ssl3_UpdatePostHandshakeHashes(sslSocket *ss, const unsigned char *b, unsigned int l)
{
SECStatus rv = SECSuccess;
PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
PRINT_BUF(90, (ss, "post handshake hash input:", b, l));
PORT_Assert(ss->ssl3.hs.hashType == handshake_hash_single);
PORT_Assert(ss->version >= SSL_LIBRARY_VERSION_TLS_1_3);
rv = PK11_DigestOp(ss->ssl3.hs.shaPostHandshake, b, l);
if (rv != SECSuccess) {
PORT_SetError(SSL_ERROR_DIGEST_FAILURE);
}
return rv;
}
SECStatus
ssl3_AppendHandshakeHeader(sslSocket *ss, SSLHandshakeType t, PRUint32 length)
{
SECStatus rv;
/* If we already have a message in place, we need to enqueue it.
* This empties the buffer. This is a convenient place to call
* dtls_StageHandshakeMessage to mark the message boundary.
*/
if (IS_DTLS(ss)) {
rv = dtls_StageHandshakeMessage(ss);
if (rv != SECSuccess) {
return rv;
}
}
SSL_TRC(30, ("%d: SSL3[%d]: append handshake header: type %s",
SSL_GETPID(), ss->fd, ssl3_DecodeHandshakeType(t)));
rv = ssl3_AppendHandshakeNumber(ss, t, 1);
if (rv != SECSuccess) {
return rv; /* error code set by AppendHandshake, if applicable. */
}
rv = ssl3_AppendHandshakeNumber(ss, length, 3);
if (rv != SECSuccess) {
return rv; /* error code set by AppendHandshake, if applicable. */
}
if (IS_DTLS(ss)) {
/* Note that we make an unfragmented message here. We fragment in the
* transmission code, if necessary */
rv = ssl3_AppendHandshakeNumber(ss, ss->ssl3.hs.sendMessageSeq, 2);
if (rv != SECSuccess) {
return rv; /* error code set by AppendHandshake, if applicable. */
}
ss->ssl3.hs.sendMessageSeq++;
/* 0 is the fragment offset, because it's not fragmented yet */
rv = ssl3_AppendHandshakeNumber(ss, 0, 3);
if (rv != SECSuccess) {
return rv; /* error code set by AppendHandshake, if applicable. */
}
/* Fragment length -- set to the packet length because not fragmented */
rv = ssl3_AppendHandshakeNumber(ss, length, 3);
if (rv != SECSuccess) {
return rv; /* error code set by AppendHandshake, if applicable. */
}
}
return rv; /* error code set by AppendHandshake, if applicable. */
}
/**************************************************************************
* Consume Handshake functions.
*
* All data used in these functions is protected by two locks,
* the RecvBufLock and the SSL3HandshakeLock
**************************************************************************/
/* Read up the next "bytes" number of bytes from the (decrypted) input
* stream "b" (which is *length bytes long). Copy them into buffer "v".
* Reduces *length by bytes. Advances *b by bytes.
*
* If this function returns SECFailure, it has already sent an alert,
* and has set a generic error code. The caller should probably
* override the generic error code by setting another.
*/
SECStatus
ssl3_ConsumeHandshake(sslSocket *ss, void *v, PRUint32 bytes, PRUint8 **b,
PRUint32 *length)
{
PORT_Assert(ss->opt.noLocks || ssl_HaveRecvBufLock(ss));
PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
if ((PRUint32)bytes > *length) {
return ssl3_DecodeError(ss);
}
PORT_Memcpy(v, *b, bytes);
PRINT_BUF(60, (ss, "consume bytes:", *b, bytes));
*b += bytes;
*length -= bytes;
return SECSuccess;
}
/* Read up the next "bytes" number of bytes from the (decrypted) input
* stream "b" (which is *length bytes long), and interpret them as an
* integer in network byte order. Sets *num to the received value.
* Reduces *length by bytes. Advances *b by bytes.
*
* On error, an alert has been sent, and a generic error code has been set.
*/
SECStatus
ssl3_ConsumeHandshakeNumber64(sslSocket *ss, PRUint64 *num, PRUint32 bytes,
PRUint8 **b, PRUint32 *length)
{
PRUint8 *buf = *b;
PRUint32 i;
PORT_Assert(ss->opt.noLocks || ssl_HaveRecvBufLock(ss));
PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
*num = 0;
if (bytes > sizeof(*num)) {
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
return SECFailure;
}
if (bytes > *length) {
return ssl3_DecodeError(ss);
}
PRINT_BUF(60, (ss, "consume bytes:", *b, bytes));
for (i = 0; i < bytes; i++) {
*num = (*num << 8) + buf[i];
}
*b += bytes;
*length -= bytes;
return SECSuccess;
}
SECStatus
ssl3_ConsumeHandshakeNumber(sslSocket *ss, PRUint32 *num, PRUint32 bytes,
PRUint8 **b, PRUint32 *length)
{
PRUint64 num64;
SECStatus rv;
PORT_Assert(bytes <= sizeof(*num));
if (bytes > sizeof(*num)) {
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
return SECFailure;
}
rv = ssl3_ConsumeHandshakeNumber64(ss, &num64, bytes, b, length);
if (rv != SECSuccess) {
return SECFailure;
}
*num = num64 & 0xffffffff;
return SECSuccess;
}
/* Read in two values from the incoming decrypted byte stream "b", which is
* *length bytes long. The first value is a number whose size is "bytes"
* bytes long. The second value is a byte-string whose size is the value
* of the first number received. The latter byte-string, and its length,
* is returned in the SECItem i.
*
* Returns SECFailure (-1) on failure.
* On error, an alert has been sent, and a generic error code has been set.
*
* RADICAL CHANGE for NSS 3.11. All callers of this function make copies
* of the data returned in the SECItem *i, so making a copy of it here
* is simply wasteful. So, This function now just sets SECItem *i to
* point to the values in the buffer **b.
*/
SECStatus
ssl3_ConsumeHandshakeVariable(sslSocket *ss, SECItem *i, PRUint32 bytes,
PRUint8 **b, PRUint32 *length)
{
PRUint32 count;
SECStatus rv;
PORT_Assert(bytes <= 3);
i->len = 0;
i->data = NULL;
i->type = siBuffer;
rv = ssl3_ConsumeHandshakeNumber(ss, &count, bytes, b, length);
if (rv != SECSuccess) {
return SECFailure;
}
if (count > 0) {
if (count > *length) {
return ssl3_DecodeError(ss);
}
i->data = *b;
i->len = count;
*b += count;
*length -= count;
}
return SECSuccess;
}
/* ssl3_TLSHashAlgorithmToOID converts a TLS hash identifier into an OID value.
* If the hash is not recognised, SEC_OID_UNKNOWN is returned.
*
* See https://tools.ietf.org/html/rfc5246#section-7.4.1.4.1 */
SECOidTag
ssl3_HashTypeToOID(SSLHashType hashType)
{
switch (hashType) {
case ssl_hash_sha1:
return SEC_OID_SHA1;
case ssl_hash_sha256:
return SEC_OID_SHA256;
case ssl_hash_sha384:
return SEC_OID_SHA384;
case ssl_hash_sha512:
return SEC_OID_SHA512;
default:
break;
}
return SEC_OID_UNKNOWN;
}
SECOidTag
ssl3_AuthTypeToOID(SSLAuthType authType)
{
switch (authType) {
case ssl_auth_rsa_sign:
return SEC_OID_PKCS1_RSA_ENCRYPTION;
case ssl_auth_rsa_pss:
return SEC_OID_PKCS1_RSA_PSS_SIGNATURE;
case ssl_auth_ecdsa:
return SEC_OID_ANSIX962_EC_PUBLIC_KEY;
case ssl_auth_dsa:
return SEC_OID_ANSIX9_DSA_SIGNATURE;
default:
break;
}
/* shouldn't ever get there */
PORT_Assert(0);
return SEC_OID_UNKNOWN;
}
SSLHashType
ssl_SignatureSchemeToHashType(SSLSignatureScheme scheme)
{
switch (scheme) {
case ssl_sig_rsa_pkcs1_sha1:
case ssl_sig_dsa_sha1:
case ssl_sig_ecdsa_sha1:
return ssl_hash_sha1;
case ssl_sig_rsa_pkcs1_sha256:
case ssl_sig_ecdsa_secp256r1_sha256:
case ssl_sig_rsa_pss_rsae_sha256:
case ssl_sig_rsa_pss_pss_sha256:
case ssl_sig_dsa_sha256:
return ssl_hash_sha256;
case ssl_sig_rsa_pkcs1_sha384:
case ssl_sig_ecdsa_secp384r1_sha384:
case ssl_sig_rsa_pss_rsae_sha384:
case ssl_sig_rsa_pss_pss_sha384:
case ssl_sig_dsa_sha384:
return ssl_hash_sha384;
case ssl_sig_rsa_pkcs1_sha512:
case ssl_sig_ecdsa_secp521r1_sha512:
case ssl_sig_rsa_pss_rsae_sha512:
case ssl_sig_rsa_pss_pss_sha512:
case ssl_sig_dsa_sha512:
return ssl_hash_sha512;
case ssl_sig_rsa_pkcs1_sha1md5:
return ssl_hash_none; /* Special for TLS 1.0/1.1. */
case ssl_sig_none:
case ssl_sig_ed25519:
case ssl_sig_ed448:
break;
}
PORT_Assert(0);
return ssl_hash_none;
}
static PRBool
ssl_SignatureSchemeMatchesSpkiOid(SSLSignatureScheme scheme, SECOidTag spkiOid)
{
SECOidTag authOid = ssl3_AuthTypeToOID(ssl_SignatureSchemeToAuthType(scheme));
if (spkiOid == authOid) {
return PR_TRUE;
}
if ((authOid == SEC_OID_PKCS1_RSA_ENCRYPTION) &&
(spkiOid == SEC_OID_X500_RSA_ENCRYPTION)) {
return PR_TRUE;
}
return PR_FALSE;
}
/* Validate that the signature scheme works for the given key type. */
PRBool
ssl_SignatureSchemeValid(SSLSignatureScheme scheme, SECOidTag spkiOid,
PRBool isTls13)
{
if (!ssl_IsSupportedSignatureScheme(scheme)) {
return PR_FALSE;
}
/* if we are purposefully passed SEC_OID_UNKNOWN, it means
* we not checking the scheme against a potential key, so skip
* the call */
if ((spkiOid != SEC_OID_UNKNOWN) &&
!ssl_SignatureSchemeMatchesSpkiOid(scheme, spkiOid)) {
return PR_FALSE;
}
if (isTls13) {
if (ssl_SignatureSchemeToHashType(scheme) == ssl_hash_sha1) {
return PR_FALSE;
}
if (ssl_IsRsaPkcs1SignatureScheme(scheme)) {
return PR_FALSE;
}
if (ssl_IsDsaSignatureScheme(scheme)) {
return PR_FALSE;
}
/* With TLS 1.3, EC keys should have been selected based on calling
* ssl_SignatureSchemeFromSpki(), reject them otherwise. */
return spkiOid != SEC_OID_ANSIX962_EC_PUBLIC_KEY;
}
return PR_TRUE;
}
static SECStatus
ssl_SignatureSchemeFromPssSpki(const CERTSubjectPublicKeyInfo *spki,
SSLSignatureScheme *scheme)
{
SECKEYRSAPSSParams pssParam = { 0 };
PORTCheapArenaPool arena;
SECStatus rv;
/* The key doesn't have parameters, boo. */
if (!spki->algorithm.parameters.len) {
*scheme = ssl_sig_none;
return SECSuccess;
}
PORT_InitCheapArena(&arena, DER_DEFAULT_CHUNKSIZE);
rv = SEC_QuickDERDecodeItem(&arena.arena, &pssParam,
SEC_ASN1_GET(SECKEY_RSAPSSParamsTemplate),
&spki->algorithm.parameters);
if (rv != SECSuccess) {
goto loser;
}
/* Not having hashAlg means SHA-1 and we don't accept that. */
if (!pssParam.hashAlg) {
goto loser;
}
switch (SECOID_GetAlgorithmTag(pssParam.hashAlg)) {
case SEC_OID_SHA256:
*scheme = ssl_sig_rsa_pss_pss_sha256;
break;
case SEC_OID_SHA384:
*scheme = ssl_sig_rsa_pss_pss_sha384;
break;
case SEC_OID_SHA512:
*scheme = ssl_sig_rsa_pss_pss_sha512;
break;
default:
goto loser;
}
PORT_DestroyCheapArena(&arena);
return SECSuccess;
loser:
PORT_DestroyCheapArena(&arena);
PORT_SetError(SSL_ERROR_BAD_CERTIFICATE);
return SECFailure;
}
static SECStatus
ssl_SignatureSchemeFromEcSpki(const CERTSubjectPublicKeyInfo *spki,
SSLSignatureScheme *scheme)
{
const sslNamedGroupDef *group;
SECKEYPublicKey *key;
key = SECKEY_ExtractPublicKey(spki);
if (!key) {
PORT_SetError(SSL_ERROR_BAD_CERTIFICATE);
return SECFailure;
}
group = ssl_ECPubKey2NamedGroup(key);
SECKEY_DestroyPublicKey(key);
if (!group) {
PORT_SetError(SSL_ERROR_BAD_CERTIFICATE);
return SECFailure;
}
switch (group->name) {
case ssl_grp_ec_secp256r1:
*scheme = ssl_sig_ecdsa_secp256r1_sha256;
return SECSuccess;
case ssl_grp_ec_secp384r1:
*scheme = ssl_sig_ecdsa_secp384r1_sha384;
return SECSuccess;
case ssl_grp_ec_secp521r1:
*scheme = ssl_sig_ecdsa_secp521r1_sha512;
return SECSuccess;
default:
break;
}
PORT_SetError(SSL_ERROR_BAD_CERTIFICATE);
return SECFailure;
}
/* Newer signature schemes are designed so that a single SPKI can be used with
* that scheme. This determines that scheme from the SPKI. If the SPKI doesn't
* have a single scheme, |*scheme| is set to ssl_sig_none. */
SECStatus
ssl_SignatureSchemeFromSpki(const CERTSubjectPublicKeyInfo *spki,
PRBool isTls13, SSLSignatureScheme *scheme)
{
SECOidTag spkiOid = SECOID_GetAlgorithmTag(&spki->algorithm);
if (spkiOid == SEC_OID_PKCS1_RSA_PSS_SIGNATURE) {
return ssl_SignatureSchemeFromPssSpki(spki, scheme);
}
/* Only do this lookup for TLS 1.3, where the scheme can be determined from
* the SPKI alone because the ECDSA key size determines the hash. Earlier
* TLS versions allow the same EC key to be used with different hashes. */
if (isTls13 && spkiOid == SEC_OID_ANSIX962_EC_PUBLIC_KEY) {
return ssl_SignatureSchemeFromEcSpki(spki, scheme);
}
*scheme = ssl_sig_none;
return SECSuccess;
}
/* Check that a signature scheme is enabled by configuration. */
PRBool
ssl_SignatureSchemeEnabled(const sslSocket *ss, SSLSignatureScheme scheme)
{
unsigned int i;
for (i = 0; i < ss->ssl3.signatureSchemeCount; ++i) {
if (scheme == ss->ssl3.signatureSchemes[i]) {
return PR_TRUE;
}
}
return PR_FALSE;
}
static PRBool
ssl_SignatureKeyMatchesSpkiOid(const ssl3KEADef *keaDef, SECOidTag spkiOid)
{
switch (spkiOid) {
case SEC_OID_X500_RSA_ENCRYPTION:
case SEC_OID_PKCS1_RSA_ENCRYPTION:
case SEC_OID_PKCS1_RSA_PSS_SIGNATURE:
return keaDef->signKeyType == rsaKey;
case SEC_OID_ANSIX9_DSA_SIGNATURE:
return keaDef->signKeyType == dsaKey;
case SEC_OID_ANSIX962_EC_PUBLIC_KEY:
return keaDef->signKeyType == ecKey;
default:
break;
}
return PR_FALSE;
}
/* ssl3_CheckSignatureSchemeConsistency checks that the signature algorithm
* identifier in |scheme| is consistent with the public key in |spki|. It also
* checks the hash algorithm against the configured signature algorithms. If
* all the tests pass, SECSuccess is returned. Otherwise, PORT_SetError is
* called and SECFailure is returned. */
SECStatus
ssl_CheckSignatureSchemeConsistency(sslSocket *ss, SSLSignatureScheme scheme,
CERTSubjectPublicKeyInfo *spki)
{
SSLSignatureScheme spkiScheme;
PRBool isTLS13 = ss->version == SSL_LIBRARY_VERSION_TLS_1_3;
SECOidTag spkiOid;
SECStatus rv;
rv = ssl_SignatureSchemeFromSpki(spki, isTLS13, &spkiScheme);
if (rv != SECSuccess) {
return SECFailure;
}
if (spkiScheme != ssl_sig_none) {
/* The SPKI in the certificate can only be used for a single scheme. */
if (spkiScheme != scheme ||
!ssl_SignatureSchemeEnabled(ss, scheme)) {
PORT_SetError(SSL_ERROR_INCORRECT_SIGNATURE_ALGORITHM);
return SECFailure;
}
return SECSuccess;
}
spkiOid = SECOID_GetAlgorithmTag(&spki->algorithm);
/* If we're a client, check that the signature algorithm matches the signing
* key type of the cipher suite. */
if (!isTLS13 && !ss->sec.isServer) {
if (!ssl_SignatureKeyMatchesSpkiOid(ss->ssl3.hs.kea_def, spkiOid)) {
PORT_SetError(SSL_ERROR_INCORRECT_SIGNATURE_ALGORITHM);
return SECFailure;
}
}
/* Verify that the signature scheme matches the signing key. */
if ((spkiOid == SEC_OID_UNKNOWN) ||
!ssl_SignatureSchemeValid(scheme, spkiOid, isTLS13)) {
PORT_SetError(SSL_ERROR_INCORRECT_SIGNATURE_ALGORITHM);
return SECFailure;
}
if (!ssl_SignatureSchemeEnabled(ss, scheme)) {
PORT_SetError(SSL_ERROR_UNSUPPORTED_SIGNATURE_ALGORITHM);
return SECFailure;
}
return SECSuccess;
}
PRBool
ssl_IsSupportedSignatureScheme(SSLSignatureScheme scheme)
{
switch (scheme) {
case ssl_sig_rsa_pkcs1_sha1:
case ssl_sig_rsa_pkcs1_sha256:
case ssl_sig_rsa_pkcs1_sha384:
case ssl_sig_rsa_pkcs1_sha512:
case ssl_sig_rsa_pss_rsae_sha256:
case ssl_sig_rsa_pss_rsae_sha384:
case ssl_sig_rsa_pss_rsae_sha512:
case ssl_sig_rsa_pss_pss_sha256:
case ssl_sig_rsa_pss_pss_sha384:
case ssl_sig_rsa_pss_pss_sha512:
case ssl_sig_ecdsa_secp256r1_sha256:
case ssl_sig_ecdsa_secp384r1_sha384:
case ssl_sig_ecdsa_secp521r1_sha512:
case ssl_sig_dsa_sha1:
case ssl_sig_dsa_sha256:
case ssl_sig_dsa_sha384:
case ssl_sig_dsa_sha512:
case ssl_sig_ecdsa_sha1:
return ssl_SchemePolicyOK(scheme, kSSLSigSchemePolicy);
break;
case ssl_sig_rsa_pkcs1_sha1md5:
case ssl_sig_none:
case ssl_sig_ed25519:
case ssl_sig_ed448:
return PR_FALSE;
}
return PR_FALSE;
}
PRBool
ssl_IsRsaPssSignatureScheme(SSLSignatureScheme scheme)
{
switch (scheme) {
case ssl_sig_rsa_pss_rsae_sha256:
case ssl_sig_rsa_pss_rsae_sha384:
case ssl_sig_rsa_pss_rsae_sha512:
case ssl_sig_rsa_pss_pss_sha256:
case ssl_sig_rsa_pss_pss_sha384:
case ssl_sig_rsa_pss_pss_sha512:
return PR_TRUE;
default:
return PR_FALSE;
}
return PR_FALSE;
}
PRBool
ssl_IsRsaeSignatureScheme(SSLSignatureScheme scheme)
{
switch (scheme) {
case ssl_sig_rsa_pss_rsae_sha256:
case ssl_sig_rsa_pss_rsae_sha384:
case ssl_sig_rsa_pss_rsae_sha512:
return PR_TRUE;
default:
return PR_FALSE;
}
return PR_FALSE;
}
PRBool
ssl_IsRsaPkcs1SignatureScheme(SSLSignatureScheme scheme)
{
switch (scheme) {
case ssl_sig_rsa_pkcs1_sha256:
case ssl_sig_rsa_pkcs1_sha384:
case ssl_sig_rsa_pkcs1_sha512:
case ssl_sig_rsa_pkcs1_sha1:
return PR_TRUE;
default:
return PR_FALSE;
}
return PR_FALSE;
}
PRBool
ssl_IsDsaSignatureScheme(SSLSignatureScheme scheme)
{
switch (scheme) {
case ssl_sig_dsa_sha256:
case ssl_sig_dsa_sha384:
case ssl_sig_dsa_sha512:
case ssl_sig_dsa_sha1:
return PR_TRUE;
default:
return PR_FALSE;
}
return PR_FALSE;
}
SSLAuthType
ssl_SignatureSchemeToAuthType(SSLSignatureScheme scheme)
{
switch (scheme) {
case ssl_sig_rsa_pkcs1_sha1:
case ssl_sig_rsa_pkcs1_sha1md5:
case ssl_sig_rsa_pkcs1_sha256:
case ssl_sig_rsa_pkcs1_sha384:
case ssl_sig_rsa_pkcs1_sha512:
/* We report based on the key type for PSS signatures. */
case ssl_sig_rsa_pss_rsae_sha256:
case ssl_sig_rsa_pss_rsae_sha384:
case ssl_sig_rsa_pss_rsae_sha512:
return ssl_auth_rsa_sign;
case ssl_sig_rsa_pss_pss_sha256:
case ssl_sig_rsa_pss_pss_sha384:
case ssl_sig_rsa_pss_pss_sha512:
return ssl_auth_rsa_pss;
case ssl_sig_ecdsa_secp256r1_sha256:
case ssl_sig_ecdsa_secp384r1_sha384:
case ssl_sig_ecdsa_secp521r1_sha512:
case ssl_sig_ecdsa_sha1:
return ssl_auth_ecdsa;
case ssl_sig_dsa_sha1:
case ssl_sig_dsa_sha256:
case ssl_sig_dsa_sha384:
case ssl_sig_dsa_sha512:
return ssl_auth_dsa;
default:
PORT_Assert(0);
}
return ssl_auth_null;
}
/* ssl_ConsumeSignatureScheme reads a SSLSignatureScheme (formerly
* SignatureAndHashAlgorithm) structure from |b| and puts the resulting value
* into |out|. |b| and |length| are updated accordingly.
*
* See https://tools.ietf.org/html/rfc5246#section-7.4.1.4.1 */
SECStatus
ssl_ConsumeSignatureScheme(sslSocket *ss, PRUint8 **b,
PRUint32 *length, SSLSignatureScheme *out)
{
PRUint32 tmp;
SECStatus rv;
rv = ssl3_ConsumeHandshakeNumber(ss, &tmp, 2, b, length);
if (rv != SECSuccess) {
return SECFailure; /* Alert sent, Error code set already. */
}
if (!ssl_IsSupportedSignatureScheme((SSLSignatureScheme)tmp)) {
SSL3_SendAlert(ss, alert_fatal, illegal_parameter);
PORT_SetError(SSL_ERROR_UNSUPPORTED_SIGNATURE_ALGORITHM);
return SECFailure;
}
*out = (SSLSignatureScheme)tmp;
return SECSuccess;
}
/**************************************************************************
* end of Consume Handshake functions.
**************************************************************************/
static SECStatus
ssl3_ComputeHandshakeHash(unsigned char *buf, unsigned int len,
SSLHashType hashAlg, SSL3Hashes *hashes)
{
SECStatus rv = SECFailure;
PK11Context *hashContext = PK11_CreateDigestContext(
ssl3_HashTypeToOID(hashAlg));
if (!hashContext) {
return rv;
}
rv = PK11_DigestBegin(hashContext);
if (rv == SECSuccess) {
rv = PK11_DigestOp(hashContext, buf, len);
}
if (rv == SECSuccess) {
rv = PK11_DigestFinal(hashContext, hashes->u.raw, &hashes->len,
sizeof(hashes->u.raw));
}
if (rv == SECSuccess) {
hashes->hashAlg = hashAlg;
}
PK11_DestroyContext(hashContext, PR_TRUE);
return rv;
}
/* Extract the hashes of handshake messages to this point.
* Called from ssl3_SendCertificateVerify
* ssl3_SendFinished
* ssl3_HandleHandshakeMessage
*
* Caller must hold the SSL3HandshakeLock.
* Caller must hold a read or write lock on the Spec R/W lock.
* (There is presently no way to assert on a Read lock.)
*/
SECStatus
ssl3_ComputeHandshakeHashes(sslSocket *ss,
ssl3CipherSpec *spec, /* uses ->master_secret */
SSL3Hashes *hashes, /* output goes here. */
PRUint32 sender)
{
SECStatus rv = SECSuccess;
PRBool isTLS = (PRBool)(spec->version > SSL_LIBRARY_VERSION_3_0);
unsigned int outLength;
PRUint8 md5_inner[MAX_MAC_LENGTH];
PRUint8 sha_inner[MAX_MAC_LENGTH];
PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
if (ss->ssl3.hs.hashType == handshake_hash_unknown) {
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
return SECFailure;
}
hashes->hashAlg = ssl_hash_none;
if (ss->ssl3.hs.hashType == handshake_hash_single) {
PK11Context *h;
unsigned int stateLen;
unsigned char stackBuf[1024];
unsigned char *stateBuf = NULL;
h = ss->ssl3.hs.sha;
stateBuf = PK11_SaveContextAlloc(h, stackBuf,
sizeof(stackBuf), &stateLen);
if (stateBuf == NULL) {
ssl_MapLowLevelError(SSL_ERROR_DIGEST_FAILURE);
rv = SECFailure;
goto tls12_loser;
}
rv |= PK11_DigestFinal(h, hashes->u.raw, &hashes->len,
sizeof(hashes->u.raw));
if (rv != SECSuccess) {
ssl_MapLowLevelError(SSL_ERROR_DIGEST_FAILURE);
rv = SECFailure;
goto tls12_loser;
}
hashes->hashAlg = ssl3_GetSuitePrfHash(ss);
tls12_loser:
if (stateBuf) {
if (PK11_RestoreContext(h, stateBuf, stateLen) != SECSuccess) {
ssl_MapLowLevelError(SSL_ERROR_DIGEST_FAILURE);
rv = SECFailure;
}
if (stateBuf != stackBuf) {
PORT_ZFree(stateBuf, stateLen);
}
}
} else if (ss->ssl3.hs.hashType == handshake_hash_record) {
rv = ssl3_ComputeHandshakeHash(ss->ssl3.hs.messages.buf,
ss->ssl3.hs.messages.len,
ssl3_GetSuitePrfHash(ss),
hashes);
} else {
PK11Context *md5;
PK11Context *sha = NULL;
unsigned char *md5StateBuf = NULL;
unsigned char *shaStateBuf = NULL;
unsigned int md5StateLen, shaStateLen;
unsigned char md5StackBuf[256];
unsigned char shaStackBuf[512];
const int md5Pad = ssl_GetMacDefByAlg(ssl_mac_md5)->pad_size;
const int shaPad = ssl_GetMacDefByAlg(ssl_mac_sha)->pad_size;
md5StateBuf = PK11_SaveContextAlloc(ss->ssl3.hs.md5, md5StackBuf,
sizeof md5StackBuf, &md5StateLen);
if (md5StateBuf == NULL) {
ssl_MapLowLevelError(SSL_ERROR_MD5_DIGEST_FAILURE);
rv = SECFailure;
goto loser;
}
md5 = ss->ssl3.hs.md5;
shaStateBuf = PK11_SaveContextAlloc(ss->ssl3.hs.sha, shaStackBuf,
sizeof shaStackBuf, &shaStateLen);
if (shaStateBuf == NULL) {
ssl_MapLowLevelError(SSL_ERROR_SHA_DIGEST_FAILURE);
rv = SECFailure;
goto loser;
}
sha = ss->ssl3.hs.sha;
if (!isTLS) {
/* compute hashes for SSL3. */
unsigned char s[4];
if (!spec->masterSecret) {
PORT_SetError(SSL_ERROR_RX_UNEXPECTED_HANDSHAKE);
rv = SECFailure;
goto loser;
}
s[0] = (unsigned char)(sender >> 24);
s[1] = (unsigned char)(sender >> 16);
s[2] = (unsigned char)(sender >> 8);
s[3] = (unsigned char)sender;
if (sender != 0) {
rv |= PK11_DigestOp(md5, s, 4);
PRINT_BUF(95, (NULL, "MD5 inner: sender", s, 4));
}
PRINT_BUF(95, (NULL, "MD5 inner: MAC Pad 1", mac_pad_1, md5Pad));
rv |= PK11_DigestKey(md5, spec->masterSecret);
rv |= PK11_DigestOp(md5, mac_pad_1, md5Pad);
rv |= PK11_DigestFinal(md5, md5_inner, &outLength, MD5_LENGTH);
PORT_Assert(rv != SECSuccess || outLength == MD5_LENGTH);
if (rv != SECSuccess) {
ssl_MapLowLevelError(SSL_ERROR_MD5_DIGEST_FAILURE);
rv = SECFailure;
goto loser;
}
PRINT_BUF(95, (NULL, "MD5 inner: result", md5_inner, outLength));
if (sender != 0) {
rv |= PK11_DigestOp(sha, s, 4);
PRINT_BUF(95, (NULL, "SHA inner: sender", s, 4));
}
PRINT_BUF(95, (NULL, "SHA inner: MAC Pad 1", mac_pad_1, shaPad));
rv |= PK11_DigestKey(sha, spec->masterSecret);
rv |= PK11_DigestOp(sha, mac_pad_1, shaPad);
rv |= PK11_DigestFinal(sha, sha_inner, &outLength, SHA1_LENGTH);
PORT_Assert(rv != SECSuccess || outLength == SHA1_LENGTH);
if (rv != SECSuccess) {
ssl_MapLowLevelError(SSL_ERROR_SHA_DIGEST_FAILURE);
rv = SECFailure;
goto loser;
}
PRINT_BUF(95, (NULL, "SHA inner: result", sha_inner, outLength));
PRINT_BUF(95, (NULL, "MD5 outer: MAC Pad 2", mac_pad_2, md5Pad));
PRINT_BUF(95, (NULL, "MD5 outer: MD5 inner", md5_inner, MD5_LENGTH));
rv |= PK11_DigestBegin(md5);
rv |= PK11_DigestKey(md5, spec->masterSecret);
rv |= PK11_DigestOp(md5, mac_pad_2, md5Pad);
rv |= PK11_DigestOp(md5, md5_inner, MD5_LENGTH);
}
rv |= PK11_DigestFinal(md5, hashes->u.s.md5, &outLength, MD5_LENGTH);
PORT_Assert(rv != SECSuccess || outLength == MD5_LENGTH);
if (rv != SECSuccess) {
ssl_MapLowLevelError(SSL_ERROR_MD5_DIGEST_FAILURE);
rv = SECFailure;
goto loser;
}
PRINT_BUF(60, (NULL, "MD5 outer: result", hashes->u.s.md5, MD5_LENGTH));
if (!isTLS) {
PRINT_BUF(95, (NULL, "SHA outer: MAC Pad 2", mac_pad_2, shaPad));
PRINT_BUF(95, (NULL, "SHA outer: SHA inner", sha_inner, SHA1_LENGTH));
rv |= PK11_DigestBegin(sha);
rv |= PK11_DigestKey(sha, spec->masterSecret);
rv |= PK11_DigestOp(sha, mac_pad_2, shaPad);
rv |= PK11_DigestOp(sha, sha_inner, SHA1_LENGTH);
}
rv |= PK11_DigestFinal(sha, hashes->u.s.sha, &outLength, SHA1_LENGTH);
PORT_Assert(rv != SECSuccess || outLength == SHA1_LENGTH);
if (rv != SECSuccess) {
ssl_MapLowLevelError(SSL_ERROR_SHA_DIGEST_FAILURE);
rv = SECFailure;
goto loser;
}
PRINT_BUF(60, (NULL, "SHA outer: result", hashes->u.s.sha, SHA1_LENGTH));
hashes->len = MD5_LENGTH + SHA1_LENGTH;
loser:
if (md5StateBuf) {
if (PK11_RestoreContext(ss->ssl3.hs.md5, md5StateBuf, md5StateLen) !=
SECSuccess) {
ssl_MapLowLevelError(SSL_ERROR_MD5_DIGEST_FAILURE);
rv = SECFailure;
}
if (md5StateBuf != md5StackBuf) {
PORT_ZFree(md5StateBuf, md5StateLen);
}
}
if (shaStateBuf) {
if (PK11_RestoreContext(ss->ssl3.hs.sha, shaStateBuf, shaStateLen) !=
SECSuccess) {
ssl_MapLowLevelError(SSL_ERROR_SHA_DIGEST_FAILURE);
rv = SECFailure;
}
if (shaStateBuf != shaStackBuf) {
PORT_ZFree(shaStateBuf, shaStateLen);
}
}
}
return rv;
}
/**************************************************************************
* end of Handshake Hash functions.
* Begin Send and Handle functions for handshakes.
**************************************************************************/
#ifdef TRACE
#define CHTYPE(t) \
case client_hello_##t: \
return #t;
static const char *
ssl_ClientHelloTypeName(sslClientHelloType type)
{
switch (type) {
CHTYPE(initial);
CHTYPE(retry);
CHTYPE(retransmit); /* DTLS only */
CHTYPE(renegotiation); /* TLS <= 1.2 only */
}
PORT_Assert(0);
return NULL;
}
#undef CHTYPE
#endif
PR_STATIC_ASSERT(SSL3_SESSIONID_BYTES == SSL3_RANDOM_LENGTH);
static void
ssl_MakeFakeSid(sslSocket *ss, PRUint8 *buf)
{
PRUint8 x = 0x5a;
int i;
for (i = 0; i < SSL3_SESSIONID_BYTES; ++i) {
x += ss->ssl3.hs.client_random[i];
buf[i] = x;
}
}
/* Set the version fields of the cipher spec for a ClientHello. */
static void
ssl_SetClientHelloSpecVersion(sslSocket *ss, ssl3CipherSpec *spec)
{
ssl_GetSpecWriteLock(ss);
PORT_Assert(spec->cipherDef->cipher == cipher_null);
/* This is - a best guess - but it doesn't matter here. */
spec->version = ss->vrange.max;
if (IS_DTLS(ss)) {
spec->recordVersion = SSL_LIBRARY_VERSION_DTLS_1_0_WIRE;
} else {
/* For new connections, cap the record layer version number of TLS
* ClientHello to { 3, 1 } (TLS 1.0). Some TLS 1.0 servers (which seem
* to use F5 BIG-IP) ignore ClientHello.client_version and use the
* record layer version number (TLSPlaintext.version) instead when
* negotiating protocol versions. In addition, if the record layer
* version number of ClientHello is { 3, 2 } (TLS 1.1) or higher, these
* servers reset the TCP connections. Lastly, some F5 BIG-IP servers
* hang if a record containing a ClientHello has a version greater than
* { 3, 1 } and a length greater than 255. Set this flag to work around
* such servers.
*
* The final version is set when a version is negotiated.
*/
spec->recordVersion = PR_MIN(SSL_LIBRARY_VERSION_TLS_1_0,
ss->vrange.max);
}
ssl_ReleaseSpecWriteLock(ss);
}
SECStatus
ssl3_InsertChHeaderSize(const sslSocket *ss, sslBuffer *preamble, const sslBuffer *extensions)
{
SECStatus rv;
unsigned int msgLen = preamble->len;
msgLen += extensions->len ? (2 + extensions->len) : 0;
unsigned int headerLen = IS_DTLS(ss) ? 12 : 4;
/* Record the message length. */
rv = sslBuffer_InsertNumber(preamble, 1, msgLen - headerLen, 3);
if (rv != SECSuccess) {
return SECFailure; /* code set */
}
if (IS_DTLS(ss)) {
/* Record the (unfragmented) fragment length. */
unsigned int offset = 1 /* ch */ + 3 /* len */ +
2 /* seq */ + 3 /* fragment offset */;
rv = sslBuffer_InsertNumber(preamble, offset, msgLen - headerLen, 3);
if (rv != SECSuccess) {
return SECFailure; /* code set */
}
}
return SECSuccess;
}
static SECStatus
ssl3_AppendCipherSuites(sslSocket *ss, PRBool fallbackSCSV, sslBuffer *buf)
{
SECStatus rv;
unsigned int offset;
unsigned int i;
unsigned int saveLen;
rv = sslBuffer_Skip(buf, 2, &offset);
if (rv != SECSuccess) {
return SECFailure;
}
if (ss->ssl3.hs.sendingSCSV) {
/* Add the actual SCSV */
rv = sslBuffer_AppendNumber(buf, TLS_EMPTY_RENEGOTIATION_INFO_SCSV,
sizeof(ssl3CipherSuite));
if (rv != SECSuccess) {
return SECFailure;
}
}
if (fallbackSCSV) {
rv = sslBuffer_AppendNumber(buf, TLS_FALLBACK_SCSV,
sizeof(ssl3CipherSuite));
if (rv != SECSuccess) {
return SECFailure;
}
}
saveLen = SSL_BUFFER_LEN(buf);
/* CipherSuites are appended to Hello message here */
for (i = 0; i < ssl_V3_SUITES_IMPLEMENTED; i++) {
ssl3CipherSuiteCfg *suite = &ss->cipherSuites[i];
if (ssl3_config_match(suite, ss->ssl3.policy, &ss->vrange, ss)) {
rv = sslBuffer_AppendNumber(buf, suite->cipher_suite,
sizeof(ssl3CipherSuite));
if (rv != SECSuccess) {
return SECFailure;
}
}
}
if (SSL_ALL_VERSIONS_DISABLED(&ss->vrange) ||
(SSL_BUFFER_LEN(buf) - saveLen) == 0) {
PORT_SetError(SSL_ERROR_SSL_DISABLED);
return SECFailure;
}
return sslBuffer_InsertLength(buf, offset, 2);
}
SECStatus
ssl3_CreateClientHelloPreamble(sslSocket *ss, const sslSessionID *sid,
PRBool realSid, PRUint16 version, PRBool isEchInner,
const sslBuffer *extensions, sslBuffer *preamble)
{
SECStatus rv;
sslBuffer constructed = SSL_BUFFER_EMPTY;
const PRUint8 *client_random = isEchInner ? ss->ssl3.hs.client_inner_random : ss->ssl3.hs.client_random;
PORT_Assert(sid);
PRBool fallbackSCSV = ss->opt.enableFallbackSCSV && !isEchInner &&
(!realSid || version < sid->version);
rv = sslBuffer_AppendNumber(&constructed, ssl_hs_client_hello, 1);
if (rv != SECSuccess) {
goto loser;
}
rv = sslBuffer_Skip(&constructed, 3, NULL);
if (rv != SECSuccess) {
goto loser;
}
if (IS_DTLS(ss)) {
/* Note that we make an unfragmented message here. We fragment in the
* transmission code, if necessary */
rv = sslBuffer_AppendNumber(&constructed, ss->ssl3.hs.sendMessageSeq, 2);
if (rv != SECSuccess) {
goto loser;
}
ss->ssl3.hs.sendMessageSeq++;
/* 0 is the fragment offset, because it's not fragmented yet */
rv = sslBuffer_AppendNumber(&constructed, 0, 3);
if (rv != SECSuccess) {
goto loser;
}
/* Fragment length -- set to the packet length because not fragmented */
rv = sslBuffer_Skip(&constructed, 3, NULL);
if (rv != SECSuccess) {
goto loser;
}
}
if (ss->firstHsDone) {
/* The client hello version must stay unchanged to work around
* the Windows SChannel bug described in ssl3_SendClientHello. */
PORT_Assert(version == ss->clientHelloVersion);
}
ss->clientHelloVersion = PR_MIN(version, SSL_LIBRARY_VERSION_TLS_1_2);
if (IS_DTLS(ss)) {
PRUint16 dtlsVersion = dtls_TLSVersionToDTLSVersion(ss->clientHelloVersion);
rv = sslBuffer_AppendNumber(&constructed, dtlsVersion, 2);
} else {
rv = sslBuffer_AppendNumber(&constructed, ss->clientHelloVersion, 2);
}
if (rv != SECSuccess) {
goto loser;
}
rv = sslBuffer_Append(&constructed, client_random, SSL3_RANDOM_LENGTH);
if (rv != SECSuccess) {
goto loser;
}
if (sid->version < SSL_LIBRARY_VERSION_TLS_1_3 && !isEchInner) {
rv = sslBuffer_AppendVariable(&constructed, sid->u.ssl3.sessionID,
sid->u.ssl3.sessionIDLength, 1);
} else if (ss->opt.enableTls13CompatMode && !IS_DTLS(ss)) {
/* We're faking session resumption, so rather than create new
* randomness, just mix up the client random a little. */
PRUint8 buf[SSL3_SESSIONID_BYTES];
ssl_MakeFakeSid(ss, buf);
rv = sslBuffer_AppendVariable(&constructed, buf, SSL3_SESSIONID_BYTES, 1);
} else {
rv = sslBuffer_AppendNumber(&constructed, 0, 1);
}
if (rv != SECSuccess) {
goto loser;
}
if (IS_DTLS(ss)) {
/* This cookieLen applies to the cookie that appears in the DTLS
* ClientHello, which isn't used in DTLS 1.3. */
rv = sslBuffer_AppendVariable(&constructed, ss->ssl3.hs.cookie.data,
ss->ssl3.hs.helloRetry ? 0 : ss->ssl3.hs.cookie.len,
1);
if (rv != SECSuccess) {
goto loser;
}
}
rv = ssl3_AppendCipherSuites(ss, fallbackSCSV, &constructed);
if (rv != SECSuccess) {
goto loser;
}
/* Compression methods: count is always 1, null compression. */
rv = sslBuffer_AppendNumber(&constructed, 1, 1);
if (rv != SECSuccess) {
goto loser;
}
rv = sslBuffer_AppendNumber(&constructed, ssl_compression_null, 1);
if (rv != SECSuccess) {
goto loser;
}
rv = ssl3_InsertChHeaderSize(ss, &constructed, extensions);
if (rv != SECSuccess) {
goto loser;
}
*preamble = constructed;
return SECSuccess;
loser:
sslBuffer_Clear(&constructed);
return SECFailure;
}
/* Called from ssl3_HandleHelloRequest(),
* ssl3_RedoHandshake()
* ssl_BeginClientHandshake (when resuming ssl3 session)
* dtls_HandleHelloVerifyRequest(with resending=PR_TRUE)
*
* The |type| argument indicates what is going on here:
* - client_hello_initial is set for the very first ClientHello
* - client_hello_retry indicates that this is a second attempt after receiving
* a HelloRetryRequest (in TLS 1.3)
* - client_hello_retransmit is used in DTLS when resending
* - client_hello_renegotiation is used to renegotiate (in TLS <1.3)
*/
SECStatus
ssl3_SendClientHello(sslSocket *ss, sslClientHelloType type)
{
sslSessionID *sid;
SECStatus rv;
PRBool isTLS = PR_FALSE;
PRBool requestingResume = PR_FALSE;
PRBool unlockNeeded = PR_FALSE;
sslBuffer extensionBuf = SSL_BUFFER_EMPTY;
PRUint16 version = ss->vrange.max;
PRInt32 flags;
sslBuffer chBuf = SSL_BUFFER_EMPTY;
SSL_TRC(3, ("%d: SSL3[%d]: send %s ClientHello handshake", SSL_GETPID(),
ss->fd, ssl_ClientHelloTypeName(type)));
PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
PORT_Assert(ss->opt.noLocks || ssl_HaveXmitBufLock(ss));
/* shouldn't get here if SSL3 is disabled, but ... */
if (SSL_ALL_VERSIONS_DISABLED(&ss->vrange)) {
PR_NOT_REACHED("No versions of SSL 3.0 or later are enabled");
PORT_SetError(SSL_ERROR_SSL_DISABLED);
return SECFailure;
}
/* If we are responding to a HelloRetryRequest, don't reinitialize. We need
* to maintain the handshake hashes. */
if (!ss->ssl3.hs.helloRetry) {
ssl3_RestartHandshakeHashes(ss);
}
PORT_Assert(!ss->ssl3.hs.helloRetry || type == client_hello_retry);
if (type == client_hello_initial) {
ssl_SetClientHelloSpecVersion(ss, ss->ssl3.cwSpec);
}
/* These must be reset every handshake. */
ssl3_ResetExtensionData(&ss->xtnData, ss);
ss->ssl3.hs.sendingSCSV = PR_FALSE;
ss->ssl3.hs.preliminaryInfo = 0;
PORT_Assert(IS_DTLS(ss) || type != client_hello_retransmit);
SECITEM_FreeItem(&ss->ssl3.hs.newSessionTicket.ticket, PR_FALSE);
ss->ssl3.hs.receivedNewSessionTicket = PR_FALSE;
/* How many suites does our PKCS11 support (regardless of policy)? */
if (ssl3_config_match_init(ss) == 0) {
return SECFailure; /* ssl3_config_match_init has set error code. */
}
/*
* During a renegotiation, ss->clientHelloVersion will be used again to
* work around a Windows SChannel bug. Ensure that it is still enabled.
*/
if (ss->firstHsDone) {
PORT_Assert(type != client_hello_initial);
if (SSL_ALL_VERSIONS_DISABLED(&ss->vrange)) {
PORT_SetError(SSL_ERROR_SSL_DISABLED);
return SECFailure;
}
if (ss->clientHelloVersion < ss->vrange.min ||
ss->clientHelloVersion > ss->vrange.max) {
PORT_SetError(SSL_ERROR_NO_CYPHER_OVERLAP);
return SECFailure;
}
}
/* Check if we have a ss->sec.ci.sid.
* Check that it's not expired.
* If we have an sid and it comes from an external cache, we use it. */
if (ss->sec.ci.sid && ss->sec.ci.sid->cached == in_external_cache) {
PORT_Assert(!ss->sec.isServer);
sid = ssl_ReferenceSID(ss->sec.ci.sid);
SSL_TRC(3, ("%d: SSL3[%d]: using external resumption token in ClientHello",
SSL_GETPID(), ss->fd));
} else if (ss->sec.ci.sid && ss->statelessResume && type == client_hello_retry) {
/* If we are sending a second ClientHello, reuse the same SID
* as the original one. */
sid = ssl_ReferenceSID(ss->sec.ci.sid);
} else if (!ss->opt.noCache) {
/* We ignore ss->sec.ci.sid here, and use ssl_Lookup because Lookup
* handles expired entries and other details.
* XXX If we've been called from ssl_BeginClientHandshake, then
* this lookup is duplicative and wasteful.
*/
sid = ssl_LookupSID(ssl_Time(ss), &ss->sec.ci.peer,
ss->sec.ci.port, ss->peerID, ss->url);
} else {
sid = NULL;
}
/* We can't resume based on a different token. If the sid exists,
* make sure the token that holds the master secret still exists ...
* If we previously did client-auth, make sure that the token that holds
* the private key still exists, is logged in, hasn't been removed, etc.
*/
if (sid) {
PRBool sidOK = PR_TRUE;
if (sid->version >= SSL_LIBRARY_VERSION_TLS_1_3) {
if (!tls13_ResumptionCompatible(ss, sid->u.ssl3.cipherSuite)) {
sidOK = PR_FALSE;
}
} else {
/* Check that the cipher suite we need is enabled. */
const ssl3CipherSuiteCfg *suite =
ssl_LookupCipherSuiteCfg(sid->u.ssl3.cipherSuite,
ss->cipherSuites);
SSLVersionRange vrange = { sid->version, sid->version };
if (!suite || !ssl3_config_match(suite, ss->ssl3.policy, &vrange, ss)) {
sidOK = PR_FALSE;
}
}
/* Check that we can recover the master secret. */
if (sidOK) {
PK11SlotInfo *slot = NULL;
if (sid->u.ssl3.masterValid) {
slot = SECMOD_LookupSlot(sid->u.ssl3.masterModuleID,
sid->u.ssl3.masterSlotID);
}
if (slot == NULL) {
sidOK = PR_FALSE;
} else {
PK11SymKey *wrapKey = NULL;
if (!PK11_IsPresent(slot) ||
((wrapKey = PK11_GetWrapKey(slot,
sid->u.ssl3.masterWrapIndex,
sid->u.ssl3.masterWrapMech,
sid->u.ssl3.masterWrapSeries,
ss->pkcs11PinArg)) == NULL)) {
sidOK = PR_FALSE;
}
if (wrapKey)
PK11_FreeSymKey(wrapKey);
PK11_FreeSlot(slot);
slot = NULL;
}
}
/* If we previously did client-auth, make sure that the token that
** holds the private key still exists, is logged in, hasn't been
** removed, etc.
*/
if (sidOK && !ssl3_ClientAuthTokenPresent(sid)) {
sidOK = PR_FALSE;
}
if (sidOK) {
/* Set version based on the sid. */
if (ss->firstHsDone) {
/*
* Windows SChannel compares the client_version inside the RSA
* EncryptedPreMasterSecret of a renegotiation with the
* client_version of the initial ClientHello rather than the
* ClientHello in the renegotiation. To work around this bug, we
* continue to use the client_version used in the initial
* ClientHello when renegotiating.
*
* The client_version of the initial ClientHello is still
* available in ss->clientHelloVersion. Ensure that
* sid->version is bounded within
* [ss->vrange.min, ss->clientHelloVersion], otherwise we
* can't use sid.
*/
if (sid->version >= ss->vrange.min &&
sid->version <= ss->clientHelloVersion) {
version = ss->clientHelloVersion;
} else {
sidOK = PR_FALSE;
}
} else {
/*
* Check sid->version is OK first.
* Previously, we would cap the version based on sid->version,
* but that prevents negotiation of a higher version if the
* previous session was reduced (e.g., with version fallback)
*/
if (sid->version < ss->vrange.min ||
sid->version > ss->vrange.max) {
sidOK = PR_FALSE;
}
}
}
if (!sidOK) {
SSL_AtomicIncrementLong(&ssl3stats.sch_sid_cache_not_ok);
ssl_UncacheSessionID(ss);
ssl_FreeSID(sid);
sid = NULL;
}
}
if (sid) {
requestingResume = PR_TRUE;
SSL_AtomicIncrementLong(&ssl3stats.sch_sid_cache_hits);
PRINT_BUF(4, (ss, "client, found session-id:", sid->u.ssl3.sessionID,
sid->u.ssl3.sessionIDLength));
ss->ssl3.policy = sid->u.ssl3.policy;
} else {
SSL_AtomicIncrementLong(&ssl3stats.sch_sid_cache_misses);
/*
* Windows SChannel compares the client_version inside the RSA
* EncryptedPreMasterSecret of a renegotiation with the
* client_version of the initial ClientHello rather than the
* ClientHello in the renegotiation. To work around this bug, we
* continue to use the client_version used in the initial
* ClientHello when renegotiating.
*/
if (ss->firstHsDone) {
version = ss->clientHelloVersion;
}
sid = ssl3_NewSessionID(ss, PR_FALSE);
if (!sid) {
return SECFailure; /* memory error is set */
}
/* ss->version isn't set yet, but the sid needs a sane value. */
sid->version = version;
}
isTLS = (version > SSL_LIBRARY_VERSION_3_0);
ssl_GetSpecWriteLock(ss);
if (ss->ssl3.cwSpec->macDef->mac == ssl_mac_null) {
/* SSL records are not being MACed. */
ss->ssl3.cwSpec->version = version;
}
ssl_ReleaseSpecWriteLock(ss);
ssl_FreeSID(ss->sec.ci.sid); /* release the old sid */
ss->sec.ci.sid = sid;
/* HACK for SCSV in SSL 3.0. On initial handshake, prepend SCSV,
* only if TLS is disabled.
*/
if (!ss->firstHsDone && !isTLS) {
/* Must set this before calling Hello Extension Senders,
* to suppress sending of empty RI extension.
*/
ss->ssl3.hs.sendingSCSV = PR_TRUE;
}
/* When we attempt session resumption (only), we must lock the sid to
* prevent races with other resumption connections that receive a
* NewSessionTicket that will cause the ticket in the sid to be replaced.
* Once we've copied the session ticket into our ClientHello message, it
* is OK for the ticket to change, so we just need to make sure we hold
* the lock across the calls to ssl_ConstructExtensions.
*/
if (sid->u.ssl3.lock) {
unlockNeeded = PR_TRUE;
PR_RWLock_Rlock(sid->u.ssl3.lock);
}
/* Generate a new random if this is the first attempt or renegotiation. */
if (type == client_hello_initial ||
type == client_hello_renegotiation) {
rv = ssl3_GetNewRandom(ss->ssl3.hs.client_random);
if (rv != SECSuccess) {
goto loser; /* err set by GetNewRandom. */
}
}
if (ss->vrange.max >= SSL_LIBRARY_VERSION_TLS_1_3) {
rv = tls13_SetupClientHello(ss, type);
if (rv != SECSuccess) {
goto loser;
}
}
if (isTLS || (ss->firstHsDone && ss->peerRequestedProtection)) {
rv = ssl_ConstructExtensions(ss, &extensionBuf, ssl_hs_client_hello);
if (rv != SECSuccess) {
goto loser;
}
}
if (IS_DTLS(ss)) {
ssl3_DisableNonDTLSSuites(ss);
}
rv = ssl3_CreateClientHelloPreamble(ss, sid, requestingResume, version,
PR_FALSE, &extensionBuf, &chBuf);
if (rv != SECSuccess) {
goto loser; /* err set by ssl3_CreateClientHelloPreamble. */
}
if (!ss->ssl3.hs.echHpkeCtx) {
if (extensionBuf.len) {
rv = tls13_MaybeGreaseEch(ss, chBuf.len, &extensionBuf);
if (rv != SECSuccess) {
goto loser; /* err set by tls13_MaybeGreaseEch. */
}
rv = ssl_InsertPaddingExtension(ss, chBuf.len, &extensionBuf);
if (rv != SECSuccess) {
goto loser; /* err set by ssl_InsertPaddingExtension. */
}
rv = ssl3_InsertChHeaderSize(ss, &chBuf, &extensionBuf);
if (rv != SECSuccess) {
goto loser; /* err set by ssl3_InsertChHeaderSize. */
}
/* If we are sending a PSK binder, replace the dummy value. */
if (ssl3_ExtensionAdvertised(ss, ssl_tls13_pre_shared_key_xtn)) {
rv = tls13_WriteExtensionsWithBinder(ss, &extensionBuf, &chBuf);
} else {
rv = sslBuffer_AppendNumber(&chBuf, extensionBuf.len, 2);
if (rv != SECSuccess) {
goto loser;
}
rv = sslBuffer_AppendBuffer(&chBuf, &extensionBuf);
}
if (rv != SECSuccess) {
goto loser; /* err set by sslBuffer_Append*. */
}
}
/* If we already have a message in place, we need to enqueue it.
* This empties the buffer. This is a convenient place to call
* dtls_StageHandshakeMessage to mark the message boundary. */
if (IS_DTLS(ss)) {
rv = dtls_StageHandshakeMessage(ss);
if (rv != SECSuccess) {
goto loser;
}
}
rv = ssl3_AppendHandshake(ss, chBuf.buf, chBuf.len);
} else {
rv = tls13_ConstructClientHelloWithEch(ss, sid, !requestingResume, &chBuf, &extensionBuf);
if (rv != SECSuccess) {
goto loser; /* code set */
}
rv = ssl3_UpdateDefaultHandshakeHashes(ss, chBuf.buf, chBuf.len);
if (rv != SECSuccess) {
goto loser; /* code set */
}
if (IS_DTLS(ss)) {
rv = dtls_StageHandshakeMessage(ss);
if (rv != SECSuccess) {
goto loser;
}
}
/* By default, all messagess are added to both the inner and
* outer transcripts. For CH (or CH2 if HRR), that's problematic. */
rv = ssl3_AppendHandshakeSuppressHash(ss, chBuf.buf, chBuf.len);
}
if (rv != SECSuccess) {
goto loser;
}
if (unlockNeeded) {
/* Note: goto loser can't be used past this point. */
PR_RWLock_Unlock(sid->u.ssl3.lock);
}
if (ss->xtnData.sentSessionTicketInClientHello) {
SSL_AtomicIncrementLong(&ssl3stats.sch_sid_stateless_resumes);
}
if (ss->ssl3.hs.sendingSCSV) {
/* Since we sent the SCSV, pretend we sent empty RI extension. */
TLSExtensionData *xtnData = &ss->xtnData;
xtnData->advertised[xtnData->numAdvertised++] =
ssl_renegotiation_info_xtn;
}
flags = 0;
rv = ssl3_FlushHandshake(ss, flags);
if (rv != SECSuccess) {
return rv; /* error code set by ssl3_FlushHandshake */
}
if (version >= SSL_LIBRARY_VERSION_TLS_1_3) {
rv = tls13_MaybeDo0RTTHandshake(ss);
if (rv != SECSuccess) {
return SECFailure; /* error code set already. */
}
}
ss->ssl3.hs.ws = wait_server_hello;
sslBuffer_Clear(&chBuf);
sslBuffer_Clear(&extensionBuf);
return SECSuccess;
loser:
if (unlockNeeded) {
PR_RWLock_Unlock(sid->u.ssl3.lock);
}
sslBuffer_Clear(&chBuf);
sslBuffer_Clear(&extensionBuf);
return SECFailure;
}
/* Called from ssl3_HandlePostHelloHandshakeMessage() when it has deciphered a
* complete ssl3 Hello Request.
* Caller must hold Handshake and RecvBuf locks.
*/
static SECStatus
ssl3_HandleHelloRequest(sslSocket *ss)
{
sslSessionID *sid = ss->sec.ci.sid;
SECStatus rv;
SSL_TRC(3, ("%d: SSL3[%d]: handle hello_request handshake",
SSL_GETPID(), ss->fd));
PORT_Assert(ss->opt.noLocks || ssl_HaveRecvBufLock(ss));
PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
PORT_Assert(ss->version < SSL_LIBRARY_VERSION_TLS_1_3);
if (ss->ssl3.hs.ws == wait_server_hello)
return SECSuccess;
if (ss->ssl3.hs.ws != idle_handshake || ss->sec.isServer) {
(void)SSL3_SendAlert(ss, alert_fatal, unexpected_message);
PORT_SetError(SSL_ERROR_RX_UNEXPECTED_HELLO_REQUEST);
return SECFailure;
}
if (ss->opt.enableRenegotiation == SSL_RENEGOTIATE_NEVER) {
(void)SSL3_SendAlert(ss, alert_warning, no_renegotiation);
PORT_SetError(SSL_ERROR_RENEGOTIATION_NOT_ALLOWED);
return SECFailure;
}
if (sid) {
ssl_UncacheSessionID(ss);
ssl_FreeSID(sid);
ss->sec.ci.sid = NULL;
}
if (IS_DTLS(ss)) {
dtls_RehandshakeCleanup(ss);
}
ssl_GetXmitBufLock(ss);
rv = ssl3_SendClientHello(ss, client_hello_renegotiation);
ssl_ReleaseXmitBufLock(ss);
return rv;
}
static const CK_MECHANISM_TYPE wrapMechanismList[SSL_NUM_WRAP_MECHS] = {
CKM_DES3_ECB,
CKM_CAST5_ECB,
CKM_DES_ECB,
CKM_KEY_WRAP_LYNKS,
CKM_IDEA_ECB,
CKM_CAST3_ECB,
CKM_CAST_ECB,
CKM_RC5_ECB,
CKM_RC2_ECB,
CKM_CDMF_ECB,
CKM_SKIPJACK_WRAP,
CKM_SKIPJACK_CBC64,
CKM_AES_ECB,
CKM_CAMELLIA_ECB,
CKM_SEED_ECB
};
static SECStatus
ssl_FindIndexByWrapMechanism(CK_MECHANISM_TYPE mech, unsigned int *wrapMechIndex)
{
unsigned int i;
for (i = 0; i < SSL_NUM_WRAP_MECHS; ++i) {
if (wrapMechanismList[i] == mech) {
*wrapMechIndex = i;
return SECSuccess;
}
}
PORT_Assert(0);
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
return SECFailure;
}
/* Each process sharing the server session ID cache has its own array of SymKey
* pointers for the symmetric wrapping keys that are used to wrap the master
* secrets. There is one key for each authentication type. These Symkeys
* correspond to the wrapped SymKeys kept in the server session cache.
*/
const SSLAuthType ssl_wrap_key_auth_type[SSL_NUM_WRAP_KEYS] = {
ssl_auth_rsa_decrypt,
ssl_auth_rsa_sign,
ssl_auth_rsa_pss,
ssl_auth_ecdsa,
ssl_auth_ecdh_rsa,
ssl_auth_ecdh_ecdsa
};
static SECStatus
ssl_FindIndexByWrapKey(const sslServerCert *serverCert, unsigned int *wrapKeyIndex)
{
unsigned int i;
for (i = 0; i < SSL_NUM_WRAP_KEYS; ++i) {
if (SSL_CERT_IS(serverCert, ssl_wrap_key_auth_type[i])) {
*wrapKeyIndex = i;
return SECSuccess;
}
}
/* Can't assert here because we still get people using DSA certificates. */
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
return SECFailure;
}
static PK11SymKey *
ssl_UnwrapSymWrappingKey(
SSLWrappedSymWrappingKey *pWswk,
SECKEYPrivateKey *svrPrivKey,
unsigned int wrapKeyIndex,
CK_MECHANISM_TYPE masterWrapMech,
void *pwArg)
{
PK11SymKey *unwrappedWrappingKey = NULL;
SECItem wrappedKey;
PK11SymKey *Ks;
SECKEYPublicKey pubWrapKey;
ECCWrappedKeyInfo *ecWrapped;
/* found the wrapping key on disk. */
PORT_Assert(pWswk->symWrapMechanism == masterWrapMech);
PORT_Assert(pWswk->wrapKeyIndex == wrapKeyIndex);
if (pWswk->symWrapMechanism != masterWrapMech ||
pWswk->wrapKeyIndex != wrapKeyIndex) {
goto loser;
}
wrappedKey.type = siBuffer;
wrappedKey.data = pWswk->wrappedSymmetricWrappingkey;
wrappedKey.len = pWswk->wrappedSymKeyLen;
PORT_Assert(wrappedKey.len <= sizeof pWswk->wrappedSymmetricWrappingkey);
switch (ssl_wrap_key_auth_type[wrapKeyIndex]) {
case ssl_auth_rsa_decrypt:
case ssl_auth_rsa_sign: /* bad: see Bug 1248320 */
unwrappedWrappingKey =
PK11_PubUnwrapSymKey(svrPrivKey, &wrappedKey,
masterWrapMech, CKA_UNWRAP, 0);
break;
case ssl_auth_ecdsa:
case ssl_auth_ecdh_rsa:
case ssl_auth_ecdh_ecdsa:
/*
* For ssl_auth_ecd*, we first create an EC public key based on
* data stored with the wrappedSymmetricWrappingkey. Next,
* we do an ECDH computation involving this public key and
* the SSL server's (long-term) EC private key. The resulting
* shared secret is treated the same way as Fortezza's Ks, i.e.,
* it is used to recover the symmetric wrapping key.
*
* The data in wrappedSymmetricWrappingkey is laid out as defined
* in the ECCWrappedKeyInfo structure.
*/
ecWrapped = (ECCWrappedKeyInfo *)pWswk->wrappedSymmetricWrappingkey;
PORT_Assert(ecWrapped->encodedParamLen + ecWrapped->pubValueLen +
ecWrapped->wrappedKeyLen <=
MAX_EC_WRAPPED_KEY_BUFLEN);
if (ecWrapped->encodedParamLen + ecWrapped->pubValueLen +
ecWrapped->wrappedKeyLen >
MAX_EC_WRAPPED_KEY_BUFLEN) {
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
goto loser;
}
pubWrapKey.keyType = ecKey;
pubWrapKey.u.ec.size = ecWrapped->size;
pubWrapKey.u.ec.DEREncodedParams.len = ecWrapped->encodedParamLen;
pubWrapKey.u.ec.DEREncodedParams.data = ecWrapped->var;
pubWrapKey.u.ec.publicValue.len = ecWrapped->pubValueLen;
pubWrapKey.u.ec.publicValue.data = ecWrapped->var +
ecWrapped->encodedParamLen;
wrappedKey.len = ecWrapped->wrappedKeyLen;
wrappedKey.data = ecWrapped->var + ecWrapped->encodedParamLen +
ecWrapped->pubValueLen;
/* Derive Ks using ECDH */
Ks = PK11_PubDeriveWithKDF(svrPrivKey, &pubWrapKey, PR_FALSE, NULL,
NULL, CKM_ECDH1_DERIVE, masterWrapMech,
CKA_DERIVE, 0, CKD_NULL, NULL, NULL);
if (Ks == NULL) {
goto loser;
}
/* Use Ks to unwrap the wrapping key */
unwrappedWrappingKey = PK11_UnwrapSymKey(Ks, masterWrapMech, NULL,
&wrappedKey, masterWrapMech,
CKA_UNWRAP, 0);
PK11_FreeSymKey(Ks);
break;
default:
PORT_Assert(0);
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
goto loser;
}
loser:
return unwrappedWrappingKey;
}
typedef struct {
PK11SymKey *symWrapKey[SSL_NUM_WRAP_KEYS];
} ssl3SymWrapKey;
static PZLock *symWrapKeysLock = NULL;
static ssl3SymWrapKey symWrapKeys[SSL_NUM_WRAP_MECHS];
SECStatus
ssl_FreeSymWrapKeysLock(void)
{
if (symWrapKeysLock) {
PZ_DestroyLock(symWrapKeysLock);
symWrapKeysLock = NULL;
return SECSuccess;
}
PORT_SetError(SEC_ERROR_NOT_INITIALIZED);
return SECFailure;
}
SECStatus
SSL3_ShutdownServerCache(void)
{
int i, j;
if (!symWrapKeysLock)
return SECSuccess; /* lock was never initialized */
PZ_Lock(symWrapKeysLock);
/* get rid of all symWrapKeys */
for (i = 0; i < SSL_NUM_WRAP_MECHS; ++i) {
for (j = 0; j < SSL_NUM_WRAP_KEYS; ++j) {
PK11SymKey **pSymWrapKey;
pSymWrapKey = &symWrapKeys[i].symWrapKey[j];
if (*pSymWrapKey) {
PK11_FreeSymKey(*pSymWrapKey);
*pSymWrapKey = NULL;
}
}
}
PZ_Unlock(symWrapKeysLock);
ssl_FreeSessionCacheLocks();
return SECSuccess;
}
SECStatus
ssl_InitSymWrapKeysLock(void)
{
symWrapKeysLock = PZ_NewLock(nssILockOther);
return symWrapKeysLock ? SECSuccess : SECFailure;
}
/* Try to get wrapping key for mechanism from in-memory array.
* If that fails, look for one on disk.
* If that fails, generate a new one, put the new one on disk,
* Put the new key in the in-memory array.
*
* Note that this function performs some fairly inadvisable functions with
* certificate private keys. ECDSA keys are used with ECDH; similarly, RSA
* signing keys are used to encrypt. Bug 1248320.
*/
PK11SymKey *
ssl3_GetWrappingKey(sslSocket *ss,
PK11SlotInfo *masterSecretSlot,
CK_MECHANISM_TYPE masterWrapMech,
void *pwArg)
{
SSLAuthType authType;
SECKEYPrivateKey *svrPrivKey;
SECKEYPublicKey *svrPubKey = NULL;
PK11SymKey *unwrappedWrappingKey = NULL;
PK11SymKey **pSymWrapKey;
CK_MECHANISM_TYPE asymWrapMechanism = CKM_INVALID_MECHANISM;
int length;
unsigned int wrapMechIndex;
unsigned int wrapKeyIndex;
SECStatus rv;
SECItem wrappedKey;
SSLWrappedSymWrappingKey wswk;
PK11SymKey *Ks = NULL;
SECKEYPublicKey *pubWrapKey = NULL;
SECKEYPrivateKey *privWrapKey = NULL;
ECCWrappedKeyInfo *ecWrapped;
const sslServerCert *serverCert = ss->sec.serverCert;
PORT_Assert(serverCert);
PORT_Assert(serverCert->serverKeyPair);
PORT_Assert(serverCert->serverKeyPair->privKey);
PORT_Assert(serverCert->serverKeyPair->pubKey);
if (!serverCert || !serverCert->serverKeyPair ||
!serverCert->serverKeyPair->privKey ||
!serverCert->serverKeyPair->pubKey) {
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
return NULL; /* hmm */
}
rv = ssl_FindIndexByWrapKey(serverCert, &wrapKeyIndex);
if (rv != SECSuccess)
return NULL; /* unusable wrapping key. */
rv = ssl_FindIndexByWrapMechanism(masterWrapMech, &wrapMechIndex);
if (rv != SECSuccess)
return NULL; /* invalid masterWrapMech. */
authType = ssl_wrap_key_auth_type[wrapKeyIndex];
svrPrivKey = serverCert->serverKeyPair->privKey;
pSymWrapKey = &symWrapKeys[wrapMechIndex].symWrapKey[wrapKeyIndex];
ssl_InitSessionCacheLocks(PR_TRUE);
PZ_Lock(symWrapKeysLock);
unwrappedWrappingKey = *pSymWrapKey;
if (unwrappedWrappingKey != NULL) {
if (PK11_VerifyKeyOK(unwrappedWrappingKey)) {
unwrappedWrappingKey = PK11_ReferenceSymKey(unwrappedWrappingKey);
goto done;
}
/* slot series has changed, so this key is no good any more. */
PK11_FreeSymKey(unwrappedWrappingKey);
*pSymWrapKey = unwrappedWrappingKey = NULL;
}
/* Try to get wrapped SymWrapping key out of the (disk) cache. */
/* Following call fills in wswk on success. */
rv = ssl_GetWrappingKey(wrapMechIndex, wrapKeyIndex, &wswk);
if (rv == SECSuccess) {
/* found the wrapped sym wrapping key on disk. */
unwrappedWrappingKey =
ssl_UnwrapSymWrappingKey(&wswk, svrPrivKey, wrapKeyIndex,
masterWrapMech, pwArg);
if (unwrappedWrappingKey) {
goto install;
}
}
if (!masterSecretSlot) /* caller doesn't want to create a new one. */
goto loser;
length = PK11_GetBestKeyLength(masterSecretSlot, masterWrapMech);
/* Zero length means fixed key length algorithm, or error.
* It's ambiguous.
*/
unwrappedWrappingKey = PK11_KeyGen(masterSecretSlot, masterWrapMech, NULL,
length, pwArg);
if (!unwrappedWrappingKey) {
goto loser;
}
/* Prepare the buffer to receive the wrappedWrappingKey,
* the symmetric wrapping key wrapped using the server's pub key.
*/
PORT_Memset(&wswk, 0, sizeof wswk); /* eliminate UMRs. */
svrPubKey = serverCert->serverKeyPair->pubKey;
wrappedKey.type = siBuffer;
wrappedKey.len = SECKEY_PublicKeyStrength(svrPubKey);
wrappedKey.data = wswk.wrappedSymmetricWrappingkey;
PORT_Assert(wrappedKey.len <= sizeof wswk.wrappedSymmetricWrappingkey);
if (wrappedKey.len > sizeof wswk.wrappedSymmetricWrappingkey)
goto loser;
/* wrap symmetric wrapping key in server's public key. */
switch (authType) {
case ssl_auth_rsa_decrypt:
case ssl_auth_rsa_sign: /* bad: see Bug 1248320 */
case ssl_auth_rsa_pss:
asymWrapMechanism = CKM_RSA_PKCS;
rv = PK11_PubWrapSymKey(asymWrapMechanism, svrPubKey,
unwrappedWrappingKey, &wrappedKey);
break;
case ssl_auth_ecdsa:
case ssl_auth_ecdh_rsa:
case ssl_auth_ecdh_ecdsa:
/*
* We generate an ephemeral EC key pair. Perform an ECDH
* computation involving this ephemeral EC public key and
* the SSL server's (long-term) EC private key. The resulting
* shared secret is treated in the same way as Fortezza's Ks,
* i.e., it is used to wrap the wrapping key. To facilitate
* unwrapping in ssl_UnwrapWrappingKey, we also store all
* relevant info about the ephemeral EC public key in
* wswk.wrappedSymmetricWrappingkey and lay it out as
* described in the ECCWrappedKeyInfo structure.
*/
PORT_Assert(SECKEY_GetPublicKeyType(svrPubKey) == ecKey);
if (SECKEY_GetPublicKeyType(svrPubKey) != ecKey) {
/* something is wrong in sslsecur.c if this isn't an ecKey */
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
rv = SECFailure;
goto ec_cleanup;
}
privWrapKey = SECKEY_CreateECPrivateKey(
&svrPubKey->u.ec.DEREncodedParams, &pubWrapKey, NULL);
if ((privWrapKey == NULL) || (pubWrapKey == NULL)) {
rv = SECFailure;
goto ec_cleanup;
}
/* Set the key size in bits */
if (pubWrapKey->u.ec.size == 0) {
pubWrapKey->u.ec.size = SECKEY_PublicKeyStrengthInBits(svrPubKey);
}
PORT_Assert(pubWrapKey->u.ec.DEREncodedParams.len +
pubWrapKey->u.ec.publicValue.len <
MAX_EC_WRAPPED_KEY_BUFLEN);
if (pubWrapKey->u.ec.DEREncodedParams.len +
pubWrapKey->u.ec.publicValue.len >=
MAX_EC_WRAPPED_KEY_BUFLEN) {
PORT_SetError(SEC_ERROR_INVALID_KEY);
rv = SECFailure;
goto ec_cleanup;
}
/* Derive Ks using ECDH */
Ks = PK11_PubDeriveWithKDF(svrPrivKey, pubWrapKey, PR_FALSE, NULL,
NULL, CKM_ECDH1_DERIVE, masterWrapMech,
CKA_DERIVE, 0, CKD_NULL, NULL, NULL);
if (Ks == NULL) {
rv = SECFailure;
goto ec_cleanup;
}
ecWrapped = (ECCWrappedKeyInfo *)(wswk.wrappedSymmetricWrappingkey);
ecWrapped->size = pubWrapKey->u.ec.size;
ecWrapped->encodedParamLen = pubWrapKey->u.ec.DEREncodedParams.len;
PORT_Memcpy(ecWrapped->var, pubWrapKey->u.ec.DEREncodedParams.data,
pubWrapKey->u.ec.DEREncodedParams.len);
ecWrapped->pubValueLen = pubWrapKey->u.ec.publicValue.len;
PORT_Memcpy(ecWrapped->var + ecWrapped->encodedParamLen,
pubWrapKey->u.ec.publicValue.data,
pubWrapKey->u.ec.publicValue.len);
wrappedKey.len = MAX_EC_WRAPPED_KEY_BUFLEN -
(ecWrapped->encodedParamLen + ecWrapped->pubValueLen);
wrappedKey.data = ecWrapped->var + ecWrapped->encodedParamLen +
ecWrapped->pubValueLen;
/* wrap symmetricWrapping key with the local Ks */
rv = PK11_WrapSymKey(masterWrapMech, NULL, Ks,
unwrappedWrappingKey, &wrappedKey);
if (rv != SECSuccess) {
goto ec_cleanup;
}
/* Write down the length of wrapped key in the buffer
* wswk.wrappedSymmetricWrappingkey at the appropriate offset
*/
ecWrapped->wrappedKeyLen = wrappedKey.len;
ec_cleanup:
if (privWrapKey)
SECKEY_DestroyPrivateKey(privWrapKey);
if (pubWrapKey)
SECKEY_DestroyPublicKey(pubWrapKey);
if (Ks)
PK11_FreeSymKey(Ks);
asymWrapMechanism = masterWrapMech;
break;
default:
rv = SECFailure;
break;
}
if (rv != SECSuccess) {
ssl_MapLowLevelError(SSL_ERROR_CLIENT_KEY_EXCHANGE_FAILURE);
goto loser;
}
PORT_Assert(asymWrapMechanism != CKM_INVALID_MECHANISM);
wswk.symWrapMechanism = masterWrapMech;
wswk.asymWrapMechanism = asymWrapMechanism;
wswk.wrapMechIndex = wrapMechIndex;
wswk.wrapKeyIndex = wrapKeyIndex;
wswk.wrappedSymKeyLen = wrappedKey.len;
/* put it on disk. */
/* If the wrapping key for this KEA type has already been set,
* then abandon the value we just computed and
* use the one we got from the disk.
*/
rv = ssl_SetWrappingKey(&wswk);
if (rv == SECSuccess) {
/* somebody beat us to it. The original contents of our wswk
* has been replaced with the content on disk. Now, discard
* the key we just created and unwrap this new one.
*/
PK11_FreeSymKey(unwrappedWrappingKey);
unwrappedWrappingKey =
ssl_UnwrapSymWrappingKey(&wswk, svrPrivKey, wrapKeyIndex,
masterWrapMech, pwArg);
}
install:
if (unwrappedWrappingKey) {
*pSymWrapKey = PK11_ReferenceSymKey(unwrappedWrappingKey);
}
loser:
done:
PZ_Unlock(symWrapKeysLock);
return unwrappedWrappingKey;
}
#ifdef NSS_ALLOW_SSLKEYLOGFILE
/* hexEncode hex encodes |length| bytes from |in| and writes it as |length*2|
* bytes to |out|. */
static void
hexEncode(char *out, const unsigned char *in, unsigned int length)
{
static const char hextable[] = "0123456789abcdef";
unsigned int i;
for (i = 0; i < length; i++) {
*(out++) = hextable[in[i] >> 4];
*(out++) = hextable[in[i] & 15];
}
}
#endif
/* Called from ssl3_SendClientKeyExchange(). */
static SECStatus
ssl3_SendRSAClientKeyExchange(sslSocket *ss, SECKEYPublicKey *svrPubKey)
{
PK11SymKey *pms = NULL;
SECStatus rv = SECFailure;
SECItem enc_pms = { siBuffer, NULL, 0 };
PRBool isTLS;
PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
PORT_Assert(ss->opt.noLocks || ssl_HaveXmitBufLock(ss));
/* Generate the pre-master secret ... */
ssl_GetSpecWriteLock(ss);
isTLS = (PRBool)(ss->version > SSL_LIBRARY_VERSION_3_0);
pms = ssl3_GenerateRSAPMS(ss, ss->ssl3.pwSpec, NULL);
ssl_ReleaseSpecWriteLock(ss);
if (pms == NULL) {
ssl_MapLowLevelError(SSL_ERROR_CLIENT_KEY_EXCHANGE_FAILURE);
goto loser;
}
/* Get the wrapped (encrypted) pre-master secret, enc_pms */
unsigned int svrPubKeyBits = SECKEY_PublicKeyStrengthInBits(svrPubKey);
enc_pms.len = (svrPubKeyBits + 7) / 8;
/* Check that the RSA key isn't larger than 8k bit. */
if (svrPubKeyBits > SSL_MAX_RSA_KEY_BITS) {
(void)SSL3_SendAlert(ss, alert_fatal, illegal_parameter);
ssl_MapLowLevelError(SSL_ERROR_CLIENT_KEY_EXCHANGE_FAILURE);
goto loser;
}
enc_pms.data = (unsigned char *)PORT_Alloc(enc_pms.len);
if (enc_pms.data == NULL) {
goto loser; /* err set by PORT_Alloc */
}
/* Wrap pre-master secret in server's public key. */
rv = PK11_PubWrapSymKey(CKM_RSA_PKCS, svrPubKey, pms, &enc_pms);
if (rv != SECSuccess) {
ssl_MapLowLevelError(SSL_ERROR_CLIENT_KEY_EXCHANGE_FAILURE);
goto loser;
}
#ifdef TRACE
if (ssl_trace >= 100) {
SECStatus extractRV = PK11_ExtractKeyValue(pms);
if (extractRV == SECSuccess) {
SECItem *keyData = PK11_GetKeyData(pms);
if (keyData && keyData->data && keyData->len) {
ssl_PrintBuf(ss, "Pre-Master Secret",
keyData->data, keyData->len);
}
}
}
#endif
rv = ssl3_AppendHandshakeHeader(ss, ssl_hs_client_key_exchange,
isTLS ? enc_pms.len + 2
: enc_pms.len);
if (rv != SECSuccess) {
goto loser; /* err set by ssl3_AppendHandshake* */
}
if (isTLS) {
rv = ssl3_AppendHandshakeVariable(ss, enc_pms.data, enc_pms.len, 2);
} else {
rv = ssl3_AppendHandshake(ss, enc_pms.data, enc_pms.len);
}
if (rv != SECSuccess) {
goto loser; /* err set by ssl3_AppendHandshake* */
}
rv = ssl3_InitPendingCipherSpecs(ss, pms, PR_TRUE);
PK11_FreeSymKey(pms);
pms = NULL;
if (rv != SECSuccess) {
ssl_MapLowLevelError(SSL_ERROR_CLIENT_KEY_EXCHANGE_FAILURE);
goto loser;
}
rv = SECSuccess;
loser:
if (enc_pms.data != NULL) {
PORT_Free(enc_pms.data);
}
if (pms != NULL) {
PK11_FreeSymKey(pms);
}
return rv;
}
/* DH shares need to be padded to the size of their prime. Some implementations
* require this. TLS 1.3 also requires this. */
SECStatus
ssl_AppendPaddedDHKeyShare(sslBuffer *buf, const SECKEYPublicKey *pubKey,
PRBool appendLength)
{
SECStatus rv;
unsigned int pad = pubKey->u.dh.prime.len - pubKey->u.dh.publicValue.len;
if (appendLength) {
rv = sslBuffer_AppendNumber(buf, pubKey->u.dh.prime.len, 2);
if (rv != SECSuccess) {
return rv;
}
}
while (pad) {
rv = sslBuffer_AppendNumber(buf, 0, 1);
if (rv != SECSuccess) {
return rv;
}
--pad;
}
rv = sslBuffer_Append(buf, pubKey->u.dh.publicValue.data,
pubKey->u.dh.publicValue.len);
if (rv != SECSuccess) {
return rv;
}
return SECSuccess;
}
/* Called from ssl3_SendClientKeyExchange(). */
static SECStatus
ssl3_SendDHClientKeyExchange(sslSocket *ss, SECKEYPublicKey *svrPubKey)
{
PK11SymKey *pms = NULL;
SECStatus rv;
PRBool isTLS;
CK_MECHANISM_TYPE target;
const ssl3DHParams *params;
ssl3DHParams customParams;
const sslNamedGroupDef *groupDef;
static const sslNamedGroupDef customGroupDef = {
ssl_grp_ffdhe_custom, 0, ssl_kea_dh, SEC_OID_TLS_DHE_CUSTOM, PR_FALSE
};
sslEphemeralKeyPair *keyPair = NULL;
SECKEYPublicKey *pubKey;
PRUint8 dhData[SSL_MAX_DH_KEY_BITS / 8 + 2];
sslBuffer dhBuf = SSL_BUFFER(dhData);
PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
PORT_Assert(ss->opt.noLocks || ssl_HaveXmitBufLock(ss));
isTLS = (PRBool)(ss->version > SSL_LIBRARY_VERSION_3_0);
/* Copy DH parameters from server key */
if (SECKEY_GetPublicKeyType(svrPubKey) != dhKey) {
PORT_SetError(SEC_ERROR_BAD_KEY);
return SECFailure;
}
/* Work out the parameters. */
rv = ssl_ValidateDHENamedGroup(ss, &svrPubKey->u.dh.prime,
&svrPubKey->u.dh.base,
&groupDef, &params);
if (rv != SECSuccess) {
/* If we require named groups, we will have already validated the group
* in ssl_HandleDHServerKeyExchange() */
PORT_Assert(!ss->opt.requireDHENamedGroups &&
!ss->xtnData.peerSupportsFfdheGroups);
customParams.name = ssl_grp_ffdhe_custom;
customParams.prime.data = svrPubKey->u.dh.prime.data;
customParams.prime.len = svrPubKey->u.dh.prime.len;
customParams.base.data = svrPubKey->u.dh.base.data;
customParams.base.len = svrPubKey->u.dh.base.len;
params = &customParams;
groupDef = &customGroupDef;
}
ss->sec.keaGroup = groupDef;
rv = ssl_CreateDHEKeyPair(groupDef, params, &keyPair);
if (rv != SECSuccess) {
ssl_MapLowLevelError(SEC_ERROR_KEYGEN_FAIL);
goto loser;
}
pubKey = keyPair->keys->pubKey;
PRINT_BUF(50, (ss, "DH public value:",
pubKey->u.dh.publicValue.data,
pubKey->u.dh.publicValue.len));
if (isTLS)
target = CKM_TLS_MASTER_KEY_DERIVE_DH;
else
target = CKM_SSL3_MASTER_KEY_DERIVE_DH;
/* Determine the PMS */
pms = PK11_PubDerive(keyPair->keys->privKey, svrPubKey,
PR_FALSE, NULL, NULL, CKM_DH_PKCS_DERIVE,
target, CKA_DERIVE, 0, NULL);
if (pms == NULL) {
ssl_MapLowLevelError(SSL_ERROR_CLIENT_KEY_EXCHANGE_FAILURE);
goto loser;
}
/* Note: send the DH share padded to avoid triggering bugs. */
rv = ssl3_AppendHandshakeHeader(ss, ssl_hs_client_key_exchange,
params->prime.len + 2);
if (rv != SECSuccess) {
goto loser; /* err set by ssl3_AppendHandshake* */
}
rv = ssl_AppendPaddedDHKeyShare(&dhBuf, pubKey, PR_TRUE);
if (rv != SECSuccess) {
goto loser; /* err set by ssl_AppendPaddedDHKeyShare */
}
rv = ssl3_AppendBufferToHandshake(ss, &dhBuf);
if (rv != SECSuccess) {
goto loser; /* err set by ssl3_AppendBufferToHandshake */
}
rv = ssl3_InitPendingCipherSpecs(ss, pms, PR_TRUE);
if (rv != SECSuccess) {
ssl_MapLowLevelError(SSL_ERROR_CLIENT_KEY_EXCHANGE_FAILURE);
goto loser;
}
sslBuffer_Clear(&dhBuf);
PK11_FreeSymKey(pms);
ssl_FreeEphemeralKeyPair(keyPair);
return SECSuccess;
loser:
if (pms)
PK11_FreeSymKey(pms);
if (keyPair)
ssl_FreeEphemeralKeyPair(keyPair);
sslBuffer_Clear(&dhBuf);
return SECFailure;
}
/* Called from ssl3_HandleServerHelloDone(). */
static SECStatus
ssl3_SendClientKeyExchange(sslSocket *ss)
{
SECKEYPublicKey *serverKey = NULL;
SECStatus rv = SECFailure;
SSL_TRC(3, ("%d: SSL3[%d]: send client_key_exchange handshake",
SSL_GETPID(), ss->fd));
PORT_Assert(ss->opt.noLocks || ssl_HaveXmitBufLock(ss));
PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
if (ss->sec.peerKey == NULL) {
serverKey = CERT_ExtractPublicKey(ss->sec.peerCert);
if (serverKey == NULL) {
ssl_MapLowLevelError(SSL_ERROR_EXTRACT_PUBLIC_KEY_FAILURE);
return SECFailure;
}
} else {
serverKey = ss->sec.peerKey;
ss->sec.peerKey = NULL; /* we're done with it now */
}
ss->sec.keaType = ss->ssl3.hs.kea_def->exchKeyType;
ss->sec.keaKeyBits = SECKEY_PublicKeyStrengthInBits(serverKey);
switch (ss->ssl3.hs.kea_def->exchKeyType) {
case ssl_kea_rsa:
rv = ssl3_SendRSAClientKeyExchange(ss, serverKey);
break;
case ssl_kea_dh:
rv = ssl3_SendDHClientKeyExchange(ss, serverKey);
break;
case ssl_kea_ecdh:
rv = ssl3_SendECDHClientKeyExchange(ss, serverKey);
break;
default:
PORT_Assert(0);
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
break;
}
SSL_TRC(3, ("%d: SSL3[%d]: DONE sending client_key_exchange",
SSL_GETPID(), ss->fd));
SECKEY_DestroyPublicKey(serverKey);
return rv; /* err code already set. */
}
/* Used by ssl_PickSignatureScheme(). */
PRBool
ssl_CanUseSignatureScheme(SSLSignatureScheme scheme,
const SSLSignatureScheme *peerSchemes,
unsigned int peerSchemeCount,
PRBool requireSha1,
PRBool slotDoesPss)
{
SSLHashType hashType;
unsigned int i;
/* Skip RSA-PSS schemes when the certificate's private key slot does
* not support this signature mechanism. */
if (ssl_IsRsaPssSignatureScheme(scheme) && !slotDoesPss) {
return PR_FALSE;
}
hashType = ssl_SignatureSchemeToHashType(scheme);
if (requireSha1 && (hashType != ssl_hash_sha1)) {
return PR_FALSE;
}
if (!ssl_SchemePolicyOK(scheme, kSSLSigSchemePolicy)) {
return PR_FALSE;
}
for (i = 0; i < peerSchemeCount; i++) {
if (peerSchemes[i] == scheme) {
return PR_TRUE;
}
}
return PR_FALSE;
}
SECStatus
ssl_PrivateKeySupportsRsaPss(SECKEYPrivateKey *privKey,
PRBool *supportsRsaPss)
{
PK11SlotInfo *slot;
slot = PK11_GetSlotFromPrivateKey(privKey);
if (!slot) {
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
return SECFailure;
}
*supportsRsaPss = PK11_DoesMechanism(slot, auth_alg_defs[ssl_auth_rsa_pss]);
PK11_FreeSlot(slot);
return SECSuccess;
}
SECStatus
ssl_PickSignatureScheme(sslSocket *ss,
CERTCertificate *cert,
SECKEYPublicKey *pubKey,
SECKEYPrivateKey *privKey,
const SSLSignatureScheme *peerSchemes,
unsigned int peerSchemeCount,
PRBool requireSha1)
{
unsigned int i;
PRBool doesRsaPss;
PRBool isTLS13 = ss->version >= SSL_LIBRARY_VERSION_TLS_1_3;
SECStatus rv;
SSLSignatureScheme scheme;
SECOidTag spkiOid;
/* We can't require SHA-1 in TLS 1.3. */
PORT_Assert(!(requireSha1 && isTLS13));
if (!pubKey || !privKey) {
PORT_Assert(0);
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
return SECFailure;
}
rv = ssl_PrivateKeySupportsRsaPss(privKey, &doesRsaPss);
if (rv != SECSuccess) {
return SECFailure;
}
/* If the certificate SPKI indicates a single scheme, don't search. */
rv = ssl_SignatureSchemeFromSpki(&cert->subjectPublicKeyInfo,
isTLS13, &scheme);
if (rv != SECSuccess) {
return SECFailure;
}
if (scheme != ssl_sig_none) {
if (!ssl_SignatureSchemeEnabled(ss, scheme) ||
!ssl_CanUseSignatureScheme(scheme, peerSchemes, peerSchemeCount,
requireSha1, doesRsaPss)) {
PORT_SetError(SSL_ERROR_UNSUPPORTED_SIGNATURE_ALGORITHM);
return SECFailure;
}
ss->ssl3.hs.signatureScheme = scheme;
return SECSuccess;
}
spkiOid = SECOID_GetAlgorithmTag(&cert->subjectPublicKeyInfo.algorithm);
if (spkiOid == SEC_OID_UNKNOWN) {
return SECFailure;
}
/* Now we have to search based on the key type. Go through our preferred
* schemes in order and find the first that can be used. */
for (i = 0; i < ss->ssl3.signatureSchemeCount; ++i) {
scheme = ss->ssl3.signatureSchemes[i];
if (ssl_SignatureSchemeValid(scheme, spkiOid, isTLS13) &&
ssl_CanUseSignatureScheme(scheme, peerSchemes, peerSchemeCount,
requireSha1, doesRsaPss)) {
ss->ssl3.hs.signatureScheme = scheme;
return SECSuccess;
}
}
PORT_SetError(SSL_ERROR_UNSUPPORTED_SIGNATURE_ALGORITHM);
return SECFailure;
}
static SECStatus
ssl_PickFallbackSignatureScheme(sslSocket *ss, SECKEYPublicKey *pubKey)
{
PRBool isTLS12 = ss->version >= SSL_LIBRARY_VERSION_TLS_1_2;
switch (SECKEY_GetPublicKeyType(pubKey)) {
case rsaKey:
if (isTLS12) {
ss->ssl3.hs.signatureScheme = ssl_sig_rsa_pkcs1_sha1;
} else {
ss->ssl3.hs.signatureScheme = ssl_sig_rsa_pkcs1_sha1md5;
}
break;
case ecKey:
ss->ssl3.hs.signatureScheme = ssl_sig_ecdsa_sha1;
break;
case dsaKey:
ss->ssl3.hs.signatureScheme = ssl_sig_dsa_sha1;
break;
default:
PORT_Assert(0);
PORT_SetError(SEC_ERROR_INVALID_KEY);
return SECFailure;
}
return SECSuccess;
}
/* ssl3_PickServerSignatureScheme selects a signature scheme for signing the
* handshake. Most of this is determined by the key pair we are using.
* Prior to TLS 1.2, the MD5/SHA1 combination is always used. With TLS 1.2, a
* client may advertise its support for signature and hash combinations. */
static SECStatus
ssl3_PickServerSignatureScheme(sslSocket *ss)
{
const sslServerCert *cert = ss->sec.serverCert;
PRBool isTLS12 = ss->version >= SSL_LIBRARY_VERSION_TLS_1_2;
if (!isTLS12 || !ssl3_ExtensionNegotiated(ss, ssl_signature_algorithms_xtn)) {
/* If the client didn't provide any signature_algorithms extension then
* we can assume that they support SHA-1: RFC5246, Section 7.4.1.4.1. */
return ssl_PickFallbackSignatureScheme(ss, cert->serverKeyPair->pubKey);
}
/* Sets error code, if needed. */
return ssl_PickSignatureScheme(ss, cert->serverCert,
cert->serverKeyPair->pubKey,
cert->serverKeyPair->privKey,
ss->xtnData.sigSchemes,
ss->xtnData.numSigSchemes,
PR_FALSE /* requireSha1 */);
}
static SECStatus
ssl_PickClientSignatureScheme(sslSocket *ss, const SSLSignatureScheme *schemes,
unsigned int numSchemes)
{
SECKEYPrivateKey *privKey = ss->ssl3.clientPrivateKey;
SECStatus rv;
PRBool isTLS13 = (PRBool)ss->version >= SSL_LIBRARY_VERSION_TLS_1_3;
SECKEYPublicKey *pubKey = CERT_ExtractPublicKey(ss->ssl3.clientCertificate);
PORT_Assert(pubKey);
if (ss->version >= SSL_LIBRARY_VERSION_TLS_1_2) {
/* We should have already checked that a signature scheme was
* listed in the request. */
PORT_Assert(schemes && numSchemes > 0);
}
if (!isTLS13 &&
(SECKEY_GetPublicKeyType(pubKey) == rsaKey ||
SECKEY_GetPublicKeyType(pubKey) == dsaKey) &&
SECKEY_PublicKeyStrengthInBits(pubKey) <= 1024) {
/* If the key is a 1024-bit RSA or DSA key, assume conservatively that
* it may be unable to sign SHA-256 hashes. This is the case for older
* Estonian ID cards that have 1024-bit RSA keys. In FIPS 186-2 and
* older, DSA key size is at most 1024 bits and the hash function must
* be SHA-1.
*/
rv = ssl_PickSignatureScheme(ss, ss->ssl3.clientCertificate,
pubKey, privKey, schemes, numSchemes,
PR_TRUE /* requireSha1 */);
if (rv == SECSuccess) {
SECKEY_DestroyPublicKey(pubKey);
return SECSuccess;
}
/* If this fails, that's because the peer doesn't advertise SHA-1,
* so fall back to the full negotiation. */
}
rv = ssl_PickSignatureScheme(ss, ss->ssl3.clientCertificate,
pubKey, privKey, schemes, numSchemes,
PR_FALSE /* requireSha1 */);
SECKEY_DestroyPublicKey(pubKey);
return rv;
}
/* Called from ssl3_HandleServerHelloDone(). */
static SECStatus
ssl3_SendCertificateVerify(sslSocket *ss, SECKEYPrivateKey *privKey)
{
SECStatus rv = SECFailure;
PRBool isTLS12;
SECItem buf = { siBuffer, NULL, 0 };
SSL3Hashes hashes;
unsigned int len;
SSLHashType hashAlg;
PORT_Assert(ss->opt.noLocks || ssl_HaveXmitBufLock(ss));
PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
SSL_TRC(3, ("%d: SSL3[%d]: send certificate_verify handshake",
SSL_GETPID(), ss->fd));
ssl_GetSpecReadLock(ss);
if (ss->ssl3.hs.hashType == handshake_hash_record) {
hashAlg = ssl_SignatureSchemeToHashType(ss->ssl3.hs.signatureScheme);
} else {
/* Use ssl_hash_none to represent the MD5+SHA1 combo. */
hashAlg = ssl_hash_none;
}
if (ss->ssl3.hs.hashType == handshake_hash_record &&
hashAlg != ssl3_GetSuitePrfHash(ss)) {
rv = ssl3_ComputeHandshakeHash(ss->ssl3.hs.messages.buf,
ss->ssl3.hs.messages.len,
hashAlg, &hashes);
if (rv != SECSuccess) {
ssl_MapLowLevelError(SSL_ERROR_DIGEST_FAILURE);
}
} else {
rv = ssl3_ComputeHandshakeHashes(ss, ss->ssl3.pwSpec, &hashes, 0);
}
ssl_ReleaseSpecReadLock(ss);
if (rv != SECSuccess) {
goto done; /* err code was set by ssl3_ComputeHandshakeHash(es) */
}
isTLS12 = (PRBool)(ss->version == SSL_LIBRARY_VERSION_TLS_1_2);
PORT_Assert(ss->version <= SSL_LIBRARY_VERSION_TLS_1_2);
rv = ssl3_SignHashes(ss, &hashes, privKey, &buf);
if (rv == SECSuccess && !ss->sec.isServer) {
/* Remember the info about the slot that did the signing.
** Later, when doing an SSL restart handshake, verify this.
** These calls are mere accessors, and can't fail.
*/
PK11SlotInfo *slot;
sslSessionID *sid = ss->sec.ci.sid;
slot = PK11_GetSlotFromPrivateKey(privKey);
sid->u.ssl3.clAuthSeries = PK11_GetSlotSeries(slot);
sid->u.ssl3.clAuthSlotID = PK11_GetSlotID(slot);
sid->u.ssl3.clAuthModuleID = PK11_GetModuleID(slot);
sid->u.ssl3.clAuthValid = PR_TRUE;
PK11_FreeSlot(slot);
}
if (rv != SECSuccess) {
goto done; /* err code was set by ssl3_SignHashes */
}
len = buf.len + 2 + (isTLS12 ? 2 : 0);
rv = ssl3_AppendHandshakeHeader(ss, ssl_hs_certificate_verify, len);
if (rv != SECSuccess) {
goto done; /* error code set by AppendHandshake */
}
if (isTLS12) {
rv = ssl3_AppendHandshakeNumber(ss, ss->ssl3.hs.signatureScheme, 2);
if (rv != SECSuccess) {
goto done; /* err set by AppendHandshake. */
}
}
rv = ssl3_AppendHandshakeVariable(ss, buf.data, buf.len, 2);
if (rv != SECSuccess) {
goto done; /* error code set by AppendHandshake */
}
done:
if (buf.data)
PORT_Free(buf.data);
return rv;
}
/* Once a cipher suite has been selected, make sure that the necessary secondary
* information is properly set. */
SECStatus
ssl3_SetupCipherSuite(sslSocket *ss, PRBool initHashes)
{
ss->ssl3.hs.suite_def = ssl_LookupCipherSuiteDef(ss->ssl3.hs.cipher_suite);
if (!ss->ssl3.hs.suite_def) {
PORT_Assert(0);
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
return SECFailure;
}
ss->ssl3.hs.kea_def = &kea_defs[ss->ssl3.hs.suite_def->key_exchange_alg];
ss->ssl3.hs.preliminaryInfo |= ssl_preinfo_cipher_suite;
if (!initHashes) {
return SECSuccess;
}
/* Now we have a cipher suite, initialize the handshake hashes. */
return ssl3_InitHandshakeHashes(ss);
}
SECStatus
ssl_ClientSetCipherSuite(sslSocket *ss, SSL3ProtocolVersion version,
ssl3CipherSuite suite, PRBool initHashes)
{
unsigned int i;
if (ssl3_config_match_init(ss) == 0) {
PORT_Assert(PR_FALSE);
return SECFailure;
}
for (i = 0; i < ssl_V3_SUITES_IMPLEMENTED; i++) {
ssl3CipherSuiteCfg *suiteCfg = &ss->cipherSuites[i];
if (suite == suiteCfg->cipher_suite) {
SSLVersionRange vrange = { version, version };
if (!ssl3_config_match(suiteCfg, ss->ssl3.policy, &vrange, ss)) {
/* config_match already checks whether the cipher suite is
* acceptable for the version, but the check is repeated here
* in order to give a more precise error code. */
if (!ssl3_CipherSuiteAllowedForVersionRange(suite, &vrange)) {
PORT_SetError(SSL_ERROR_CIPHER_DISALLOWED_FOR_VERSION);
} else {
PORT_SetError(SSL_ERROR_NO_CYPHER_OVERLAP);
}
return SECFailure;
}
break;
}
}
if (i >= ssl_V3_SUITES_IMPLEMENTED) {
PORT_SetError(SSL_ERROR_NO_CYPHER_OVERLAP);
return SECFailure;
}
/* Don't let the server change its mind. */
if (ss->ssl3.hs.helloRetry && suite != ss->ssl3.hs.cipher_suite) {
(void)SSL3_SendAlert(ss, alert_fatal, illegal_parameter);
PORT_SetError(SSL_ERROR_RX_MALFORMED_SERVER_HELLO);
return SECFailure;
}
ss->ssl3.hs.cipher_suite = (ssl3CipherSuite)suite;
return ssl3_SetupCipherSuite(ss, initHashes);
}
/* Check that session ID we received from the server, if any, matches our
* expectations, depending on whether we're in compat mode and whether we
* negotiated TLS 1.3+ or TLS 1.2-.
*/
static PRBool
ssl_CheckServerSessionIdCorrectness(sslSocket *ss, SECItem *sidBytes)
{
sslSessionID *sid = ss->sec.ci.sid;
PRBool sidMatch = PR_FALSE;
PRBool sentFakeSid = PR_FALSE;
PRBool sentRealSid = sid && sid->version < SSL_LIBRARY_VERSION_TLS_1_3;
/* If attempting to resume a TLS 1.2 connection, the session ID won't be a
* fake. Check for the real value. */
if (sentRealSid) {
sidMatch = (sidBytes->len == sid->u.ssl3.sessionIDLength) &&
(!sidBytes->len || PORT_Memcmp(sid->u.ssl3.sessionID, sidBytes->data, sidBytes->len) == 0);
} else {
/* Otherwise, the session ID was a fake if TLS 1.3 compat mode is
* enabled. If so, check for the fake value. */
sentFakeSid = ss->opt.enableTls13CompatMode && !IS_DTLS(ss);
if (sentFakeSid && sidBytes->len == SSL3_SESSIONID_BYTES) {
PRUint8 buf[SSL3_SESSIONID_BYTES];
ssl_MakeFakeSid(ss, buf);
sidMatch = PORT_Memcmp(buf, sidBytes->data, sidBytes->len) == 0;
}
}
/* TLS 1.2: Session ID shouldn't match if we sent a fake. */
if (ss->version < SSL_LIBRARY_VERSION_TLS_1_3) {
if (sentFakeSid) {
return !sidMatch;
}
return PR_TRUE;
}
/* TLS 1.3: We sent a session ID. The server's should match. */
if (!IS_DTLS(ss) && (sentRealSid || sentFakeSid)) {
return sidMatch;
}
/* TLS 1.3 (no SID)/DTLS 1.3: The server shouldn't send a session ID. */
return sidBytes->len == 0;
}
static SECStatus
ssl_CheckServerRandom(sslSocket *ss)
{
/* Check the ServerHello.random per [RFC 8446 Section 4.1.3].
*
* TLS 1.3 clients receiving a ServerHello indicating TLS 1.2 or below
* MUST check that the last 8 bytes are not equal to either of these
* values. TLS 1.2 clients SHOULD also check that the last 8 bytes are
* not equal to the second value if the ServerHello indicates TLS 1.1 or
* below. If a match is found, the client MUST abort the handshake with
* an "illegal_parameter" alert.
*/
SSL3ProtocolVersion checkVersion =
ss->ssl3.downgradeCheckVersion ? ss->ssl3.downgradeCheckVersion
: ss->vrange.max;
if (checkVersion >= SSL_LIBRARY_VERSION_TLS_1_2 &&
checkVersion > ss->version) {
/* Both sections use the same sentinel region. */
PRUint8 *downgrade_sentinel =
ss->ssl3.hs.server_random +
SSL3_RANDOM_LENGTH - sizeof(tls12_downgrade_random);
if (!PORT_Memcmp(downgrade_sentinel,
tls12_downgrade_random,
sizeof(tls12_downgrade_random)) ||
!PORT_Memcmp(downgrade_sentinel,
tls1_downgrade_random,
sizeof(tls1_downgrade_random))) {
return SECFailure;
}
}
return SECSuccess;
}
/* Called from ssl3_HandleHandshakeMessage() when it has deciphered a complete
* ssl3 ServerHello message.
* Caller must hold Handshake and RecvBuf locks.
*/
static SECStatus
ssl3_HandleServerHello(sslSocket *ss, PRUint8 *b, PRUint32 length)
{
PRUint32 cipher;
int errCode = SSL_ERROR_RX_MALFORMED_SERVER_HELLO;
PRUint32 compression;
SECStatus rv;
SECItem sidBytes = { siBuffer, NULL, 0 };
PRBool isHelloRetry;
SSL3AlertDescription desc = illegal_parameter;
const PRUint8 *savedMsg = b;
const PRUint32 savedLength = length;
SSL_TRC(3, ("%d: SSL3[%d]: handle server_hello handshake",
SSL_GETPID(), ss->fd));
PORT_Assert(ss->opt.noLocks || ssl_HaveRecvBufLock(ss));
PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
if (ss->ssl3.hs.ws != wait_server_hello) {
errCode = SSL_ERROR_RX_UNEXPECTED_SERVER_HELLO;
desc = unexpected_message;
goto alert_loser;
}
/* clean up anything left from previous handshake. */
if (ss->ssl3.clientCertChain != NULL) {
CERT_DestroyCertificateList(ss->ssl3.clientCertChain);
ss->ssl3.clientCertChain = NULL;
}
if (ss->ssl3.clientCertificate != NULL) {
CERT_DestroyCertificate(ss->ssl3.clientCertificate);
ss->ssl3.clientCertificate = NULL;
}
if (ss->ssl3.clientPrivateKey != NULL) {
SECKEY_DestroyPrivateKey(ss->ssl3.clientPrivateKey);
ss->ssl3.clientPrivateKey = NULL;
}
/* Note that if the server selects TLS 1.3, this will set the version to TLS
* 1.2. We will amend that once all other fields have been read. */
rv = ssl_ClientReadVersion(ss, &b, &length, &ss->version);
if (rv != SECSuccess) {
goto loser; /* alert has been sent */
}
rv = ssl3_ConsumeHandshake(
ss, ss->ssl3.hs.server_random, SSL3_RANDOM_LENGTH, &b, &length);
if (rv != SECSuccess) {
goto loser; /* alert has been sent */
}
isHelloRetry = !PORT_Memcmp(ss->ssl3.hs.server_random,
ssl_hello_retry_random, SSL3_RANDOM_LENGTH);
rv = ssl3_ConsumeHandshakeVariable(ss, &sidBytes, 1, &b, &length);
if (rv != SECSuccess) {
goto loser; /* alert has been sent */
}
if (sidBytes.len > SSL3_SESSIONID_BYTES) {
if (ss->version >= SSL_LIBRARY_VERSION_TLS_1_0)
desc = decode_error;
goto alert_loser; /* malformed. */
}
/* Read the cipher suite. */
rv = ssl3_ConsumeHandshakeNumber(ss, &cipher, 2, &b, &length);
if (rv != SECSuccess) {
goto loser; /* alert has been sent */
}
/* Compression method. */
rv = ssl3_ConsumeHandshakeNumber(ss, &compression, 1, &b, &length);
if (rv != SECSuccess) {
goto loser; /* alert has been sent */
}
if (compression != ssl_compression_null) {
desc = illegal_parameter;
errCode = SSL_ERROR_RX_MALFORMED_SERVER_HELLO;
goto alert_loser;
}
/* Parse extensions. */
if (length != 0) {
PRUint32 extensionLength;
rv = ssl3_ConsumeHandshakeNumber(ss, &extensionLength, 2, &b, &length);
if (rv != SECSuccess) {
goto loser; /* alert already sent */
}
if (extensionLength != length) {
desc = decode_error;
goto alert_loser;
}
rv = ssl3_ParseExtensions(ss, &b, &length);
if (rv != SECSuccess) {
goto alert_loser; /* malformed */
}
}
/* Read supported_versions if present. */
rv = tls13_ClientReadSupportedVersion(ss);
if (rv != SECSuccess) {
goto loser;
}
PORT_Assert(!SSL_ALL_VERSIONS_DISABLED(&ss->vrange));
/* Check that the version is within the configured range. */
if (ss->vrange.min > ss->version || ss->vrange.max < ss->version) {
desc = (ss->version > SSL_LIBRARY_VERSION_3_0)
? protocol_version
: handshake_failure;
errCode = SSL_ERROR_UNSUPPORTED_VERSION;
goto alert_loser;
}
if (isHelloRetry && ss->ssl3.hs.helloRetry) {
SSL_TRC(3, ("%d: SSL3[%d]: received a second hello_retry_request",
SSL_GETPID(), ss->fd));
desc = unexpected_message;
errCode = SSL_ERROR_RX_UNEXPECTED_HELLO_RETRY_REQUEST;
goto alert_loser;
}
/* There are three situations in which the server must pick
* TLS 1.3.
*
* 1. We received HRR
* 2. We sent early app data
* 3. ECH was accepted (checked in MaybeHandleEchSignal)
*
* If we offered ECH and the server negotiated a lower version,
* authenticate to the public name for secure disablement.
*
*/
if (ss->version < SSL_LIBRARY_VERSION_TLS_1_3) {
if (isHelloRetry || ss->ssl3.hs.helloRetry) {
/* SSL3_SendAlert() will uncache the SID. */
desc = illegal_parameter;
errCode = SSL_ERROR_RX_MALFORMED_SERVER_HELLO;
goto alert_loser;
}
if (ss->ssl3.hs.zeroRttState == ssl_0rtt_sent) {
/* SSL3_SendAlert() will uncache the SID. */
desc = illegal_parameter;
errCode = SSL_ERROR_DOWNGRADE_WITH_EARLY_DATA;
goto alert_loser;
}
}
/* Check that the server negotiated the same version as it did
* in the first handshake. This isn't really the best place for
* us to be getting this version number, but it's what we have.
* (1294697). */
if (ss->firstHsDone && (ss->version != ss->ssl3.crSpec->version)) {
desc = protocol_version;
errCode = SSL_ERROR_UNSUPPORTED_VERSION;
goto alert_loser;
}
if (ss->opt.enableHelloDowngradeCheck
#ifdef DTLS_1_3_DRAFT_VERSION
/* Disable this check while we are on draft DTLS 1.3 versions. */
&& !IS_DTLS(ss)
#endif
) {
rv = ssl_CheckServerRandom(ss);
if (rv != SECSuccess) {
desc = illegal_parameter;
errCode = SSL_ERROR_RX_MALFORMED_SERVER_HELLO;
goto alert_loser;
}
}
/* Finally, now all the version-related checks have passed. */
ss->ssl3.hs.preliminaryInfo |= ssl_preinfo_version;
/* Update the write cipher spec to match the version. But not after
* HelloRetryRequest, because cwSpec might be a 0-RTT cipher spec,
* in which case this is a no-op. */
if (!ss->firstHsDone && !isHelloRetry) {
ssl_GetSpecWriteLock(ss);
ssl_SetSpecVersions(ss, ss->ssl3.cwSpec);
ssl_ReleaseSpecWriteLock(ss);
}
/* Check that the session ID is as expected. */
if (!ssl_CheckServerSessionIdCorrectness(ss, &sidBytes)) {
desc = illegal_parameter;
errCode = SSL_ERROR_RX_MALFORMED_SERVER_HELLO;
goto alert_loser;
}
/* Only initialize hashes if this isn't a Hello Retry. */
rv = ssl_ClientSetCipherSuite(ss, ss->version, cipher,
!isHelloRetry);
if (rv != SECSuccess) {
desc = illegal_parameter;
errCode = PORT_GetError();
goto alert_loser;
}
dtls_ReceivedFirstMessageInFlight(ss);
if (isHelloRetry) {
rv = tls13_HandleHelloRetryRequest(ss, savedMsg, savedLength);
if (rv != SECSuccess) {
goto loser;
}
return SECSuccess;
}
rv = ssl3_HandleParsedExtensions(ss, ssl_hs_server_hello);
ssl3_DestroyRemoteExtensions(&ss->ssl3.hs.remoteExtensions);
if (rv != SECSuccess) {
goto alert_loser;
}
rv = ssl_HashHandshakeMessage(ss, ssl_hs_server_hello,
savedMsg, savedLength);
if (rv != SECSuccess) {
goto loser;
}
if (ss->version >= SSL_LIBRARY_VERSION_TLS_1_3) {
rv = tls13_HandleServerHelloPart2(ss, savedMsg, savedLength);
if (rv != SECSuccess) {
errCode = PORT_GetError();
goto loser;
}
} else {
rv = ssl3_HandleServerHelloPart2(ss, &sidBytes, &errCode);
if (rv != SECSuccess)
goto loser;
}
ss->ssl3.hs.preliminaryInfo |= ssl_preinfo_ech;
return SECSuccess;
alert_loser:
(void)SSL3_SendAlert(ss, alert_fatal, desc);
loser:
/* Clean up the temporary pointer to the handshake buffer. */
ss->xtnData.signedCertTimestamps.len = 0;
ssl_MapLowLevelError(errCode);
return SECFailure;
}
static SECStatus
ssl3_UnwrapMasterSecretClient(sslSocket *ss, sslSessionID *sid, PK11SymKey **ms)
{
PK11SlotInfo *slot;
PK11SymKey *wrapKey;
CK_FLAGS keyFlags = 0;
SECItem wrappedMS = {
siBuffer,
sid->u.ssl3.keys.wrapped_master_secret,
sid->u.ssl3.keys.wrapped_master_secret_len
};
/* unwrap master secret */
slot = SECMOD_LookupSlot(sid->u.ssl3.masterModuleID,
sid->u.ssl3.masterSlotID);
if (slot == NULL) {
return SECFailure;
}
if (!PK11_IsPresent(slot)) {
PK11_FreeSlot(slot);
return SECFailure;
}
wrapKey = PK11_GetWrapKey(slot, sid->u.ssl3.masterWrapIndex,
sid->u.ssl3.masterWrapMech,
sid->u.ssl3.masterWrapSeries,
ss->pkcs11PinArg);
PK11_FreeSlot(slot);
if (wrapKey == NULL) {
return SECFailure;
}
if (ss->version > SSL_LIBRARY_VERSION_3_0) { /* isTLS */
keyFlags = CKF_SIGN | CKF_VERIFY;
}
*ms = PK11_UnwrapSymKeyWithFlags(wrapKey, sid->u.ssl3.masterWrapMech,
NULL, &wrappedMS, CKM_SSL3_MASTER_KEY_DERIVE,
CKA_DERIVE, SSL3_MASTER_SECRET_LENGTH, keyFlags);
PK11_FreeSymKey(wrapKey);
if (!*ms) {
return SECFailure;
}
return SECSuccess;
}
static SECStatus
ssl3_HandleServerHelloPart2(sslSocket *ss, const SECItem *sidBytes,
int *retErrCode)
{
SSL3AlertDescription desc = handshake_failure;
int errCode = SSL_ERROR_RX_MALFORMED_SERVER_HELLO;
SECStatus rv;
PRBool sid_match;
sslSessionID *sid = ss->sec.ci.sid;
if ((ss->opt.requireSafeNegotiation ||
(ss->firstHsDone && (ss->peerRequestedProtection ||
ss->opt.enableRenegotiation ==
SSL_RENEGOTIATE_REQUIRES_XTN))) &&
!ssl3_ExtensionNegotiated(ss, ssl_renegotiation_info_xtn)) {
desc = handshake_failure;
errCode = ss->firstHsDone ? SSL_ERROR_RENEGOTIATION_NOT_ALLOWED
: SSL_ERROR_UNSAFE_NEGOTIATION;
goto alert_loser;
}
/* Any errors after this point are not "malformed" errors. */
desc = handshake_failure;
/* we need to call ssl3_SetupPendingCipherSpec here so we can check the
* key exchange algorithm. */
rv = ssl3_SetupBothPendingCipherSpecs(ss);
if (rv != SECSuccess) {
goto alert_loser; /* error code is set. */
}
/* We may or may not have sent a session id, we may get one back or
* not and if so it may match the one we sent.
* Attempt to restore the master secret to see if this is so...
* Don't consider failure to find a matching SID an error.
*/
sid_match = (PRBool)(sidBytes->len > 0 &&
sidBytes->len ==
sid->u.ssl3.sessionIDLength &&
!PORT_Memcmp(sid->u.ssl3.sessionID,
sidBytes->data, sidBytes->len));
if (sid_match) {
if (sid->version != ss->version ||
sid->u.ssl3.cipherSuite != ss->ssl3.hs.cipher_suite) {
errCode = SSL_ERROR_RX_MALFORMED_SERVER_HELLO;
goto alert_loser;
}
do {
PK11SymKey *masterSecret;
/* [draft-ietf-tls-session-hash-06; Section 5.3]
*
* o If the original session did not use the "extended_master_secret"
* extension but the new ServerHello contains the extension, the
* client MUST abort the handshake.
*/
if (!sid->u.ssl3.keys.extendedMasterSecretUsed &&
ssl3_ExtensionNegotiated(ss, ssl_extended_master_secret_xtn)) {
errCode = SSL_ERROR_UNEXPECTED_EXTENDED_MASTER_SECRET;
goto alert_loser;
}
/*
* o If the original session used an extended master secret but the new
* ServerHello does not contain the "extended_master_secret"
* extension, the client SHOULD abort the handshake.
*
* TODO(ekr@rtfm.com): Add option to refuse to resume when EMS is not
* used at all (bug 1176526).
*/
if (sid->u.ssl3.keys.extendedMasterSecretUsed &&
!ssl3_ExtensionNegotiated(ss, ssl_extended_master_secret_xtn)) {
errCode = SSL_ERROR_MISSING_EXTENDED_MASTER_SECRET;
goto alert_loser;
}
ss->sec.authType = sid->authType;
ss->sec.authKeyBits = sid->authKeyBits;
ss->sec.keaType = sid->keaType;
ss->sec.keaKeyBits = sid->keaKeyBits;
ss->sec.originalKeaGroup = ssl_LookupNamedGroup(sid->keaGroup);
ss->sec.signatureScheme = sid->sigScheme;
rv = ssl3_UnwrapMasterSecretClient(ss, sid, &masterSecret);
if (rv != SECSuccess) {
break; /* not considered an error */
}
/* Got a Match */
SSL_AtomicIncrementLong(&ssl3stats.hsh_sid_cache_hits);
/* If we sent a session ticket, then this is a stateless resume. */
if (ss->xtnData.sentSessionTicketInClientHello)
SSL_AtomicIncrementLong(&ssl3stats.hsh_sid_stateless_resumes);
if (ssl3_ExtensionNegotiated(ss, ssl_session_ticket_xtn))
ss->ssl3.hs.ws = wait_new_session_ticket;
else
ss->ssl3.hs.ws = wait_change_cipher;
ss->ssl3.hs.isResuming = PR_TRUE;
/* copy the peer cert from the SID */
if (sid->peerCert != NULL) {
ss->sec.peerCert = CERT_DupCertificate(sid->peerCert);
}
/* We are re-using the old MS, so no need to derive again. */
rv = ssl3_InitPendingCipherSpecs(ss, masterSecret, PR_FALSE);
if (rv != SECSuccess) {
goto alert_loser; /* err code was set */
}
return SECSuccess;
} while (0);
}
if (sid_match)
SSL_AtomicIncrementLong(&ssl3stats.hsh_sid_cache_not_ok);
else
SSL_AtomicIncrementLong(&ssl3stats.hsh_sid_cache_misses);
/* We tried to resume a 1.3 session but the server negotiated 1.2. */
if (ss->statelessResume) {
PORT_Assert(sid->version == SSL_LIBRARY_VERSION_TLS_1_3);
PORT_Assert(ss->ssl3.hs.currentSecret);
/* Reset resumption state, only used by 1.3 code. */
ss->statelessResume = PR_FALSE;
/* Clear TLS 1.3 early data traffic key. */
PK11_FreeSymKey(ss->ssl3.hs.currentSecret);
ss->ssl3.hs.currentSecret = NULL;
}
/* throw the old one away */
sid->u.ssl3.keys.resumable = PR_FALSE;
ssl_UncacheSessionID(ss);
ssl_FreeSID(sid);
/* get a new sid */
ss->sec.ci.sid = sid = ssl3_NewSessionID(ss, PR_FALSE);
if (sid == NULL) {
goto alert_loser; /* memory error is set. */
}
sid->version = ss->version;
sid->u.ssl3.sessionIDLength = sidBytes->len;
if (sidBytes->len > 0) {
PORT_Memcpy(sid->u.ssl3.sessionID, sidBytes->data, sidBytes->len);
}
sid->u.ssl3.keys.extendedMasterSecretUsed =
ssl3_ExtensionNegotiated(ss, ssl_extended_master_secret_xtn);
/* Copy Signed Certificate Timestamps, if any. */
if (ss->xtnData.signedCertTimestamps.len) {
rv = SECITEM_CopyItem(NULL, &sid->u.ssl3.signedCertTimestamps,
&ss->xtnData.signedCertTimestamps);
ss->xtnData.signedCertTimestamps.len = 0;
if (rv != SECSuccess)
goto loser;
}
ss->ssl3.hs.isResuming = PR_FALSE;
if (ss->ssl3.hs.kea_def->authKeyType != ssl_auth_null) {
/* All current cipher suites other than those with ssl_auth_null (i.e.,
* (EC)DH_anon_* suites) require a certificate, so use that signal. */
ss->ssl3.hs.ws = wait_server_cert;
} else {
/* All the remaining cipher suites must be (EC)DH_anon_* and so
* must be ephemeral. Note, if we ever add PSK this might
* change. */
PORT_Assert(ss->ssl3.hs.kea_def->ephemeral);
ss->ssl3.hs.ws = wait_server_key;
}
return SECSuccess;
alert_loser:
(void)SSL3_SendAlert(ss, alert_fatal, desc);
loser:
*retErrCode = errCode;
return SECFailure;
}
static SECStatus
ssl_HandleDHServerKeyExchange(sslSocket *ss, PRUint8 *b, PRUint32 length)
{
SECStatus rv;
int errCode = SSL_ERROR_RX_MALFORMED_SERVER_KEY_EXCH;
SSL3AlertDescription desc = illegal_parameter;
SSLHashType hashAlg;
PRBool isTLS = ss->ssl3.prSpec->version > SSL_LIBRARY_VERSION_3_0;
SSLSignatureScheme sigScheme;
SECItem dh_p = { siBuffer, NULL, 0 };
SECItem dh_g = { siBuffer, NULL, 0 };
SECItem dh_Ys = { siBuffer, NULL, 0 };
unsigned dh_p_bits;
unsigned dh_g_bits;
PRInt32 minDH;
SSL3Hashes hashes;
SECItem signature = { siBuffer, NULL, 0 };
PLArenaPool *arena = NULL;
SECKEYPublicKey *peerKey = NULL;
rv = ssl3_ConsumeHandshakeVariable(ss, &dh_p, 2, &b, &length);
if (rv != SECSuccess) {
goto loser; /* malformed. */
}
rv = NSS_OptionGet(NSS_DH_MIN_KEY_SIZE, &minDH);
if (rv != SECSuccess || minDH <= 0) {
minDH = SSL_DH_MIN_P_BITS;
}
dh_p_bits = SECKEY_BigIntegerBitLength(&dh_p);
if (dh_p_bits < (unsigned)minDH) {
errCode = SSL_ERROR_WEAK_SERVER_EPHEMERAL_DH_KEY;
goto alert_loser;
}
if (dh_p_bits > SSL_MAX_DH_KEY_BITS) {
errCode = SSL_ERROR_DH_KEY_TOO_LONG;
goto alert_loser;
}
rv = ssl3_ConsumeHandshakeVariable(ss, &dh_g, 2, &b, &length);
if (rv != SECSuccess) {
goto loser; /* malformed. */
}
/* Abort if dh_g is 0, 1, or obviously too big. */
dh_g_bits = SECKEY_BigIntegerBitLength(&dh_g);
if (dh_g_bits > dh_p_bits || dh_g_bits <= 1) {
goto alert_loser;
}
if (ss->opt.requireDHENamedGroups) {
/* If we're doing named groups, make sure it's good. */
rv = ssl_ValidateDHENamedGroup(ss, &dh_p, &dh_g, NULL, NULL);
if (rv != SECSuccess) {
errCode = SSL_ERROR_WEAK_SERVER_EPHEMERAL_DH_KEY;
goto alert_loser;
}
}
rv = ssl3_ConsumeHandshakeVariable(ss, &dh_Ys, 2, &b, &length);
if (rv != SECSuccess) {
goto loser; /* malformed. */
}
if (!ssl_IsValidDHEShare(&dh_p, &dh_Ys)) {
errCode = SSL_ERROR_RX_MALFORMED_DHE_KEY_SHARE;
goto alert_loser;
}
if (ss->version >= SSL_LIBRARY_VERSION_TLS_1_2) {
rv = ssl_ConsumeSignatureScheme(ss, &b, &length, &sigScheme);
if (rv != SECSuccess) {
goto loser; /* alert already sent */
}
rv = ssl_CheckSignatureSchemeConsistency(
ss, sigScheme, &ss->sec.peerCert->subjectPublicKeyInfo);
if (rv != SECSuccess) {
goto alert_loser;
}
hashAlg = ssl_SignatureSchemeToHashType(sigScheme);
} else {
/* Use ssl_hash_none to represent the MD5+SHA1 combo. */
hashAlg = ssl_hash_none;
sigScheme = ssl_sig_none;
}
rv = ssl3_ConsumeHandshakeVariable(ss, &signature, 2, &b, &length);
if (rv != SECSuccess) {
goto loser; /* malformed. */
}
if (length != 0) {
if (isTLS) {
desc = decode_error;
}
goto alert_loser; /* malformed. */
}
PRINT_BUF(60, (NULL, "Server DH p", dh_p.data, dh_p.len));
PRINT_BUF(60, (NULL, "Server DH g", dh_g.data, dh_g.len));
PRINT_BUF(60, (NULL, "Server DH Ys", dh_Ys.data, dh_Ys.len));
/* failures after this point are not malformed handshakes. */
/* TLS: send decrypt_error if signature failed. */
desc = isTLS ? decrypt_error : handshake_failure;
/*
* Check to make sure the hash is signed by right guy.
*/
rv = ssl3_ComputeDHKeyHash(ss, hashAlg, &hashes,
dh_p, dh_g, dh_Ys, PR_FALSE /* padY */);
if (rv != SECSuccess) {
errCode =
ssl_MapLowLevelError(SSL_ERROR_SERVER_KEY_EXCHANGE_FAILURE);
goto alert_loser;
}
rv = ssl3_VerifySignedHashes(ss, sigScheme, &hashes, &signature);
if (rv != SECSuccess) {
errCode =
ssl_MapLowLevelError(SSL_ERROR_SERVER_KEY_EXCHANGE_FAILURE);
goto alert_loser;
}
/*
* we really need to build a new key here because we can no longer
* ignore calling SECKEY_DestroyPublicKey. Using the key may allocate
* pkcs11 slots and ID's.
*/
arena = PORT_NewArena(DER_DEFAULT_CHUNKSIZE);
if (arena == NULL) {
errCode = SEC_ERROR_NO_MEMORY;
goto loser;
}
peerKey = PORT_ArenaZNew(arena, SECKEYPublicKey);
if (peerKey == NULL) {
errCode = SEC_ERROR_NO_MEMORY;
goto loser;
}
peerKey->arena = arena;
peerKey->keyType = dhKey;
peerKey->pkcs11Slot = NULL;
peerKey->pkcs11ID = CK_INVALID_HANDLE;
if (SECITEM_CopyItem(arena, &peerKey->u.dh.prime, &dh_p) ||
SECITEM_CopyItem(arena, &peerKey->u.dh.base, &dh_g) ||
SECITEM_CopyItem(arena, &peerKey->u.dh.publicValue, &dh_Ys)) {
errCode = SEC_ERROR_NO_MEMORY;
goto loser;
}
ss->sec.peerKey = peerKey;
return SECSuccess;
alert_loser:
(void)SSL3_SendAlert(ss, alert_fatal, desc);
loser:
if (arena) {
PORT_FreeArena(arena, PR_FALSE);
}
PORT_SetError(ssl_MapLowLevelError(errCode));
return SECFailure;
}
/* Called from ssl3_HandlePostHelloHandshakeMessage() when it has deciphered a
* complete ssl3 ServerKeyExchange message.
* Caller must hold Handshake and RecvBuf locks.
*/
static SECStatus
ssl3_HandleServerKeyExchange(sslSocket *ss, PRUint8 *b, PRUint32 length)
{
SECStatus rv;
SSL_TRC(3, ("%d: SSL3[%d]: handle server_key_exchange handshake",
SSL_GETPID(), ss->fd));
PORT_Assert(ss->opt.noLocks || ssl_HaveRecvBufLock(ss));
PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
if (ss->ssl3.hs.ws != wait_server_key) {
SSL3_SendAlert(ss, alert_fatal, unexpected_message);
PORT_SetError(SSL_ERROR_RX_UNEXPECTED_SERVER_KEY_EXCH);
return SECFailure;
}
switch (ss->ssl3.hs.kea_def->exchKeyType) {
case ssl_kea_dh:
rv = ssl_HandleDHServerKeyExchange(ss, b, length);
break;
case ssl_kea_ecdh:
rv = ssl3_HandleECDHServerKeyExchange(ss, b, length);
break;
default:
SSL3_SendAlert(ss, alert_fatal, handshake_failure);
PORT_SetError(SEC_ERROR_UNSUPPORTED_KEYALG);
rv = SECFailure;
break;
}
if (rv == SECSuccess) {
ss->ssl3.hs.ws = wait_cert_request;
}
/* All Handle*ServerKeyExchange functions set the error code. */
return rv;
}
typedef struct dnameNode {
struct dnameNode *next;
SECItem name;
} dnameNode;
/*
* Parse the ca_list structure in a CertificateRequest.
*
* Called from:
* ssl3_HandleCertificateRequest
* tls13_HandleCertificateRequest
*/
SECStatus
ssl3_ParseCertificateRequestCAs(sslSocket *ss, PRUint8 **b, PRUint32 *length,
CERTDistNames *ca_list)
{
PRUint32 remaining;
int nnames = 0;
dnameNode *node;
SECStatus rv;
int i;
rv = ssl3_ConsumeHandshakeNumber(ss, &remaining, 2, b, length);
if (rv != SECSuccess)
return SECFailure; /* malformed, alert has been sent */
if (remaining > *length)
goto alert_loser;
ca_list->head = node = PORT_ArenaZNew(ca_list->arena, dnameNode);
if (node == NULL)
goto no_mem;
while (remaining > 0) {
PRUint32 len;
if (remaining < 2)
goto alert_loser; /* malformed */
rv = ssl3_ConsumeHandshakeNumber(ss, &len, 2, b, length);
if (rv != SECSuccess)
return SECFailure; /* malformed, alert has been sent */
if (len == 0 || remaining < len + 2)
goto alert_loser; /* malformed */
remaining -= 2;
if (SECITEM_MakeItem(ca_list->arena, &node->name, *b, len) != SECSuccess) {
goto no_mem;
}
node->name.len = len;
*b += len;
*length -= len;
remaining -= len;
nnames++;
if (remaining <= 0)
break; /* success */
node->next = PORT_ArenaZNew(ca_list->arena, dnameNode);
node = node->next;
if (node == NULL)
goto no_mem;
}
ca_list->nnames = nnames;
ca_list->names = PORT_ArenaNewArray(ca_list->arena, SECItem, nnames);
if (nnames > 0 && ca_list->names == NULL)
goto no_mem;
for (i = 0, node = (dnameNode *)ca_list->head;
i < nnames;
i++, node = node->next) {
ca_list->names[i] = node->name;
}
return SECSuccess;
no_mem:
return SECFailure;
alert_loser:
(void)SSL3_SendAlert(ss, alert_fatal,
ss->version < SSL_LIBRARY_VERSION_TLS_1_0 ? illegal_parameter
: decode_error);
PORT_SetError(SSL_ERROR_RX_MALFORMED_CERT_REQUEST);
return SECFailure;
}
SECStatus
ssl_ParseSignatureSchemes(const sslSocket *ss, PLArenaPool *arena,
SSLSignatureScheme **schemesOut,
unsigned int *numSchemesOut,
unsigned char **b, unsigned int *len)
{
SECStatus rv;
SECItem buf;
SSLSignatureScheme *schemes = NULL;
unsigned int numSupported = 0;
unsigned int numRemaining = 0;
unsigned int max;
rv = ssl3_ExtConsumeHandshakeVariable(ss, &buf, 2, b, len);
if (rv != SECSuccess) {
return SECFailure;
}
/* An odd-length value is invalid. */
if ((buf.len & 1) != 0) {
ssl3_ExtSendAlert(ss, alert_fatal, decode_error);
return SECFailure;
}
/* Let the caller decide whether to alert here. */
if (buf.len == 0) {
goto done;
}
/* Limit the number of schemes we read. */
numRemaining = buf.len / 2;
max = PR_MIN(numRemaining, MAX_SIGNATURE_SCHEMES);
if (arena) {
schemes = PORT_ArenaZNewArray(arena, SSLSignatureScheme, max);
} else {
schemes = PORT_ZNewArray(SSLSignatureScheme, max);
}
if (!schemes) {
ssl3_ExtSendAlert(ss, alert_fatal, internal_error);
return SECFailure;
}
for (; numRemaining && numSupported < MAX_SIGNATURE_SCHEMES; --numRemaining) {
PRUint32 tmp;
rv = ssl3_ExtConsumeHandshakeNumber(ss, &tmp, 2, &buf.data, &buf.len);
if (rv != SECSuccess) {
PORT_Assert(0);
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
return SECFailure;
}
if (ssl_SignatureSchemeValid((SSLSignatureScheme)tmp, SEC_OID_UNKNOWN,
(PRBool)ss->version >= SSL_LIBRARY_VERSION_TLS_1_3)) {
;
schemes[numSupported++] = (SSLSignatureScheme)tmp;
}
}
if (!numSupported) {
if (!arena) {
PORT_Free(schemes);
}
schemes = NULL;
}
done:
*schemesOut = schemes;
*numSchemesOut = numSupported;
return SECSuccess;
}
/* Called from ssl3_HandlePostHelloHandshakeMessage() when it has deciphered
* a complete ssl3 Certificate Request message.
* Caller must hold Handshake and RecvBuf locks.
*/
static SECStatus
ssl3_HandleCertificateRequest(sslSocket *ss, PRUint8 *b, PRUint32 length)
{
PLArenaPool *arena = NULL;
PRBool isTLS = PR_FALSE;
PRBool isTLS12 = PR_FALSE;
int errCode = SSL_ERROR_RX_MALFORMED_CERT_REQUEST;
SECStatus rv;
SSL3AlertDescription desc = illegal_parameter;
SECItem cert_types = { siBuffer, NULL, 0 };
SSLSignatureScheme *signatureSchemes = NULL;
unsigned int signatureSchemeCount = 0;
CERTDistNames ca_list;
SSL_TRC(3, ("%d: SSL3[%d]: handle certificate_request handshake",
SSL_GETPID(), ss->fd));
PORT_Assert(ss->opt.noLocks || ssl_HaveRecvBufLock(ss));
PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
if (ss->ssl3.hs.ws != wait_cert_request) {
desc = unexpected_message;
errCode = SSL_ERROR_RX_UNEXPECTED_CERT_REQUEST;
goto alert_loser;
}
PORT_Assert(ss->ssl3.clientCertChain == NULL);
PORT_Assert(ss->ssl3.clientCertificate == NULL);
PORT_Assert(ss->ssl3.clientPrivateKey == NULL);
isTLS = (PRBool)(ss->ssl3.prSpec->version > SSL_LIBRARY_VERSION_3_0);
isTLS12 = (PRBool)(ss->ssl3.prSpec->version >= SSL_LIBRARY_VERSION_TLS_1_2);
rv = ssl3_ConsumeHandshakeVariable(ss, &cert_types, 1, &b, &length);
if (rv != SECSuccess)
goto loser; /* malformed, alert has been sent */
arena = ca_list.arena = PORT_NewArena(DER_DEFAULT_CHUNKSIZE);
if (arena == NULL)
goto no_mem;
if (isTLS12) {
rv = ssl_ParseSignatureSchemes(ss, arena,
&signatureSchemes,
&signatureSchemeCount,
&b, &length);
if (rv != SECSuccess) {
PORT_SetError(SSL_ERROR_RX_MALFORMED_CERT_REQUEST);
goto loser; /* malformed, alert has been sent */
}
if (signatureSchemeCount == 0) {
errCode = SSL_ERROR_UNSUPPORTED_SIGNATURE_ALGORITHM;
desc = handshake_failure;
goto alert_loser;
}
}
rv = ssl3_ParseCertificateRequestCAs(ss, &b, &length, &ca_list);
if (rv != SECSuccess)
goto done; /* alert sent in ssl3_ParseCertificateRequestCAs */
if (length != 0)
goto alert_loser; /* malformed */
ss->ssl3.hs.ws = wait_hello_done;
rv = ssl3_CompleteHandleCertificateRequest(ss, signatureSchemes,
signatureSchemeCount, &ca_list);
if (rv == SECFailure) {
PORT_Assert(0);
errCode = SEC_ERROR_LIBRARY_FAILURE;
desc = internal_error;
goto alert_loser;
}
goto done;
no_mem:
rv = SECFailure;
PORT_SetError(SEC_ERROR_NO_MEMORY);
goto done;
alert_loser:
if (isTLS && desc == illegal_parameter)
desc = decode_error;
(void)SSL3_SendAlert(ss, alert_fatal, desc);
loser:
PORT_SetError(errCode);
rv = SECFailure;
done:
if (arena != NULL)
PORT_FreeArena(arena, PR_FALSE);
return rv;
}
SECStatus
ssl3_CompleteHandleCertificateRequest(sslSocket *ss,
const SSLSignatureScheme *signatureSchemes,
unsigned int signatureSchemeCount,
CERTDistNames *ca_list)
{
SECStatus rv;
/* Should not send a client cert when (non-GREASE) ECH is rejected. */
if (ss->ssl3.hs.echHpkeCtx && !ss->ssl3.hs.echAccepted) {
PORT_Assert(ssl3_ExtensionAdvertised(ss, ssl_tls13_encrypted_client_hello_xtn));
goto send_no_certificate;
}
if (ss->getClientAuthData != NULL) {
PORT_Assert((ss->ssl3.hs.preliminaryInfo & ssl_preinfo_all) ==
ssl_preinfo_all);
PORT_Assert(ss->ssl3.clientPrivateKey == NULL);
PORT_Assert(ss->ssl3.clientCertificate == NULL);
PORT_Assert(ss->ssl3.clientCertChain == NULL);
/* XXX Should pass cert_types and algorithms in this call!! */
rv = (SECStatus)(*ss->getClientAuthData)(ss->getClientAuthDataArg,
ss->fd, ca_list,
&ss->ssl3.clientCertificate,
&ss->ssl3.clientPrivateKey);
} else {
rv = SECFailure; /* force it to send a no_certificate alert */
}
switch (rv) {
case SECWouldBlock: /* getClientAuthData has put up a dialog box. */
ssl3_SetAlwaysBlock(ss);
break; /* not an error */
case SECSuccess:
/* check what the callback function returned */
if ((!ss->ssl3.clientCertificate) || (!ss->ssl3.clientPrivateKey)) {
/* we are missing either the key or cert */
goto send_no_certificate;
}
/* Setting ssl3.clientCertChain non-NULL will cause
* ssl3_HandleServerHelloDone to call SendCertificate.
*/
ss->ssl3.clientCertChain = CERT_CertChainFromCert(
ss->ssl3.clientCertificate,
certUsageSSLClient, PR_FALSE);
if (ss->ssl3.clientCertChain == NULL) {
goto send_no_certificate;
}
if (ss->ssl3.hs.hashType == handshake_hash_record ||
ss->ssl3.hs.hashType == handshake_hash_single) {
rv = ssl_PickClientSignatureScheme(ss, signatureSchemes,
signatureSchemeCount);
if (rv != SECSuccess) {
/* This should only happen if our schemes changed or
* if an RSA-PSS cert was selected, but the token
* does not support PSS schemes. */
goto send_no_certificate;
}
}
break; /* not an error */
case SECFailure:
default:
send_no_certificate:
CERT_DestroyCertificate(ss->ssl3.clientCertificate);
SECKEY_DestroyPrivateKey(ss->ssl3.clientPrivateKey);
ss->ssl3.clientCertificate = NULL;
ss->ssl3.clientPrivateKey = NULL;
if (ss->ssl3.clientCertChain) {
CERT_DestroyCertificateList(ss->ssl3.clientCertChain);
ss->ssl3.clientCertChain = NULL;
}
if (ss->version > SSL_LIBRARY_VERSION_3_0) {
ss->ssl3.sendEmptyCert = PR_TRUE;
} else {
(void)SSL3_SendAlert(ss, alert_warning, no_certificate);
}
rv = SECSuccess;
break;
}
return rv;
}
static SECStatus
ssl3_CheckFalseStart(sslSocket *ss)
{
PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
PORT_Assert(!ss->ssl3.hs.authCertificatePending);
PORT_Assert(!ss->ssl3.hs.canFalseStart);
if (!ss->canFalseStartCallback) {
SSL_TRC(3, ("%d: SSL[%d]: no false start callback so no false start",
SSL_GETPID(), ss->fd));
} else {
SECStatus rv;
rv = ssl_CheckServerRandom(ss);
if (rv != SECSuccess) {
SSL_TRC(3, ("%d: SSL[%d]: no false start due to possible downgrade",
SSL_GETPID(), ss->fd));
goto no_false_start;
}
/* An attacker can control the selected ciphersuite so we only wish to
* do False Start in the case that the selected ciphersuite is
* sufficiently strong that the attack can gain no advantage.
* Therefore we always require an 80-bit cipher. */
ssl_GetSpecReadLock(ss);
PRBool weakCipher = ss->ssl3.cwSpec->cipherDef->secret_key_size < 10;
ssl_ReleaseSpecReadLock(ss);
if (weakCipher) {
SSL_TRC(3, ("%d: SSL[%d]: no false start due to weak cipher",
SSL_GETPID(), ss->fd));
goto no_false_start;
}
if (ssl3_ExtensionAdvertised(ss, ssl_tls13_encrypted_client_hello_xtn)) {
SSL_TRC(3, ("%d: SSL[%d]: no false start due to lower version after ECH",
SSL_GETPID(), ss->fd));
goto no_false_start;
}
PORT_Assert((ss->ssl3.hs.preliminaryInfo & ssl_preinfo_all) ==
ssl_preinfo_all);
rv = (ss->canFalseStartCallback)(ss->fd,
ss->canFalseStartCallbackData,
&ss->ssl3.hs.canFalseStart);
if (rv == SECSuccess) {
SSL_TRC(3, ("%d: SSL[%d]: false start callback returned %s",
SSL_GETPID(), ss->fd,
ss->ssl3.hs.canFalseStart ? "TRUE"
: "FALSE"));
} else {
SSL_TRC(3, ("%d: SSL[%d]: false start callback failed (%s)",
SSL_GETPID(), ss->fd,
PR_ErrorToName(PR_GetError())));
}
return rv;
}
no_false_start:
ss->ssl3.hs.canFalseStart = PR_FALSE;
return SECSuccess;
}
PRBool
ssl3_WaitingForServerSecondRound(sslSocket *ss)
{
PRBool result;
PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
switch (ss->ssl3.hs.ws) {
case wait_new_session_ticket:
case wait_change_cipher:
case wait_finished:
result = PR_TRUE;
break;
default:
result = PR_FALSE;
break;
}
return result;
}
static SECStatus ssl3_SendClientSecondRound(sslSocket *ss);
/* Called from ssl3_HandlePostHelloHandshakeMessage() when it has deciphered
* a complete ssl3 Server Hello Done message.
* Caller must hold Handshake and RecvBuf locks.
*/
static SECStatus
ssl3_HandleServerHelloDone(sslSocket *ss)
{
SECStatus rv;
SSL3WaitState ws = ss->ssl3.hs.ws;
SSL_TRC(3, ("%d: SSL3[%d]: handle server_hello_done handshake",
SSL_GETPID(), ss->fd));
PORT_Assert(ss->opt.noLocks || ssl_HaveRecvBufLock(ss));
PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
/* Skipping CertificateRequest is always permitted. */
if (ws != wait_hello_done &&
ws != wait_cert_request) {
SSL3_SendAlert(ss, alert_fatal, unexpected_message);
PORT_SetError(SSL_ERROR_RX_UNEXPECTED_HELLO_DONE);
return SECFailure;
}
rv = ssl3_SendClientSecondRound(ss);
return rv;
}
/* Called from ssl3_HandleServerHelloDone and ssl3_AuthCertificateComplete.
*
* Caller must hold Handshake and RecvBuf locks.
*/
static SECStatus
ssl3_SendClientSecondRound(sslSocket *ss)
{
SECStatus rv;
PRBool sendClientCert;
PORT_Assert(ss->opt.noLocks || ssl_HaveRecvBufLock(ss));
PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
sendClientCert = !ss->ssl3.sendEmptyCert &&
ss->ssl3.clientCertChain != NULL &&
ss->ssl3.clientPrivateKey != NULL;
/* We must wait for the server's certificate to be authenticated before
* sending the client certificate in order to disclosing the client
* certificate to an attacker that does not have a valid cert for the
* domain we are connecting to.
*
* During the initial handshake on a connection, we never send/receive
* application data until we have authenticated the server's certificate;
* i.e. we have fully authenticated the handshake before using the cipher
* specs agreed upon for that handshake. During a renegotiation, we may
* continue sending and receiving application data during the handshake
* interleaved with the handshake records. If we were to send the client's
* second round for a renegotiation before the server's certificate was
* authenticated, then the application data sent/received after this point
* would be using cipher spec that hadn't been authenticated. By waiting
* until the server's certificate has been authenticated during
* renegotiations, we ensure that renegotiations have the same property
* as initial handshakes; i.e. we have fully authenticated the handshake
* before using the cipher specs agreed upon for that handshake for
* application data.
*/
if (ss->ssl3.hs.restartTarget) {
PR_NOT_REACHED("unexpected ss->ssl3.hs.restartTarget");
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
return SECFailure;
}
if (ss->ssl3.hs.authCertificatePending &&
(sendClientCert || ss->ssl3.sendEmptyCert || ss->firstHsDone)) {
SSL_TRC(3, ("%d: SSL3[%p]: deferring ssl3_SendClientSecondRound because"
" certificate authentication is still pending.",
SSL_GETPID(), ss->fd));
ss->ssl3.hs.restartTarget = ssl3_SendClientSecondRound;
PORT_SetError(PR_WOULD_BLOCK_ERROR);
return SECFailure;
}
ssl_GetXmitBufLock(ss); /*******************************/
if (ss->ssl3.sendEmptyCert) {
ss->ssl3.sendEmptyCert = PR_FALSE;
rv = ssl3_SendEmptyCertificate(ss);
/* Don't send verify */
if (rv != SECSuccess) {
goto loser; /* error code is set. */
}
} else if (sendClientCert) {
rv = ssl3_SendCertificate(ss);
if (rv != SECSuccess) {
goto loser; /* error code is set. */
}
}
rv = ssl3_SendClientKeyExchange(ss);
if (rv != SECSuccess) {
goto loser; /* err is set. */
}
if (sendClientCert) {
rv = ssl3_SendCertificateVerify(ss, ss->ssl3.clientPrivateKey);
SECKEY_DestroyPrivateKey(ss->ssl3.clientPrivateKey);
ss->ssl3.clientPrivateKey = NULL;
if (rv != SECSuccess) {
goto loser; /* err is set. */
}
}
rv = ssl3_SendChangeCipherSpecs(ss);
if (rv != SECSuccess) {
goto loser; /* err code was set. */
}
/* This must be done after we've set ss->ssl3.cwSpec in
* ssl3_SendChangeCipherSpecs because SSL_GetChannelInfo uses information
* from cwSpec. This must be done before we call ssl3_CheckFalseStart
* because the false start callback (if any) may need the information from
* the functions that depend on this being set.
*/
ss->enoughFirstHsDone = PR_TRUE;
if (!ss->firstHsDone) {
if (ss->opt.enableFalseStart) {
if (!ss->ssl3.hs.authCertificatePending) {
/* When we fix bug 589047, we will need to know whether we are
* false starting before we try to flush the client second
* round to the network. With that in mind, we purposefully
* call ssl3_CheckFalseStart before calling ssl3_SendFinished,
* which includes a call to ssl3_FlushHandshake, so that
* no application develops a reliance on such flushing being
* done before its false start callback is called.
*/
ssl_ReleaseXmitBufLock(ss);
rv = ssl3_CheckFalseStart(ss);
ssl_GetXmitBufLock(ss);
if (rv != SECSuccess) {
goto loser;
}
} else {
/* The certificate authentication and the server's Finished
* message are racing each other. If the certificate
* authentication wins, then we will try to false start in
* ssl3_AuthCertificateComplete.
*/
SSL_TRC(3, ("%d: SSL3[%p]: deferring false start check because"
" certificate authentication is still pending.",
SSL_GETPID(), ss->fd));
}
}
}
rv = ssl3_SendFinished(ss, 0);
if (rv != SECSuccess) {
goto loser; /* err code was set. */
}
ssl_ReleaseXmitBufLock(ss); /*******************************/
if (ssl3_ExtensionNegotiated(ss, ssl_session_ticket_xtn))
ss->ssl3.hs.ws = wait_new_session_ticket;
else
ss->ssl3.hs.ws = wait_change_cipher;
PORT_Assert(ssl3_WaitingForServerSecondRound(ss));
return SECSuccess;
loser:
ssl_ReleaseXmitBufLock(ss);
return rv;
}
/*
* Routines used by servers
*/
static SECStatus
ssl3_SendHelloRequest(sslSocket *ss)
{
SECStatus rv;
SSL_TRC(3, ("%d: SSL3[%d]: send hello_request handshake", SSL_GETPID(),
ss->fd));
PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
PORT_Assert(ss->opt.noLocks || ssl_HaveXmitBufLock(ss));
rv = ssl3_AppendHandshakeHeader(ss, ssl_hs_hello_request, 0);
if (rv != SECSuccess) {
return rv; /* err set by AppendHandshake */
}
rv = ssl3_FlushHandshake(ss, 0);
if (rv != SECSuccess) {
return rv; /* error code set by ssl3_FlushHandshake */
}
ss->ssl3.hs.ws = wait_client_hello;
return SECSuccess;
}
/*
* Called from:
* ssl3_HandleClientHello()
*/
static SECComparison
ssl3_ServerNameCompare(const SECItem *name1, const SECItem *name2)
{
if (!name1 != !name2) {
return SECLessThan;
}
if (!name1) {
return SECEqual;
}
if (name1->type != name2->type) {
return SECLessThan;
}
return SECITEM_CompareItem(name1, name2);
}
/* Sets memory error when returning NULL.
* Called from:
* ssl3_SendClientHello()
* ssl3_HandleServerHello()
* ssl3_HandleClientHello()
* ssl3_HandleV2ClientHello()
*/
sslSessionID *
ssl3_NewSessionID(sslSocket *ss, PRBool is_server)
{
sslSessionID *sid;
sid = PORT_ZNew(sslSessionID);
if (sid == NULL)
return sid;
if (is_server) {
const SECItem *srvName;
SECStatus rv = SECSuccess;
ssl_GetSpecReadLock(ss); /********************************/
srvName = &ss->ssl3.hs.srvVirtName;
if (srvName->len && srvName->data) {
rv = SECITEM_CopyItem(NULL, &sid->u.ssl3.srvName, srvName);
}
ssl_ReleaseSpecReadLock(ss); /************************************/
if (rv != SECSuccess) {
PORT_Free(sid);
return NULL;
}
}
sid->peerID = (ss->peerID == NULL) ? NULL : PORT_Strdup(ss->peerID);
sid->urlSvrName = (ss->url == NULL) ? NULL : PORT_Strdup(ss->url);
sid->addr = ss->sec.ci.peer;
sid->port = ss->sec.ci.port;
sid->references = 1;
sid->cached = never_cached;
sid->version = ss->version;
sid->sigScheme = ssl_sig_none;
sid->u.ssl3.keys.resumable = PR_TRUE;
sid->u.ssl3.policy = SSL_ALLOWED;
sid->u.ssl3.keys.extendedMasterSecretUsed = PR_FALSE;
if (is_server) {
SECStatus rv;
int pid = SSL_GETPID();
sid->u.ssl3.sessionIDLength = SSL3_SESSIONID_BYTES;
sid->u.ssl3.sessionID[0] = (pid >> 8) & 0xff;
sid->u.ssl3.sessionID[1] = pid & 0xff;
rv = PK11_GenerateRandom(sid->u.ssl3.sessionID + 2,
SSL3_SESSIONID_BYTES - 2);
if (rv != SECSuccess) {
ssl_FreeSID(sid);
ssl_MapLowLevelError(SSL_ERROR_GENERATE_RANDOM_FAILURE);
return NULL;
}
}
return sid;
}
/* Called from: ssl3_HandleClientHello, ssl3_HandleV2ClientHello */
static SECStatus
ssl3_SendServerHelloSequence(sslSocket *ss)
{
const ssl3KEADef *kea_def;
SECStatus rv;
SSL_TRC(3, ("%d: SSL3[%d]: begin send server_hello sequence",
SSL_GETPID(), ss->fd));
PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
PORT_Assert(ss->opt.noLocks || ssl_HaveXmitBufLock(ss));
rv = ssl3_SendServerHello(ss);
if (rv != SECSuccess) {
return rv; /* err code is set. */
}
rv = ssl3_SendCertificate(ss);
if (rv != SECSuccess) {
return rv; /* error code is set. */
}
rv = ssl3_SendCertificateStatus(ss);
if (rv != SECSuccess) {
return rv; /* error code is set. */
}
/* We have to do this after the call to ssl3_SendServerHello,
* because kea_def is set up by ssl3_SendServerHello().
*/
kea_def = ss->ssl3.hs.kea_def;
if (kea_def->ephemeral) {
rv = ssl3_SendServerKeyExchange(ss);
if (rv != SECSuccess) {
return rv; /* err code was set. */
}
}
if (ss->opt.requestCertificate) {
rv = ssl3_SendCertificateRequest(ss);
if (rv != SECSuccess) {
return rv; /* err code is set. */
}
}
rv = ssl3_SendServerHelloDone(ss);
if (rv != SECSuccess) {
return rv; /* err code is set. */
}
ss->ssl3.hs.ws = (ss->opt.requestCertificate) ? wait_client_cert
: wait_client_key;
return SECSuccess;
}
/* An empty TLS Renegotiation Info (RI) extension */
static const PRUint8 emptyRIext[5] = { 0xff, 0x01, 0x00, 0x01, 0x00 };
static PRBool
ssl3_KEASupportsTickets(const ssl3KEADef *kea_def)
{
if (kea_def->signKeyType == dsaKey) {
/* TODO: Fix session tickets for DSS. The server code rejects the
* session ticket received from the client. Bug 1174677 */
return PR_FALSE;
}
return PR_TRUE;
}
static PRBool
ssl3_PeerSupportsCipherSuite(const SECItem *peerSuites, uint16_t suite)
{
for (unsigned int i = 0; i + 1 < peerSuites->len; i += 2) {
PRUint16 suite_i = (peerSuites->data[i] << 8) | peerSuites->data[i + 1];
if (suite_i == suite) {
return PR_TRUE;
}
}
return PR_FALSE;
}
SECStatus
ssl3_NegotiateCipherSuiteInner(sslSocket *ss, const SECItem *suites,
PRUint16 version, PRUint16 *suitep)
{
unsigned int i;
SSLVersionRange vrange = { version, version };
/* If we negotiated an External PSK and that PSK has a ciphersuite
* configured, we need to constrain our choice. If the client does
* not support it, negotiate a certificate auth suite and fall back.
*/
if (ss->version >= SSL_LIBRARY_VERSION_TLS_1_3 &&
ss->xtnData.selectedPsk &&
ss->xtnData.selectedPsk->type == ssl_psk_external &&
ss->xtnData.selectedPsk->zeroRttSuite != TLS_NULL_WITH_NULL_NULL) {
PRUint16 pskSuite = ss->xtnData.selectedPsk->zeroRttSuite;
ssl3CipherSuiteCfg *pskSuiteCfg = ssl_LookupCipherSuiteCfgMutable(pskSuite,
ss->cipherSuites);
if (ssl3_config_match(pskSuiteCfg, ss->ssl3.policy, &vrange, ss) &&
ssl3_PeerSupportsCipherSuite(suites, pskSuite)) {
*suitep = pskSuite;
return SECSuccess;
}
}
for (i = 0; i < ssl_V3_SUITES_IMPLEMENTED; i++) {
ssl3CipherSuiteCfg *suite = &ss->cipherSuites[i];
if (!ssl3_config_match(suite, ss->ssl3.policy, &vrange, ss)) {
continue;
}
if (!ssl3_PeerSupportsCipherSuite(suites, suite->cipher_suite)) {
continue;
}
*suitep = suite->cipher_suite;
return SECSuccess;
}
PORT_SetError(SSL_ERROR_NO_CYPHER_OVERLAP);
return SECFailure;
}
/* Select a cipher suite.
**
** NOTE: This suite selection algorithm should be the same as the one in
** ssl3_HandleV2ClientHello().
**
** If TLS 1.0 is enabled, we could handle the case where the client
** offered TLS 1.1 but offered only export cipher suites by choosing TLS
** 1.0 and selecting one of those export cipher suites. However, a secure
** TLS 1.1 client should not have export cipher suites enabled at all,
** and a TLS 1.1 client should definitely not be offering *only* export
** cipher suites. Therefore, we refuse to negotiate export cipher suites
** with any client that indicates support for TLS 1.1 or higher when we
** (the server) have TLS 1.1 support enabled.
*/
SECStatus
ssl3_NegotiateCipherSuite(sslSocket *ss, const SECItem *suites,
PRBool initHashes)
{
PRUint16 selected;
SECStatus rv;
/* Ensure that only valid cipher suites are enabled. */
if (ssl3_config_match_init(ss) == 0) {
/* No configured cipher is both supported by PK11 and allowed.
* This is a configuration error, so report handshake failure.*/
FATAL_ERROR(ss, PORT_GetError(), handshake_failure);
return SECFailure;
}
rv = ssl3_NegotiateCipherSuiteInner(ss, suites, ss->version, &selected);
if (rv != SECSuccess) {
return SECFailure;
}
ss->ssl3.hs.cipher_suite = selected;
return ssl3_SetupCipherSuite(ss, initHashes);
}
/*
* Call the SNI config hook.
*
* Called from:
* ssl3_HandleClientHello
* tls13_HandleClientHelloPart2
*/
SECStatus
ssl3_ServerCallSNICallback(sslSocket *ss)
{
int errCode = SSL_ERROR_RX_MALFORMED_CLIENT_HELLO;
SSL3AlertDescription desc = illegal_parameter;
int ret = 0;
#ifdef SSL_SNI_ALLOW_NAME_CHANGE_2HS
#error("No longer allowed to set SSL_SNI_ALLOW_NAME_CHANGE_2HS")
#endif
if (!ssl3_ExtensionNegotiated(ss, ssl_server_name_xtn)) {
if (ss->firstHsDone) {
/* Check that we don't have the name is current spec
* if this extension was not negotiated on the 2d hs. */
PRBool passed = PR_TRUE;
ssl_GetSpecReadLock(ss); /*******************************/
if (ss->ssl3.hs.srvVirtName.data) {
passed = PR_FALSE;
}
ssl_ReleaseSpecReadLock(ss); /***************************/
if (!passed) {
errCode = SSL_ERROR_UNRECOGNIZED_NAME_ALERT;
desc = handshake_failure;
goto alert_loser;
}
}
return SECSuccess;
}
if (ss->sniSocketConfig)
do { /* not a loop */
PORT_Assert((ss->ssl3.hs.preliminaryInfo & ssl_preinfo_all) ==
ssl_preinfo_all);
ret = SSL_SNI_SEND_ALERT;
/* If extension is negotiated, the len of names should > 0. */
if (ss->xtnData.sniNameArrSize) {
/* Calling client callback to reconfigure the socket. */
ret = (SECStatus)(*ss->sniSocketConfig)(ss->fd,
ss->xtnData.sniNameArr,
ss->xtnData.sniNameArrSize,
ss->sniSocketConfigArg);
}
if (ret <= SSL_SNI_SEND_ALERT) {
/* Application does not know the name or was not able to
* properly reconfigure the socket. */
errCode = SSL_ERROR_UNRECOGNIZED_NAME_ALERT;
desc = unrecognized_name;
break;
} else if (ret == SSL_SNI_CURRENT_CONFIG_IS_USED) {
SECStatus rv = SECSuccess;
SECItem pwsNameBuf = { 0, NULL, 0 };
SECItem *pwsName = &pwsNameBuf;
SECItem *cwsName;
ssl_GetSpecWriteLock(ss); /*******************************/
cwsName = &ss->ssl3.hs.srvVirtName;
/* not allow name change on the 2d HS */
if (ss->firstHsDone) {
if (ssl3_ServerNameCompare(pwsName, cwsName)) {
ssl_ReleaseSpecWriteLock(ss); /******************/
errCode = SSL_ERROR_UNRECOGNIZED_NAME_ALERT;
desc = handshake_failure;
ret = SSL_SNI_SEND_ALERT;
break;
}
}
if (pwsName->data) {
SECITEM_FreeItem(pwsName, PR_FALSE);
}
if (cwsName->data) {
rv = SECITEM_CopyItem(NULL, pwsName, cwsName);
}
ssl_ReleaseSpecWriteLock(ss); /**************************/
if (rv != SECSuccess) {
errCode = SSL_ERROR_INTERNAL_ERROR_ALERT;
desc = internal_error;
ret = SSL_SNI_SEND_ALERT;
break;
}
} else if ((unsigned int)ret < ss->xtnData.sniNameArrSize) {
/* Application has configured new socket info. Lets check it
* and save the name. */
SECStatus rv;
SECItem *name = &ss->xtnData.sniNameArr[ret];
SECItem *pwsName;
/* get rid of the old name and save the newly picked. */
/* This code is protected by ssl3HandshakeLock. */
ssl_GetSpecWriteLock(ss); /*******************************/
/* not allow name change on the 2d HS */
if (ss->firstHsDone) {
SECItem *cwsName = &ss->ssl3.hs.srvVirtName;
if (ssl3_ServerNameCompare(name, cwsName)) {
ssl_ReleaseSpecWriteLock(ss); /******************/
errCode = SSL_ERROR_UNRECOGNIZED_NAME_ALERT;
desc = handshake_failure;
ret = SSL_SNI_SEND_ALERT;
break;
}
}
pwsName = &ss->ssl3.hs.srvVirtName;
if (pwsName->data) {
SECITEM_FreeItem(pwsName, PR_FALSE);
}
rv = SECITEM_CopyItem(NULL, pwsName, name);
ssl_ReleaseSpecWriteLock(ss); /***************************/
if (rv != SECSuccess) {
errCode = SSL_ERROR_INTERNAL_ERROR_ALERT;
desc = internal_error;
ret = SSL_SNI_SEND_ALERT;
break;
}
/* Need to tell the client that application has picked
* the name from the offered list and reconfigured the socket.
*/
ssl3_RegisterExtensionSender(ss, &ss->xtnData, ssl_server_name_xtn,
ssl_SendEmptyExtension);
} else {
/* Callback returned index outside of the boundary. */
PORT_Assert((unsigned int)ret < ss->xtnData.sniNameArrSize);
errCode = SSL_ERROR_INTERNAL_ERROR_ALERT;
desc = internal_error;
ret = SSL_SNI_SEND_ALERT;
break;
}
} while (0);
ssl3_FreeSniNameArray(&ss->xtnData);
if (ret <= SSL_SNI_SEND_ALERT) {
/* desc and errCode should be set. */
goto alert_loser;
}
return SECSuccess;
alert_loser:
(void)SSL3_SendAlert(ss, alert_fatal, desc);
PORT_SetError(errCode);
return SECFailure;
}
SECStatus
ssl3_SelectServerCert(sslSocket *ss)
{
const ssl3KEADef *kea_def = ss->ssl3.hs.kea_def;
PRCList *cursor;
SECStatus rv;
/* If the client didn't include the supported groups extension, assume just
* P-256 support and disable all the other ECDHE groups. This also affects
* ECDHE group selection, but this function is called first. */
if (!ssl3_ExtensionNegotiated(ss, ssl_supported_groups_xtn)) {
unsigned int i;
for (i = 0; i < SSL_NAMED_GROUP_COUNT; ++i) {
if (ss->namedGroupPreferences[i] &&
ss->namedGroupPreferences[i]->keaType == ssl_kea_ecdh &&
ss->namedGroupPreferences[i]->name != ssl_grp_ec_secp256r1) {
ss->namedGroupPreferences[i] = NULL;
}
}
}
/* This picks the first certificate that has:
* a) the right authentication method, and
* b) the right named curve (EC only)
*
* We might want to do some sort of ranking here later. For now, it's all
* based on what order they are configured in. */
for (cursor = PR_NEXT_LINK(&ss->serverCerts);
cursor != &ss->serverCerts;
cursor = PR_NEXT_LINK(cursor)) {
sslServerCert *cert = (sslServerCert *)cursor;
if (kea_def->authKeyType == ssl_auth_rsa_sign) {
/* We consider PSS certificates here as well for TLS 1.2. */
if (!SSL_CERT_IS(cert, ssl_auth_rsa_sign) &&
(!SSL_CERT_IS(cert, ssl_auth_rsa_pss) ||
ss->version < SSL_LIBRARY_VERSION_TLS_1_2)) {
continue;
}
} else {
if (!SSL_CERT_IS(cert, kea_def->authKeyType)) {
continue;
}
if (SSL_CERT_IS_EC(cert) &&
!ssl_NamedGroupEnabled(ss, cert->namedCurve)) {
continue;
}
}
/* Found one. */
ss->sec.serverCert = cert;
ss->sec.authKeyBits = cert->serverKeyBits;
/* Don't pick a signature scheme if we aren't going to use it. */
if (kea_def->signKeyType == nullKey) {
ss->sec.authType = kea_def->authKeyType;
return SECSuccess;
}
rv = ssl3_PickServerSignatureScheme(ss);
if (rv != SECSuccess) {
return SECFailure;
}
ss->sec.authType =
ssl_SignatureSchemeToAuthType(ss->ssl3.hs.signatureScheme);
return SECSuccess;
}
PORT_SetError(SSL_ERROR_NO_CYPHER_OVERLAP);
return SECFailure;
}
static SECStatus
ssl_GenerateServerRandom(sslSocket *ss)
{
SECStatus rv;
PRUint8 *downgradeSentinel;
rv = ssl3_GetNewRandom(ss->ssl3.hs.server_random);
if (rv != SECSuccess) {
return SECFailure;
}
if (ss->version == ss->vrange.max) {
return SECSuccess;
}
#ifdef DTLS_1_3_DRAFT_VERSION
if (IS_DTLS(ss)) {
return SECSuccess;
}
#endif
/*
* [RFC 8446 Section 4.1.3].
*
* TLS 1.3 servers which negotiate TLS 1.2 or below in response to a
* ClientHello MUST set the last 8 bytes of their Random value specially in
* their ServerHello.
*
* If negotiating TLS 1.2, TLS 1.3 servers MUST set the last 8 bytes of
* their Random value to the bytes:
*
* 44 4F 57 4E 47 52 44 01
*
* If negotiating TLS 1.1 or below, TLS 1.3 servers MUST, and TLS 1.2
* servers SHOULD, set the last 8 bytes of their ServerHello.Random value to
* the bytes:
*
* 44 4F 57 4E 47 52 44 00
*/
downgradeSentinel =
ss->ssl3.hs.server_random +
SSL3_RANDOM_LENGTH - sizeof(tls12_downgrade_random);
if (ss->vrange.max >= SSL_LIBRARY_VERSION_TLS_1_2) {
switch (ss->version) {
case SSL_LIBRARY_VERSION_TLS_1_2:
/* vrange.max > 1.2, since we didn't early exit above. */
PORT_Memcpy(downgradeSentinel,
tls12_downgrade_random, sizeof(tls12_downgrade_random));
break;
case SSL_LIBRARY_VERSION_TLS_1_1:
case SSL_LIBRARY_VERSION_TLS_1_0:
PORT_Memcpy(downgradeSentinel,
tls1_downgrade_random, sizeof(tls1_downgrade_random));
break;
default:
/* Do not change random. */
break;
}
}
return SECSuccess;
}
SECStatus
ssl3_HandleClientHelloPreamble(sslSocket *ss, PRUint8 **b, PRUint32 *length, SECItem *sidBytes,
SECItem *cookieBytes, SECItem *suites, SECItem *comps)
{
SECStatus rv;
PRUint32 tmp;
rv = ssl3_ConsumeHandshakeNumber(ss, &tmp, 2, b, length);
if (rv != SECSuccess) {
return SECFailure; /* malformed, alert already sent */
}
/* Translate the version. */
if (IS_DTLS(ss)) {
ss->clientHelloVersion = dtls_DTLSVersionToTLSVersion((SSL3ProtocolVersion)tmp);
} else {
ss->clientHelloVersion = (SSL3ProtocolVersion)tmp;
}
/* Grab the client random data. */
rv = ssl3_ConsumeHandshake(
ss, ss->ssl3.hs.client_random, SSL3_RANDOM_LENGTH, b, length);
if (rv != SECSuccess) {
return SECFailure; /* malformed */
}
/* Grab the client's SID, if present. */
rv = ssl3_ConsumeHandshakeVariable(ss, sidBytes, 1, b, length);
if (rv != SECSuccess) {
return SECFailure; /* malformed */
}
/* Grab the client's cookie, if present. It is checked after version negotiation. */
if (IS_DTLS(ss)) {
rv = ssl3_ConsumeHandshakeVariable(ss, cookieBytes, 1, b, length);
if (rv != SECSuccess) {
return SECFailure; /* malformed */
}
}
/* Grab the list of cipher suites. */
rv = ssl3_ConsumeHandshakeVariable(ss, suites, 2, b, length);
if (rv != SECSuccess) {
return SECFailure; /* malformed */
}
/* Grab the list of compression methods. */
rv = ssl3_ConsumeHandshakeVariable(ss, comps, 1, b, length);
if (rv != SECSuccess) {
return SECFailure; /* malformed */
}
return SECSuccess;
}
static SECStatus
ssl3_ValidatePreambleWithVersion(sslSocket *ss, const SECItem *sidBytes, const SECItem *comps,
const SECItem *cookieBytes)
{
SECStatus rv;
if (ss->version >= SSL_LIBRARY_VERSION_TLS_1_3) {
if (sidBytes->len > 0 && !IS_DTLS(ss)) {
SECITEM_FreeItem(&ss->ssl3.hs.fakeSid, PR_FALSE);
rv = SECITEM_CopyItem(NULL, &ss->ssl3.hs.fakeSid, sidBytes);
if (rv != SECSuccess) {
FATAL_ERROR(ss, PORT_GetError(), internal_error);
return SECFailure;
}
}
/* TLS 1.3 requires that compression include only null. */
if (comps->len != 1 || comps->data[0] != ssl_compression_null) {
FATAL_ERROR(ss, SSL_ERROR_RX_MALFORMED_CLIENT_HELLO, illegal_parameter);
return SECFailure;
}
/* receivedCcs is only valid if we sent an HRR. */
if (ss->ssl3.hs.receivedCcs && !ss->ssl3.hs.helloRetry) {
FATAL_ERROR(ss, SSL_ERROR_RX_UNEXPECTED_CHANGE_CIPHER, unexpected_message);
return SECFailure;
}
/* A DTLS 1.3-only client MUST set the legacy_cookie field to zero length.
* If a DTLS 1.3 ClientHello is received with any other value in this field,
* the server MUST abort the handshake with an "illegal_parameter" alert. */
if (IS_DTLS(ss) && cookieBytes->len != 0) {
FATAL_ERROR(ss, SSL_ERROR_RX_MALFORMED_CLIENT_HELLO, illegal_parameter);
return SECFailure;
}
} else {
/* ECH not possible here. */
ss->ssl3.hs.preliminaryInfo |= ssl_preinfo_ech;
/* HRR and ECH are TLS1.3-only. We ignore the Cookie extension here. */
if (ss->ssl3.hs.helloRetry) {
FATAL_ERROR(ss, SSL_ERROR_UNSUPPORTED_VERSION, protocol_version);
return SECFailure;
}
/* receivedCcs is only valid if we sent an HRR. */
if (ss->ssl3.hs.receivedCcs) {
FATAL_ERROR(ss, SSL_ERROR_RX_UNEXPECTED_CHANGE_CIPHER, unexpected_message);
return SECFailure;
}
/* TLS versions prior to 1.3 must include null somewhere. */
if (comps->len < 1 ||
!memchr(comps->data, ssl_compression_null, comps->len)) {
FATAL_ERROR(ss, SSL_ERROR_RX_MALFORMED_CLIENT_HELLO, illegal_parameter);
return SECFailure;
}
/* We never send cookies in DTLS 1.2. */
if (IS_DTLS(ss) && cookieBytes->len != 0) {
FATAL_ERROR(ss, SSL_ERROR_RX_MALFORMED_CLIENT_HELLO, illegal_parameter);
return SECFailure;
}
}
return SECSuccess;
}
/* Called from ssl3_HandleHandshakeMessage() when it has deciphered a complete
* ssl3 Client Hello message.
* Caller must hold Handshake and RecvBuf locks.
*/
static SECStatus
ssl3_HandleClientHello(sslSocket *ss, PRUint8 *b, PRUint32 length)
{
sslSessionID *sid = NULL;
unsigned int i;
SECStatus rv;
PRUint32 extensionLength;
int errCode = SSL_ERROR_RX_MALFORMED_CLIENT_HELLO;
SSL3AlertDescription desc = illegal_parameter;
SSL3AlertLevel level = alert_fatal;
TLSExtension *versionExtension;
SECItem sidBytes = { siBuffer, NULL, 0 };
SECItem cookieBytes = { siBuffer, NULL, 0 };
SECItem suites = { siBuffer, NULL, 0 };
SECItem comps = { siBuffer, NULL, 0 };
SECItem *echInner = NULL;
PRBool isTLS13;
const PRUint8 *savedMsg = b;
const PRUint32 savedLen = length;
SSL_TRC(3, ("%d: SSL3[%d]: handle client_hello handshake",
SSL_GETPID(), ss->fd));
PORT_Assert(ss->opt.noLocks || ssl_HaveRecvBufLock(ss));
PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
ss->ssl3.hs.preliminaryInfo = 0;
if (!ss->sec.isServer ||
(ss->ssl3.hs.ws != wait_client_hello &&
ss->ssl3.hs.ws != idle_handshake)) {
desc = unexpected_message;
errCode = SSL_ERROR_RX_UNEXPECTED_CLIENT_HELLO;
goto alert_loser;
}
if (ss->ssl3.hs.ws == idle_handshake) {
/* Refuse re-handshake when we have already negotiated TLS 1.3. */
if (ss->version >= SSL_LIBRARY_VERSION_TLS_1_3) {
desc = unexpected_message;
errCode = SSL_ERROR_RENEGOTIATION_NOT_ALLOWED;
goto alert_loser;
}
if (ss->opt.enableRenegotiation == SSL_RENEGOTIATE_NEVER) {
desc = no_renegotiation;
level = alert_warning;
errCode = SSL_ERROR_RENEGOTIATION_NOT_ALLOWED;
goto alert_loser;
}
}
/* We should always be in a fresh state. */
SSL_ASSERT_HASHES_EMPTY(ss);
/* Get peer name of client */
rv = ssl_GetPeerInfo(ss);
if (rv != SECSuccess) {
return rv; /* error code is set. */
}
/* We might be starting session renegotiation in which case we should
* clear previous state.
*/
ssl3_ResetExtensionData(&ss->xtnData, ss);
ss->statelessResume = PR_FALSE;
if (IS_DTLS(ss)) {
dtls_RehandshakeCleanup(ss);
}
rv = ssl3_HandleClientHelloPreamble(ss, &b, &length, &sidBytes,
&cookieBytes, &suites, &comps);
if (rv != SECSuccess) {
goto loser; /* malformed */
}
/* Handle TLS hello extensions for SSL3 & TLS. We do not know if
* we are restarting a previous session until extensions have been
* parsed, since we might have received a SessionTicket extension.
* Note: we allow extensions even when negotiating SSL3 for the sake
* of interoperability (and backwards compatibility).
*/
if (length) {
/* Get length of hello extensions */
rv = ssl3_ConsumeHandshakeNumber(ss, &extensionLength, 2, &b, &length);
if (rv != SECSuccess) {
goto loser; /* alert already sent */
}
if (extensionLength != length) {
errCode = SSL_ERROR_RX_MALFORMED_CLIENT_HELLO;
desc = decode_error;
goto alert_loser;
}
rv = ssl3_ParseExtensions(ss, &b, &length);
if (rv != SECSuccess) {
goto loser; /* malformed */
}
}
versionExtension = ssl3_FindExtension(ss, ssl_tls13_supported_versions_xtn);
if (versionExtension) {
rv = tls13_NegotiateVersion(ss, versionExtension);
if (rv != SECSuccess) {
errCode = PORT_GetError();
desc = (errCode == SSL_ERROR_UNSUPPORTED_VERSION) ? protocol_version : illegal_parameter;
goto alert_loser;
}
} else {
/* The PR_MIN here ensures that we never negotiate 1.3 if the
* peer didn't offer "supported_versions". */
rv = ssl3_NegotiateVersion(ss,
PR_MIN(ss->clientHelloVersion,
SSL_LIBRARY_VERSION_TLS_1_2),
PR_TRUE);
if (rv != SECSuccess) {
desc = (ss->clientHelloVersion > SSL_LIBRARY_VERSION_3_0) ? protocol_version
: handshake_failure;
errCode = SSL_ERROR_UNSUPPORTED_VERSION;
goto alert_loser;
}
}
ss->ssl3.hs.preliminaryInfo |= ssl_preinfo_version;
/* Update the write spec to match the selected version. */
if (!ss->firstHsDone) {
ssl_GetSpecWriteLock(ss);
ssl_SetSpecVersions(ss, ss->ssl3.cwSpec);
ssl_ReleaseSpecWriteLock(ss);
}
isTLS13 = ss->version >= SSL_LIBRARY_VERSION_TLS_1_3;
if (isTLS13) {
if (ss->firstHsDone) {
desc = unexpected_message;
errCode = SSL_ERROR_RENEGOTIATION_NOT_ALLOWED;
goto alert_loser;
}
/* If there is a cookie, then this is a second ClientHello (TLS 1.3). */
if (ssl3_FindExtension(ss, ssl_tls13_cookie_xtn)) {
ss->ssl3.hs.helloRetry = PR_TRUE;
}
rv = tls13_MaybeHandleEch(ss, savedMsg, savedLen, &sidBytes,
&comps, &cookieBytes, &suites, &echInner);
if (rv != SECSuccess) {
errCode = PORT_GetError();
goto loser; /* code set, alert sent. */
}
}
rv = ssl3_ValidatePreambleWithVersion(ss, &sidBytes, &comps, &cookieBytes);
if (rv != SECSuccess) {
errCode = PORT_GetError();
goto loser; /* code set, alert sent. */
}
/* Now parse the rest of the extensions. */
rv = ssl3_HandleParsedExtensions(ss, ssl_hs_client_hello);
ssl3_DestroyRemoteExtensions(&ss->ssl3.hs.remoteExtensions);
if (rv != SECSuccess) {
if (PORT_GetError() == SSL_ERROR_UNSUPPORTED_SIGNATURE_ALGORITHM) {
errCode = SSL_ERROR_UNSUPPORTED_SIGNATURE_ALGORITHM;
}
goto loser; /* malformed */
}
/* If the ClientHello version is less than our maximum version, check for a
* TLS_FALLBACK_SCSV and reject the connection if found. */
if (ss->vrange.max > ss->version) {
for (i = 0; i + 1 < suites.len; i += 2) {
PRUint16 suite_i = (suites.data[i] << 8) | suites.data[i + 1];
if (suite_i != TLS_FALLBACK_SCSV)
continue;
desc = inappropriate_fallback;
errCode = SSL_ERROR_INAPPROPRIATE_FALLBACK_ALERT;
goto alert_loser;
}
}
if (!ssl3_ExtensionNegotiated(ss, ssl_renegotiation_info_xtn)) {
/* If we didn't receive an RI extension, look for the SCSV,
* and if found, treat it just like an empty RI extension
* by processing a local copy of an empty RI extension.
*/
for (i = 0; i + 1 < suites.len; i += 2) {
PRUint16 suite_i = (suites.data[i] << 8) | suites.data[i + 1];
if (suite_i == TLS_EMPTY_RENEGOTIATION_INFO_SCSV) {
PRUint8 *b2 = (PRUint8 *)emptyRIext;
PRUint32 L2 = sizeof emptyRIext;
(void)ssl3_HandleExtensions(ss, &b2, &L2, ssl_hs_client_hello);
break;
}
}
}
/* The check for renegotiation in TLS 1.3 is earlier. */
if (!isTLS13) {
if (ss->firstHsDone &&
(ss->opt.enableRenegotiation == SSL_RENEGOTIATE_REQUIRES_XTN ||
ss->opt.enableRenegotiation == SSL_RENEGOTIATE_TRANSITIONAL) &&
!ssl3_ExtensionNegotiated(ss, ssl_renegotiation_info_xtn)) {
desc = no_renegotiation;
level = alert_warning;
errCode = SSL_ERROR_RENEGOTIATION_NOT_ALLOWED;
goto alert_loser;
}
if ((ss->opt.requireSafeNegotiation ||
(ss->firstHsDone && ss->peerRequestedProtection)) &&
!ssl3_ExtensionNegotiated(ss, ssl_renegotiation_info_xtn)) {
desc = handshake_failure;
errCode = SSL_ERROR_UNSAFE_NEGOTIATION;
goto alert_loser;
}
}
/* We do stateful resumes only if we are in TLS < 1.3 and
* either of the following conditions are satisfied:
* (1) the client does not support the session ticket extension, or
* (2) the client support the session ticket extension, but sent an
* empty ticket.
*/
if (!isTLS13 &&
(!ssl3_ExtensionNegotiated(ss, ssl_session_ticket_xtn) ||
ss->xtnData.emptySessionTicket)) {
if (sidBytes.len > 0 && !ss->opt.noCache) {
SSL_TRC(7, ("%d: SSL3[%d]: server, lookup client session-id for 0x%08x%08x%08x%08x",
SSL_GETPID(), ss->fd, ss->sec.ci.peer.pr_s6_addr32[0],
ss->sec.ci.peer.pr_s6_addr32[1],
ss->sec.ci.peer.pr_s6_addr32[2],
ss->sec.ci.peer.pr_s6_addr32[3]));
if (ssl_sid_lookup) {
sid = (*ssl_sid_lookup)(ssl_Time(ss), &ss->sec.ci.peer,
sidBytes.data, sidBytes.len, ss->dbHandle);
} else {
errCode = SSL_ERROR_SERVER_CACHE_NOT_CONFIGURED;
goto loser;
}
}
} else if (ss->statelessResume) {
/* Fill in the client's session ID if doing a stateless resume.
* (When doing stateless resumes, server echos client's SessionID.)
* This branch also handles TLS 1.3 resumption-PSK.
*/
sid = ss->sec.ci.sid;
PORT_Assert(sid != NULL); /* Should have already been filled in.*/
if (sidBytes.len > 0 && sidBytes.len <= SSL3_SESSIONID_BYTES) {
sid->u.ssl3.sessionIDLength = sidBytes.len;
PORT_Memcpy(sid->u.ssl3.sessionID, sidBytes.data,
sidBytes.len);
sid->u.ssl3.sessionIDLength = sidBytes.len;
} else {
sid->u.ssl3.sessionIDLength = 0;
}
ss->sec.ci.sid = NULL;
}
/* Free a potentially leftover session ID from a previous handshake. */
if (ss->sec.ci.sid) {
ssl_FreeSID(ss->sec.ci.sid);
ss->sec.ci.sid = NULL;
}
if (sid != NULL) {
/* We've found a session cache entry for this client.
* Now, if we're going to require a client-auth cert,
* and we don't already have this client's cert in the session cache,
* and this is the first handshake on this connection (not a redo),
* then drop this old cache entry and start a new session.
*/
if ((sid->peerCert == NULL) && ss->opt.requestCertificate &&
((ss->opt.requireCertificate == SSL_REQUIRE_ALWAYS) ||
(ss->opt.requireCertificate == SSL_REQUIRE_NO_ERROR) ||
((ss->opt.requireCertificate == SSL_REQUIRE_FIRST_HANDSHAKE) &&
!ss->firstHsDone))) {
SSL_AtomicIncrementLong(&ssl3stats.hch_sid_cache_not_ok);
ssl_FreeSID(sid);
sid = NULL;
ss->statelessResume = PR_FALSE;
}
}
if (IS_DTLS(ss)) {
ssl3_DisableNonDTLSSuites(ss);
dtls_ReceivedFirstMessageInFlight(ss);
}
if (isTLS13) {
rv = tls13_HandleClientHelloPart2(ss, &suites, sid,
ss->ssl3.hs.echAccepted ? echInner->data : savedMsg,
ss->ssl3.hs.echAccepted ? echInner->len : savedLen);
SECITEM_FreeItem(echInner, PR_TRUE);
echInner = NULL;
} else {
rv = ssl3_HandleClientHelloPart2(ss, &suites, sid,
savedMsg, savedLen);
}
if (rv != SECSuccess) {
errCode = PORT_GetError();
goto loser;
}
return SECSuccess;
alert_loser:
(void)SSL3_SendAlert(ss, level, desc);
/* FALLTHRU */
loser:
SECITEM_FreeItem(echInner, PR_TRUE);
PORT_SetError(errCode);
return SECFailure;
}
/* unwrap helper function to handle the case where the wrapKey doesn't wind
* up in the correct token for the master secret */
PK11SymKey *
ssl_unwrapSymKey(PK11SymKey *wrapKey,
CK_MECHANISM_TYPE wrapType, SECItem *param,
SECItem *wrappedKey,
CK_MECHANISM_TYPE target, CK_ATTRIBUTE_TYPE operation,
int keySize, CK_FLAGS keyFlags, void *pinArg)
{
PK11SymKey *unwrappedKey;
/* unwrap the master secret. */
unwrappedKey = PK11_UnwrapSymKeyWithFlags(wrapKey, wrapType, param,
wrappedKey, target, operation, keySize,
keyFlags);
if (!unwrappedKey) {
PK11SlotInfo *targetSlot = PK11_GetBestSlot(target, pinArg);
PK11SymKey *newWrapKey;
/* it's possible that we failed to unwrap because the wrapKey is in
* a slot that can't handle target. Move the wrapKey to a slot that
* can handle this mechanism and retry the operation */
if (targetSlot == NULL) {
return NULL;
}
newWrapKey = PK11_MoveSymKey(targetSlot, CKA_UNWRAP, 0,
PR_FALSE, wrapKey);
PK11_FreeSlot(targetSlot);
if (newWrapKey == NULL) {
return NULL;
}
unwrappedKey = PK11_UnwrapSymKeyWithFlags(newWrapKey, wrapType, param,
wrappedKey, target, operation, keySize,
keyFlags);
PK11_FreeSymKey(newWrapKey);
}
return unwrappedKey;
}
static SECStatus
ssl3_UnwrapMasterSecretServer(sslSocket *ss, sslSessionID *sid, PK11SymKey **ms)
{
PK11SymKey *wrapKey;
CK_FLAGS keyFlags = 0;
SECItem wrappedMS = {
siBuffer,
sid->u.ssl3.keys.wrapped_master_secret,
sid->u.ssl3.keys.wrapped_master_secret_len
};
wrapKey = ssl3_GetWrappingKey(ss, NULL, sid->u.ssl3.masterWrapMech,
ss->pkcs11PinArg);
if (!wrapKey) {
return SECFailure;
}
if (ss->version > SSL_LIBRARY_VERSION_3_0) { /* isTLS */
keyFlags = CKF_SIGN | CKF_VERIFY;
}
*ms = ssl_unwrapSymKey(wrapKey, sid->u.ssl3.masterWrapMech, NULL,
&wrappedMS, CKM_SSL3_MASTER_KEY_DERIVE,
CKA_DERIVE, SSL3_MASTER_SECRET_LENGTH,
keyFlags, ss->pkcs11PinArg);
PK11_FreeSymKey(wrapKey);
if (!*ms) {
SSL_TRC(10, ("%d: SSL3[%d]: server wrapping key found, but couldn't unwrap MasterSecret. wrapMech=0x%0lx",
SSL_GETPID(), ss->fd, sid->u.ssl3.masterWrapMech));
return SECFailure;
}
return SECSuccess;
}
static SECStatus
ssl3_HandleClientHelloPart2(sslSocket *ss,
SECItem *suites,
sslSessionID *sid,
const PRUint8 *msg,
unsigned int len)
{
PRBool haveXmitBufLock = PR_FALSE;
int errCode = SSL_ERROR_RX_MALFORMED_CLIENT_HELLO;
SSL3AlertDescription desc = illegal_parameter;
SECStatus rv;
unsigned int i;
unsigned int j;
rv = ssl_HashHandshakeMessage(ss, ssl_hs_client_hello, msg, len);
if (rv != SECSuccess) {
errCode = SEC_ERROR_LIBRARY_FAILURE;
desc = internal_error;
goto alert_loser;
}
/* If we already have a session for this client, be sure to pick the same
** cipher suite we picked before. This is not a loop, despite appearances.
*/
if (sid)
do {
ssl3CipherSuiteCfg *suite;
SSLVersionRange vrange = { ss->version, ss->version };
suite = ss->cipherSuites;
/* Find the entry for the cipher suite used in the cached session. */
for (j = ssl_V3_SUITES_IMPLEMENTED; j > 0; --j, ++suite) {
if (suite->cipher_suite == sid->u.ssl3.cipherSuite)
break;
}
PORT_Assert(j > 0);
if (j == 0)
break;
/* Double check that the cached cipher suite is still enabled,
* implemented, and allowed by policy. Might have been disabled.
*/
if (ssl3_config_match_init(ss) == 0) {
desc = handshake_failure;
errCode = PORT_GetError();
goto alert_loser;
}
if (!ssl3_config_match(suite, ss->ssl3.policy, &vrange, ss))
break;
/* Double check that the cached cipher suite is in the client's
* list. If it isn't, fall through and start a new session. */
for (i = 0; i + 1 < suites->len; i += 2) {
PRUint16 suite_i = (suites->data[i] << 8) | suites->data[i + 1];
if (suite_i == suite->cipher_suite) {
ss->ssl3.hs.cipher_suite = suite_i;
rv = ssl3_SetupCipherSuite(ss, PR_TRUE);
if (rv != SECSuccess) {
desc = internal_error;
errCode = PORT_GetError();
goto alert_loser;
}
goto cipher_found;
}
}
} while (0);
/* START A NEW SESSION */
rv = ssl3_NegotiateCipherSuite(ss, suites, PR_TRUE);
if (rv != SECSuccess) {
desc = handshake_failure;
errCode = PORT_GetError();
goto alert_loser;
}
cipher_found:
suites->data = NULL;
/* If there are any failures while processing the old sid,
* we don't consider them to be errors. Instead, We just behave
* as if the client had sent us no sid to begin with, and make a new one.
* The exception here is attempts to resume extended_master_secret
* sessions without the extension, which causes an alert.
*/
if (sid != NULL)
do {
PK11SymKey *masterSecret;
if (sid->version != ss->version ||
sid->u.ssl3.cipherSuite != ss->ssl3.hs.cipher_suite) {
break; /* not an error */
}
/* server sids don't remember the server cert we previously sent,
** but they do remember the slot we originally used, so we
** can locate it again, provided that the current ssl socket
** has had its server certs configured the same as the previous one.
*/
ss->sec.serverCert = ssl_FindServerCert(ss, sid->authType, sid->namedCurve);
if (!ss->sec.serverCert || !ss->sec.serverCert->serverCert) {
/* A compatible certificate must not have been configured. It
* might not be the same certificate, but we only find that out
* when the ticket fails to decrypt. */
break;
}
/* [draft-ietf-tls-session-hash-06; Section 5.3]
* o If the original session did not use the "extended_master_secret"
* extension but the new ClientHello contains the extension, then the
* server MUST NOT perform the abbreviated handshake. Instead, it
* SHOULD continue with a full handshake (as described in
* Section 5.2) to negotiate a new session.
*
* o If the original session used the "extended_master_secret"
* extension but the new ClientHello does not contain the extension,
* the server MUST abort the abbreviated handshake.
*/
if (ssl3_ExtensionNegotiated(ss, ssl_extended_master_secret_xtn)) {
if (!sid->u.ssl3.keys.extendedMasterSecretUsed) {
break; /* not an error */
}
} else {
if (sid->u.ssl3.keys.extendedMasterSecretUsed) {
/* Note: we do not destroy the session */
desc = handshake_failure;
errCode = SSL_ERROR_MISSING_EXTENDED_MASTER_SECRET;
goto alert_loser;
}
}
if (ss->sec.ci.sid) {
ssl_UncacheSessionID(ss);
PORT_Assert(ss->sec.ci.sid != sid); /* should be impossible, but ... */
if (ss->sec.ci.sid != sid) {
ssl_FreeSID(ss->sec.ci.sid);
}
ss->sec.ci.sid = NULL;
}
/* we need to resurrect the master secret.... */
rv = ssl3_UnwrapMasterSecretServer(ss, sid, &masterSecret);
if (rv != SECSuccess) {
break; /* not an error */
}
ss->sec.ci.sid = sid;
if (sid->peerCert != NULL) {
ss->sec.peerCert = CERT_DupCertificate(sid->peerCert);
}
/*
* Old SID passed all tests, so resume this old session.
*/
SSL_AtomicIncrementLong(&ssl3stats.hch_sid_cache_hits);
if (ss->statelessResume)
SSL_AtomicIncrementLong(&ssl3stats.hch_sid_stateless_resumes);
ss->ssl3.hs.isResuming = PR_TRUE;
ss->sec.authType = sid->authType;
ss->sec.authKeyBits = sid->authKeyBits;
ss->sec.keaType = sid->keaType;
ss->sec.keaKeyBits = sid->keaKeyBits;
ss->sec.originalKeaGroup = ssl_LookupNamedGroup(sid->keaGroup);
ss->sec.signatureScheme = sid->sigScheme;
ss->sec.localCert =
CERT_DupCertificate(ss->sec.serverCert->serverCert);
/* Copy cached name in to pending spec */
if (sid != NULL &&
sid->version > SSL_LIBRARY_VERSION_3_0 &&
sid->u.ssl3.srvName.len && sid->u.ssl3.srvName.data) {
/* Set server name from sid */
SECItem *sidName = &sid->u.ssl3.srvName;
SECItem *pwsName = &ss->ssl3.hs.srvVirtName;
if (pwsName->data) {
SECITEM_FreeItem(pwsName, PR_FALSE);
}
rv = SECITEM_CopyItem(NULL, pwsName, sidName);
if (rv != SECSuccess) {
errCode = PORT_GetError();
desc = internal_error;
goto alert_loser;
}
}
/* Clean up sni name array */
ssl3_FreeSniNameArray(&ss->xtnData);
ssl_GetXmitBufLock(ss);
haveXmitBufLock = PR_TRUE;
rv = ssl3_SendServerHello(ss);
if (rv != SECSuccess) {
errCode = PORT_GetError();
goto loser;
}
/* We are re-using the old MS, so no need to derive again. */
rv = ssl3_InitPendingCipherSpecs(ss, masterSecret, PR_FALSE);
if (rv != SECSuccess) {
errCode = PORT_GetError();
goto loser;
}
rv = ssl3_SendChangeCipherSpecs(ss);
if (rv != SECSuccess) {
errCode = PORT_GetError();
goto loser;
}
rv = ssl3_SendFinished(ss, 0);
ss->ssl3.hs.ws = wait_change_cipher;
if (rv != SECSuccess) {
errCode = PORT_GetError();
goto loser;
}
if (haveXmitBufLock) {
ssl_ReleaseXmitBufLock(ss);
}
return SECSuccess;
} while (0);
if (sid) { /* we had a sid, but it's no longer valid, free it */
ss->statelessResume = PR_FALSE;
SSL_AtomicIncrementLong(&ssl3stats.hch_sid_cache_not_ok);
ssl_UncacheSessionID(ss);
ssl_FreeSID(sid);
sid = NULL;
}
SSL_AtomicIncrementLong(&ssl3stats.hch_sid_cache_misses);
/* We only send a session ticket extension if the client supports
* the extension and we are unable to resume.
*
* TODO: send a session ticket if performing a stateful
* resumption. (As per RFC4507, a server may issue a session
* ticket while doing a (stateless or stateful) session resume,
* but OpenSSL-0.9.8g does not accept session tickets while
* resuming.)
*/
if (ssl3_ExtensionNegotiated(ss, ssl_session_ticket_xtn) &&
ssl3_KEASupportsTickets(ss->ssl3.hs.kea_def)) {
ssl3_RegisterExtensionSender(ss, &ss->xtnData, ssl_session_ticket_xtn,
ssl_SendEmptyExtension);
}
rv = ssl3_ServerCallSNICallback(ss);
if (rv != SECSuccess) {
/* The alert has already been sent. */
errCode = PORT_GetError();
goto loser;
}
rv = ssl3_SelectServerCert(ss);
if (rv != SECSuccess) {
errCode = PORT_GetError();
desc = handshake_failure;
goto alert_loser;
}
sid = ssl3_NewSessionID(ss, PR_TRUE);
if (sid == NULL) {
errCode = PORT_GetError();
goto loser; /* memory error is set. */
}
ss->sec.ci.sid = sid;
sid->u.ssl3.keys.extendedMasterSecretUsed =
ssl3_ExtensionNegotiated(ss, ssl_extended_master_secret_xtn);
ss->ssl3.hs.isResuming = PR_FALSE;
ssl_GetXmitBufLock(ss);
rv = ssl3_SendServerHelloSequence(ss);
ssl_ReleaseXmitBufLock(ss);
if (rv != SECSuccess) {
errCode = PORT_GetError();
desc = handshake_failure;
goto alert_loser;
}
if (haveXmitBufLock) {
ssl_ReleaseXmitBufLock(ss);
}
return SECSuccess;
alert_loser:
(void)SSL3_SendAlert(ss, alert_fatal, desc);
/* FALLTHRU */
loser:
if (sid && sid != ss->sec.ci.sid) {
ssl_UncacheSessionID(ss);
ssl_FreeSID(sid);
}
if (haveXmitBufLock) {
ssl_ReleaseXmitBufLock(ss);
}
PORT_SetError(errCode);
return SECFailure;
}
/*
* ssl3_HandleV2ClientHello is used when a V2 formatted hello comes
* in asking to use the V3 handshake.
*/
SECStatus
ssl3_HandleV2ClientHello(sslSocket *ss, unsigned char *buffer, unsigned int length,
PRUint8 padding)
{
sslSessionID *sid = NULL;
unsigned char *suites;
unsigned char *random;
SSL3ProtocolVersion version;
SECStatus rv;
unsigned int i;
unsigned int j;
unsigned int sid_length;
unsigned int suite_length;
unsigned int rand_length;
int errCode = SSL_ERROR_RX_MALFORMED_CLIENT_HELLO;
SSL3AlertDescription desc = handshake_failure;
unsigned int total = SSL_HL_CLIENT_HELLO_HBYTES;
SSL_TRC(3, ("%d: SSL3[%d]: handle v2 client_hello", SSL_GETPID(), ss->fd));
PORT_Assert(ss->opt.noLocks || ssl_HaveRecvBufLock(ss));
ssl_GetSSL3HandshakeLock(ss);
version = (buffer[1] << 8) | buffer[2];
if (version < SSL_LIBRARY_VERSION_3_0) {
goto loser;
}
ssl3_RestartHandshakeHashes(ss);
if (ss->ssl3.hs.ws != wait_client_hello) {
desc = unexpected_message;
errCode = SSL_ERROR_RX_UNEXPECTED_CLIENT_HELLO;
goto alert_loser;
}
total += suite_length = (buffer[3] << 8) | buffer[4];
total += sid_length = (buffer[5] << 8) | buffer[6];
total += rand_length = (buffer[7] << 8) | buffer[8];
total += padding;
ss->clientHelloVersion = version;
if (version >= SSL_LIBRARY_VERSION_TLS_1_3) {
/* [draft-ietf-tls-tls-11; C.3] forbids sending a TLS 1.3
* ClientHello using the backwards-compatible format. */
desc = illegal_parameter;
errCode = SSL_ERROR_RX_MALFORMED_CLIENT_HELLO;
goto alert_loser;
}
rv = ssl3_NegotiateVersion(ss, version, PR_TRUE);
if (rv != SECSuccess) {
/* send back which ever alert client will understand. */
desc = (version > SSL_LIBRARY_VERSION_3_0) ? protocol_version
: handshake_failure;
errCode = SSL_ERROR_UNSUPPORTED_VERSION;
goto alert_loser;
}
/* ECH not possible here. */
ss->ssl3.hs.preliminaryInfo |= ssl_preinfo_ech;
ss->ssl3.hs.preliminaryInfo |= ssl_preinfo_version;
if (!ss->firstHsDone) {
ssl_GetSpecWriteLock(ss);
ssl_SetSpecVersions(ss, ss->ssl3.cwSpec);
ssl_ReleaseSpecWriteLock(ss);
}
/* if we get a non-zero SID, just ignore it. */
if (length != total) {
SSL_DBG(("%d: SSL3[%d]: bad v2 client hello message, len=%d should=%d",
SSL_GETPID(), ss->fd, length, total));
desc = illegal_parameter;
errCode = SSL_ERROR_RX_MALFORMED_CLIENT_HELLO;
goto alert_loser;
}
suites = buffer + SSL_HL_CLIENT_HELLO_HBYTES;
random = suites + suite_length + sid_length;
if (rand_length < SSL_MIN_CHALLENGE_BYTES ||
rand_length > SSL_MAX_CHALLENGE_BYTES) {
desc = illegal_parameter;
errCode = SSL_ERROR_RX_MALFORMED_CLIENT_HELLO;
goto alert_loser;
}
PORT_Assert(SSL_MAX_CHALLENGE_BYTES == SSL3_RANDOM_LENGTH);
PORT_Memset(ss->ssl3.hs.client_random, 0, SSL3_RANDOM_LENGTH);
PORT_Memcpy(&ss->ssl3.hs.client_random[SSL3_RANDOM_LENGTH - rand_length],
random, rand_length);
PRINT_BUF(60, (ss, "client random:", ss->ssl3.hs.client_random,
SSL3_RANDOM_LENGTH));
if (ssl3_config_match_init(ss) == 0) {
errCode = PORT_GetError(); /* error code is already set. */
goto alert_loser;
}
/* Select a cipher suite.
**
** NOTE: This suite selection algorithm should be the same as the one in
** ssl3_HandleClientHello().
*/
for (j = 0; j < ssl_V3_SUITES_IMPLEMENTED; j++) {
ssl3CipherSuiteCfg *suite = &ss->cipherSuites[j];
SSLVersionRange vrange = { ss->version, ss->version };
if (!ssl3_config_match(suite, ss->ssl3.policy, &vrange, ss)) {
continue;
}
for (i = 0; i + 2 < suite_length; i += 3) {
PRUint32 suite_i = (suites[i] << 16) | (suites[i + 1] << 8) | suites[i + 2];
if (suite_i == suite->cipher_suite) {
ss->ssl3.hs.cipher_suite = suite_i;
rv = ssl3_SetupCipherSuite(ss, PR_TRUE);
if (rv != SECSuccess) {
desc = internal_error;
errCode = PORT_GetError();
goto alert_loser;
}
goto suite_found;
}
}
}
errCode = SSL_ERROR_NO_CYPHER_OVERLAP;
goto alert_loser;
suite_found:
/* If the ClientHello version is less than our maximum version, check for a
* TLS_FALLBACK_SCSV and reject the connection if found. */
if (ss->vrange.max > ss->clientHelloVersion) {
for (i = 0; i + 2 < suite_length; i += 3) {
PRUint16 suite_i = (suites[i] << 16) | (suites[i + 1] << 8) | suites[i + 2];
if (suite_i == TLS_FALLBACK_SCSV) {
desc = inappropriate_fallback;
errCode = SSL_ERROR_INAPPROPRIATE_FALLBACK_ALERT;
goto alert_loser;
}
}
}
/* Look for the SCSV, and if found, treat it just like an empty RI
* extension by processing a local copy of an empty RI extension.
*/
for (i = 0; i + 2 < suite_length; i += 3) {
PRUint32 suite_i = (suites[i] << 16) | (suites[i + 1] << 8) | suites[i + 2];
if (suite_i == TLS_EMPTY_RENEGOTIATION_INFO_SCSV) {
PRUint8 *b2 = (PRUint8 *)emptyRIext;
PRUint32 L2 = sizeof emptyRIext;
(void)ssl3_HandleExtensions(ss, &b2, &L2, ssl_hs_client_hello);
break;
}
}
if (ss->opt.requireSafeNegotiation &&
!ssl3_ExtensionNegotiated(ss, ssl_renegotiation_info_xtn)) {
desc = handshake_failure;
errCode = SSL_ERROR_UNSAFE_NEGOTIATION;
goto alert_loser;
}
rv = ssl3_SelectServerCert(ss);
if (rv != SECSuccess) {
errCode = PORT_GetError();
desc = handshake_failure;
goto alert_loser;
}
/* we don't even search for a cache hit here. It's just a miss. */
SSL_AtomicIncrementLong(&ssl3stats.hch_sid_cache_misses);
sid = ssl3_NewSessionID(ss, PR_TRUE);
if (sid == NULL) {
errCode = PORT_GetError();
goto loser; /* memory error is set. */
}
ss->sec.ci.sid = sid;
/* do not worry about memory leak of sid since it now belongs to ci */
/* We have to update the handshake hashes before we can send stuff */
rv = ssl3_UpdateHandshakeHashes(ss, buffer, length);
if (rv != SECSuccess) {
errCode = PORT_GetError();
goto loser;
}
ssl_GetXmitBufLock(ss);
rv = ssl3_SendServerHelloSequence(ss);
ssl_ReleaseXmitBufLock(ss);
if (rv != SECSuccess) {
errCode = PORT_GetError();
goto loser;
}
ssl_ReleaseSSL3HandshakeLock(ss);
return SECSuccess;
alert_loser:
SSL3_SendAlert(ss, alert_fatal, desc);
loser:
ssl_ReleaseSSL3HandshakeLock(ss);
PORT_SetError(errCode);
return SECFailure;
}
SECStatus
ssl_ConstructServerHello(sslSocket *ss, PRBool helloRetry,
const sslBuffer *extensionBuf, sslBuffer *messageBuf)
{
SECStatus rv;
SSL3ProtocolVersion version;
sslSessionID *sid = ss->sec.ci.sid;
const PRUint8 *random;
version = PR_MIN(ss->version, SSL_LIBRARY_VERSION_TLS_1_2);
if (IS_DTLS(ss)) {
version = dtls_TLSVersionToDTLSVersion(version);
}
rv = sslBuffer_AppendNumber(messageBuf, version, 2);
if (rv != SECSuccess) {
return SECFailure;
}
if (helloRetry) {
random = ssl_hello_retry_random;
} else {
rv = ssl_GenerateServerRandom(ss);
if (rv != SECSuccess) {
return SECFailure;
}
random = ss->ssl3.hs.server_random;
}
rv = sslBuffer_Append(messageBuf, random, SSL3_RANDOM_LENGTH);
if (rv != SECSuccess) {
return SECFailure;
}
if (ss->version < SSL_LIBRARY_VERSION_TLS_1_3) {
if (sid) {
rv = sslBuffer_AppendVariable(messageBuf, sid->u.ssl3.sessionID,
sid->u.ssl3.sessionIDLength, 1);
} else {
rv = sslBuffer_AppendNumber(messageBuf, 0, 1);
}
} else {
rv = sslBuffer_AppendVariable(messageBuf, ss->ssl3.hs.fakeSid.data,
ss->ssl3.hs.fakeSid.len, 1);
}
if (rv != SECSuccess) {
return SECFailure;
}
rv = sslBuffer_AppendNumber(messageBuf, ss->ssl3.hs.cipher_suite, 2);
if (rv != SECSuccess) {
return SECFailure;
}
rv = sslBuffer_AppendNumber(messageBuf, ssl_compression_null, 1);
if (rv != SECSuccess) {
return SECFailure;
}
if (SSL_BUFFER_LEN(extensionBuf)) {
rv = sslBuffer_AppendBufferVariable(messageBuf, extensionBuf, 2);
if (rv != SECSuccess) {
return SECFailure;
}
}
if (!helloRetry && ssl3_ExtensionNegotiated(ss, ssl_tls13_ech_is_inner_xtn)) {
/* Signal ECH acceptance if we handled handled both CHOuter/CHInner (i.e.
* in shared mode), or if we received a CHInner in split/backend mode. */
if (ss->ssl3.hs.echAccepted || ss->opt.enableTls13BackendEch) {
return tls13_WriteServerEchSignal(ss, SSL_BUFFER_BASE(messageBuf),
SSL_BUFFER_LEN(messageBuf));
}
}
return SECSuccess;
}
/* The negotiated version number has been already placed in ss->version.
**
** Called from: ssl3_HandleClientHello (resuming session),
** ssl3_SendServerHelloSequence <- ssl3_HandleClientHello (new session),
** ssl3_SendServerHelloSequence <- ssl3_HandleV2ClientHello (new session)
*/
SECStatus
ssl3_SendServerHello(sslSocket *ss)
{
SECStatus rv;
sslBuffer extensionBuf = SSL_BUFFER_EMPTY;
sslBuffer messageBuf = SSL_BUFFER_EMPTY;
SSL_TRC(3, ("%d: SSL3[%d]: send server_hello handshake", SSL_GETPID(),
ss->fd));
PORT_Assert(ss->opt.noLocks || ssl_HaveXmitBufLock(ss));
PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
PORT_Assert(MSB(ss->version) == MSB(SSL_LIBRARY_VERSION_3_0));
if (MSB(ss->version) != MSB(SSL_LIBRARY_VERSION_3_0)) {
PORT_SetError(SSL_ERROR_NO_CYPHER_OVERLAP);
return SECFailure;
}
rv = ssl_ConstructExtensions(ss, &extensionBuf, ssl_hs_server_hello);
if (rv != SECSuccess) {
goto loser;
}
rv = ssl_ConstructServerHello(ss, PR_FALSE, &extensionBuf, &messageBuf);
if (rv != SECSuccess) {
goto loser;
}
rv = ssl3_AppendHandshakeHeader(ss, ssl_hs_server_hello,
SSL_BUFFER_LEN(&messageBuf));
if (rv != SECSuccess) {
goto loser; /* err set by AppendHandshake. */
}
rv = ssl3_AppendHandshake(ss, SSL_BUFFER_BASE(&messageBuf),
SSL_BUFFER_LEN(&messageBuf));
if (rv != SECSuccess) {
goto loser; /* err set by AppendHandshake. */
}
if (ss->version < SSL_LIBRARY_VERSION_TLS_1_3) {
rv = ssl3_SetupBothPendingCipherSpecs(ss);
if (rv != SECSuccess) {
goto loser; /* err set */
}
}
sslBuffer_Clear(&extensionBuf);
sslBuffer_Clear(&messageBuf);
return SECSuccess;
loser:
sslBuffer_Clear(&extensionBuf);
sslBuffer_Clear(&messageBuf);
return SECFailure;
}
SECStatus
ssl_CreateDHEKeyPair(const sslNamedGroupDef *groupDef,
const ssl3DHParams *params,
sslEphemeralKeyPair **keyPair)
{
SECKEYDHParams dhParam;
SECKEYPublicKey *pubKey = NULL; /* Ephemeral DH key */
SECKEYPrivateKey *privKey = NULL; /* Ephemeral DH key */
sslEphemeralKeyPair *pair;
dhParam.prime.data = params->prime.data;
dhParam.prime.len = params->prime.len;
dhParam.base.data = params->base.data;
dhParam.base.len = params->base.len;
PRINT_BUF(60, (NULL, "Server DH p", dhParam.prime.data,
dhParam.prime.len));
PRINT_BUF(60, (NULL, "Server DH g", dhParam.base.data,
dhParam.base.len));
/* Generate ephemeral DH keypair */
privKey = SECKEY_CreateDHPrivateKey(&dhParam, &pubKey, NULL);
if (!privKey || !pubKey) {
ssl_MapLowLevelError(SEC_ERROR_KEYGEN_FAIL);
return SECFailure;
}
pair = ssl_NewEphemeralKeyPair(groupDef, privKey, pubKey);
if (!pair) {
SECKEY_DestroyPrivateKey(privKey);
SECKEY_DestroyPublicKey(pubKey);
return SECFailure;
}
*keyPair = pair;
return SECSuccess;
}
static SECStatus
ssl3_SendDHServerKeyExchange(sslSocket *ss)
{
const ssl3KEADef *kea_def = ss->ssl3.hs.kea_def;
SECStatus rv = SECFailure;
int length;
SECItem signed_hash = { siBuffer, NULL, 0 };
SSL3Hashes hashes;
SSLHashType hashAlg;
const ssl3DHParams *params;
sslEphemeralKeyPair *keyPair;
SECKEYPublicKey *pubKey;
SECKEYPrivateKey *certPrivateKey;
const sslNamedGroupDef *groupDef;
/* Do this on the heap, this could be over 2k long. */
sslBuffer dhBuf = SSL_BUFFER_EMPTY;
if (kea_def->kea != kea_dhe_dss && kea_def->kea != kea_dhe_rsa) {
/* TODO: Support DH_anon. It might be sufficient to drop the signature.
See bug 1170510. */
PORT_SetError(SSL_ERROR_SERVER_KEY_EXCHANGE_FAILURE);
return SECFailure;
}
rv = ssl_SelectDHEGroup(ss, &groupDef);
if (rv == SECFailure) {
PORT_SetError(SSL_ERROR_NO_CYPHER_OVERLAP);
return SECFailure;
}
ss->sec.keaGroup = groupDef;
params = ssl_GetDHEParams(groupDef);
rv = ssl_CreateDHEKeyPair(groupDef, params, &keyPair);
if (rv == SECFailure) {
ssl_MapLowLevelError(SEC_ERROR_KEYGEN_FAIL);
return SECFailure;
}
PR_APPEND_LINK(&keyPair->link, &ss->ephemeralKeyPairs);
if (ss->version == SSL_LIBRARY_VERSION_TLS_1_2) {
hashAlg = ssl_SignatureSchemeToHashType(ss->ssl3.hs.signatureScheme);
} else {
/* Use ssl_hash_none to represent the MD5+SHA1 combo. */
hashAlg = ssl_hash_none;
}
pubKey = keyPair->keys->pubKey;
PRINT_BUF(50, (ss, "DH public value:",
pubKey->u.dh.publicValue.data,
pubKey->u.dh.publicValue.len));
rv = ssl3_ComputeDHKeyHash(ss, hashAlg, &hashes,
pubKey->u.dh.prime,
pubKey->u.dh.base,
pubKey->u.dh.publicValue,
PR_TRUE /* padY */);
if (rv != SECSuccess) {
ssl_MapLowLevelError(SSL_ERROR_SERVER_KEY_EXCHANGE_FAILURE);
goto loser;
}
certPrivateKey = ss->sec.serverCert->serverKeyPair->privKey;
rv = ssl3_SignHashes(ss, &hashes, certPrivateKey, &signed_hash);
if (rv != SECSuccess) {
goto loser; /* ssl3_SignHashes has set err. */
}
length = 2 + pubKey->u.dh.prime.len +
2 + pubKey->u.dh.base.len +
2 + pubKey->u.dh.prime.len +
2 + signed_hash.len;
if (ss->version >= SSL_LIBRARY_VERSION_TLS_1_2) {
length += 2;
}
rv = ssl3_AppendHandshakeHeader(ss, ssl_hs_server_key_exchange, length);
if (rv != SECSuccess) {
goto loser; /* err set by AppendHandshake. */
}
rv = ssl3_AppendHandshakeVariable(ss, pubKey->u.dh.prime.data,
pubKey->u.dh.prime.len, 2);
if (rv != SECSuccess) {
goto loser; /* err set by AppendHandshake. */
}
rv = ssl3_AppendHandshakeVariable(ss, pubKey->u.dh.base.data,
pubKey->u.dh.base.len, 2);
if (rv != SECSuccess) {
goto loser; /* err set by AppendHandshake. */
}
rv = ssl_AppendPaddedDHKeyShare(&dhBuf, pubKey, PR_TRUE);
if (rv != SECSuccess) {
goto loser; /* err set by AppendPaddedDHKeyShare. */
}
rv = ssl3_AppendBufferToHandshake(ss, &dhBuf);
if (rv != SECSuccess) {
goto loser; /* err set by AppendHandshake. */
}
if (ss->version >= SSL_LIBRARY_VERSION_TLS_1_2) {
rv = ssl3_AppendHandshakeNumber(ss, ss->ssl3.hs.signatureScheme, 2);
if (rv != SECSuccess) {
goto loser; /* err set by AppendHandshake. */
}
}
rv = ssl3_AppendHandshakeVariable(ss, signed_hash.data,
signed_hash.len, 2);
if (rv != SECSuccess) {
goto loser; /* err set by AppendHandshake. */
}
sslBuffer_Clear(&dhBuf);
PORT_Free(signed_hash.data);
return SECSuccess;
loser:
if (signed_hash.data)
PORT_Free(signed_hash.data);
sslBuffer_Clear(&dhBuf);
return SECFailure;
}
static SECStatus
ssl3_SendServerKeyExchange(sslSocket *ss)
{
const ssl3KEADef *kea_def = ss->ssl3.hs.kea_def;
SSL_TRC(3, ("%d: SSL3[%d]: send server_key_exchange handshake",
SSL_GETPID(), ss->fd));
PORT_Assert(ss->opt.noLocks || ssl_HaveXmitBufLock(ss));
PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
switch (kea_def->exchKeyType) {
case ssl_kea_dh: {
return ssl3_SendDHServerKeyExchange(ss);
}
case ssl_kea_ecdh: {
return ssl3_SendECDHServerKeyExchange(ss);
}
case ssl_kea_rsa:
case ssl_kea_null:
default:
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
break;
}
return SECFailure;
}
SECStatus
ssl3_EncodeSigAlgs(const sslSocket *ss, PRUint16 minVersion, PRBool forCert,
sslBuffer *buf)
{
SSLSignatureScheme filtered[MAX_SIGNATURE_SCHEMES] = { 0 };
unsigned int filteredCount = 0;
SECStatus rv = ssl3_FilterSigAlgs(ss, minVersion, PR_FALSE, forCert,
PR_ARRAY_SIZE(filtered),
filtered, &filteredCount);
if (rv != SECSuccess) {
return SECFailure;
}
return ssl3_EncodeFilteredSigAlgs(ss, filtered, filteredCount, buf);
}
SECStatus
ssl3_EncodeFilteredSigAlgs(const sslSocket *ss, const SSLSignatureScheme *schemes,
PRUint32 numSchemes, sslBuffer *buf)
{
if (!numSchemes) {
PORT_SetError(SSL_ERROR_NO_SUPPORTED_SIGNATURE_ALGORITHM);
return SECFailure;
}
unsigned int lengthOffset;
SECStatus rv;
rv = sslBuffer_Skip(buf, 2, &lengthOffset);
if (rv != SECSuccess) {
return SECFailure;
}
for (unsigned int i = 0; i < numSchemes; ++i) {
rv = sslBuffer_AppendNumber(buf, schemes[i], 2);
if (rv != SECSuccess) {
return SECFailure;
}
}
return sslBuffer_InsertLength(buf, lengthOffset, 2);
}
/*
* In TLS 1.3 we are permitted to advertise support for PKCS#1
* schemes. This doesn't affect the signatures in TLS itself, just
* those on certificates. Not advertising PKCS#1 signatures creates a
* serious compatibility risk as it excludes many certificate chains
* that include PKCS#1. Hence, forCert is used to enable advertising
* PKCS#1 support. Note that we include these in signature_algorithms
* because we don't yet support signature_algorithms_cert. TLS 1.3
* requires that PKCS#1 schemes are placed last in the list if they
* are present. This sorting can be removed once we support
* signature_algorithms_cert.
*/
SECStatus
ssl3_FilterSigAlgs(const sslSocket *ss, PRUint16 minVersion, PRBool disableRsae,
PRBool forCert,
unsigned int maxSchemes, SSLSignatureScheme *filteredSchemes,
unsigned int *numFilteredSchemes)
{
PORT_Assert(filteredSchemes);
PORT_Assert(numFilteredSchemes);
PORT_Assert(maxSchemes >= ss->ssl3.signatureSchemeCount);
if (maxSchemes < ss->ssl3.signatureSchemeCount) {
return SECFailure;
}
*numFilteredSchemes = 0;
PRBool allowUnsortedPkcs1 = forCert && minVersion < SSL_LIBRARY_VERSION_TLS_1_3;
for (unsigned int i = 0; i < ss->ssl3.signatureSchemeCount; ++i) {
if (disableRsae && ssl_IsRsaeSignatureScheme(ss->ssl3.signatureSchemes[i])) {
continue;
}
if (ssl_SignatureSchemeAccepted(minVersion,
ss->ssl3.signatureSchemes[i],
allowUnsortedPkcs1)) {
filteredSchemes[(*numFilteredSchemes)++] = ss->ssl3.signatureSchemes[i];
}
}
if (forCert && !allowUnsortedPkcs1) {
for (unsigned int i = 0; i < ss->ssl3.signatureSchemeCount; ++i) {
if (disableRsae && ssl_IsRsaeSignatureScheme(ss->ssl3.signatureSchemes[i])) {
continue;
}
if (!ssl_SignatureSchemeAccepted(minVersion,
ss->ssl3.signatureSchemes[i],
PR_FALSE) &&
ssl_SignatureSchemeAccepted(minVersion,
ss->ssl3.signatureSchemes[i],
PR_TRUE)) {
filteredSchemes[(*numFilteredSchemes)++] = ss->ssl3.signatureSchemes[i];
}
}
}
return SECSuccess;
}
static SECStatus
ssl3_SendCertificateRequest(sslSocket *ss)
{
PRBool isTLS12;
const PRUint8 *certTypes;
SECStatus rv;
PRUint32 length;
const SECItem *names;
unsigned int calen;
unsigned int nnames;
const SECItem *name;
unsigned int i;
int certTypesLength;
PRUint8 sigAlgs[2 + MAX_SIGNATURE_SCHEMES * 2];
sslBuffer sigAlgsBuf = SSL_BUFFER(sigAlgs);
SSL_TRC(3, ("%d: SSL3[%d]: send certificate_request handshake",
SSL_GETPID(), ss->fd));
PORT_Assert(ss->opt.noLocks || ssl_HaveXmitBufLock(ss));
PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
isTLS12 = (PRBool)(ss->version >= SSL_LIBRARY_VERSION_TLS_1_2);
rv = ssl_GetCertificateRequestCAs(ss, &calen, &names, &nnames);
if (rv != SECSuccess) {
return rv;
}
certTypes = certificate_types;
certTypesLength = sizeof certificate_types;
length = 1 + certTypesLength + 2 + calen;
if (isTLS12) {
rv = ssl3_EncodeSigAlgs(ss, ss->version, PR_TRUE /* forCert */, &sigAlgsBuf);
if (rv != SECSuccess) {
return rv;
}
length += SSL_BUFFER_LEN(&sigAlgsBuf);
}
rv = ssl3_AppendHandshakeHeader(ss, ssl_hs_certificate_request, length);
if (rv != SECSuccess) {
return rv; /* err set by AppendHandshake. */
}
rv = ssl3_AppendHandshakeVariable(ss, certTypes, certTypesLength, 1);
if (rv != SECSuccess) {
return rv; /* err set by AppendHandshake. */
}
if (isTLS12) {
rv = ssl3_AppendHandshake(ss, SSL_BUFFER_BASE(&sigAlgsBuf),
SSL_BUFFER_LEN(&sigAlgsBuf));
if (rv != SECSuccess) {
return rv; /* err set by AppendHandshake. */
}
}
rv = ssl3_AppendHandshakeNumber(ss, calen, 2);
if (rv != SECSuccess) {
return rv; /* err set by AppendHandshake. */
}
for (i = 0, name = names; i < nnames; i++, name++) {
rv = ssl3_AppendHandshakeVariable(ss, name->data, name->len, 2);
if (rv != SECSuccess) {
return rv; /* err set by AppendHandshake. */
}
}
return SECSuccess;
}
static SECStatus
ssl3_SendServerHelloDone(sslSocket *ss)
{
SECStatus rv;
SSL_TRC(3, ("%d: SSL3[%d]: send server_hello_done handshake",
SSL_GETPID(), ss->fd));
PORT_Assert(ss->opt.noLocks || ssl_HaveXmitBufLock(ss));
PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
rv = ssl3_AppendHandshakeHeader(ss, ssl_hs_server_hello_done, 0);
if (rv != SECSuccess) {
return rv; /* err set by AppendHandshake. */
}
rv = ssl3_FlushHandshake(ss, 0);
if (rv != SECSuccess) {
return rv; /* error code set by ssl3_FlushHandshake */
}
return SECSuccess;
}
/* Called from ssl3_HandlePostHelloHandshakeMessage() when it has deciphered
* a complete ssl3 Certificate Verify message
* Caller must hold Handshake and RecvBuf locks.
*/
static SECStatus
ssl3_HandleCertificateVerify(sslSocket *ss, PRUint8 *b, PRUint32 length)
{
SECItem signed_hash = { siBuffer, NULL, 0 };
SECStatus rv;
int errCode = SSL_ERROR_RX_MALFORMED_CERT_VERIFY;
SSL3AlertDescription desc = handshake_failure;
PRBool isTLS;
SSLSignatureScheme sigScheme;
SSL3Hashes hashes;
const PRUint8 *savedMsg = b;
const PRUint32 savedLen = length;
SSL_TRC(3, ("%d: SSL3[%d]: handle certificate_verify handshake",
SSL_GETPID(), ss->fd));
PORT_Assert(ss->opt.noLocks || ssl_HaveRecvBufLock(ss));
PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
if (ss->ssl3.hs.ws != wait_cert_verify) {
desc = unexpected_message;
errCode = SSL_ERROR_RX_UNEXPECTED_CERT_VERIFY;
goto alert_loser;
}
/* TLS 1.3 is handled by tls13_HandleCertificateVerify */
PORT_Assert(ss->ssl3.prSpec->version <= SSL_LIBRARY_VERSION_TLS_1_2);
if (ss->ssl3.prSpec->version == SSL_LIBRARY_VERSION_TLS_1_2) {
PORT_Assert(ss->ssl3.hs.hashType == handshake_hash_record);
rv = ssl_ConsumeSignatureScheme(ss, &b, &length, &sigScheme);
if (rv != SECSuccess) {
if (PORT_GetError() == SSL_ERROR_UNSUPPORTED_SIGNATURE_ALGORITHM) {
errCode = SSL_ERROR_UNSUPPORTED_SIGNATURE_ALGORITHM;
}
goto loser; /* alert already sent */
}
rv = ssl_CheckSignatureSchemeConsistency(
ss, sigScheme, &ss->sec.peerCert->subjectPublicKeyInfo);
if (rv != SECSuccess) {
errCode = PORT_GetError();
desc = illegal_parameter;
goto alert_loser;
}
rv = ssl3_ComputeHandshakeHash(ss->ssl3.hs.messages.buf,
ss->ssl3.hs.messages.len,
ssl_SignatureSchemeToHashType(sigScheme),
&hashes);
} else {
PORT_Assert(ss->ssl3.hs.hashType != handshake_hash_record);
sigScheme = ssl_sig_none;
rv = ssl3_ComputeHandshakeHashes(ss, ss->ssl3.prSpec, &hashes, 0);
}
if (rv != SECSuccess) {
errCode = SSL_ERROR_DIGEST_FAILURE;
desc = decrypt_error;
goto alert_loser;
}
rv = ssl3_ConsumeHandshakeVariable(ss, &signed_hash, 2, &b, &length);
if (rv != SECSuccess) {
goto loser; /* malformed. */
}
isTLS = (PRBool)(ss->ssl3.prSpec->version > SSL_LIBRARY_VERSION_3_0);
/* XXX verify that the key & kea match */
rv = ssl3_VerifySignedHashes(ss, sigScheme, &hashes, &signed_hash);
if (rv != SECSuccess) {
errCode = PORT_GetError();
desc = isTLS ? decrypt_error : handshake_failure;
goto alert_loser;
}
signed_hash.data = NULL;
if (length != 0) {
desc = isTLS ? decode_error : illegal_parameter;
goto alert_loser; /* malformed */
}
rv = ssl_HashHandshakeMessage(ss, ssl_hs_certificate_verify,
savedMsg, savedLen);
if (rv != SECSuccess) {
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
return rv;
}
ss->ssl3.hs.ws = wait_change_cipher;
return SECSuccess;
alert_loser:
SSL3_SendAlert(ss, alert_fatal, desc);
loser:
PORT_SetError(errCode);
return SECFailure;
}
/* find a slot that is able to generate a PMS and wrap it with RSA.
* Then generate and return the PMS.
* If the serverKeySlot parameter is non-null, this function will use
* that slot to do the job, otherwise it will find a slot.
*
* Called from ssl3_DeriveConnectionKeys() (above)
* ssl3_SendRSAClientKeyExchange() (above)
* ssl3_HandleRSAClientKeyExchange() (below)
* Caller must hold the SpecWriteLock, the SSL3HandshakeLock
*/
static PK11SymKey *
ssl3_GenerateRSAPMS(sslSocket *ss, ssl3CipherSpec *spec,
PK11SlotInfo *serverKeySlot)
{
PK11SymKey *pms = NULL;
PK11SlotInfo *slot = serverKeySlot;
void *pwArg = ss->pkcs11PinArg;
SECItem param;
CK_VERSION version;
CK_MECHANISM_TYPE mechanism_array[3];
PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
if (slot == NULL) {
SSLCipherAlgorithm calg;
/* The specReadLock would suffice here, but we cannot assert on
** read locks. Also, all the callers who call with a non-null
** slot already hold the SpecWriteLock.
*/
PORT_Assert(ss->opt.noLocks || ssl_HaveSpecWriteLock(ss));
PORT_Assert(ss->ssl3.prSpec->epoch == ss->ssl3.pwSpec->epoch);
calg = spec->cipherDef->calg;
/* First get an appropriate slot. */
mechanism_array[0] = CKM_SSL3_PRE_MASTER_KEY_GEN;
mechanism_array[1] = CKM_RSA_PKCS;
mechanism_array[2] = ssl3_Alg2Mech(calg);
slot = PK11_GetBestSlotMultiple(mechanism_array, 3, pwArg);
if (slot == NULL) {
/* can't find a slot with all three, find a slot with the minimum */
slot = PK11_GetBestSlotMultiple(mechanism_array, 2, pwArg);
if (slot == NULL) {
PORT_SetError(SSL_ERROR_TOKEN_SLOT_NOT_FOUND);
return pms; /* which is NULL */
}
}
}
/* Generate the pre-master secret ... */
if (IS_DTLS(ss)) {
SSL3ProtocolVersion temp;
temp = dtls_TLSVersionToDTLSVersion(ss->clientHelloVersion);
version.major = MSB(temp);
version.minor = LSB(temp);
} else {
version.major = MSB(ss->clientHelloVersion);
version.minor = LSB(ss->clientHelloVersion);
}
param.data = (unsigned char *)&version;
param.len = sizeof version;
pms = PK11_KeyGen(slot, CKM_SSL3_PRE_MASTER_KEY_GEN, &param, 0, pwArg);
if (!serverKeySlot)
PK11_FreeSlot(slot);
if (pms == NULL) {
ssl_MapLowLevelError(SSL_ERROR_CLIENT_KEY_EXCHANGE_FAILURE);
}
return pms;
}
static void
ssl3_CSwapPK11SymKey(PK11SymKey **x, PK11SymKey **y, PRBool c)
{
uintptr_t mask = (uintptr_t)c;
unsigned int i;
for (i = 1; i < sizeof(uintptr_t) * 8; i <<= 1) {
mask |= mask << i;
}
uintptr_t x_ptr = (uintptr_t)*x;
uintptr_t y_ptr = (uintptr_t)*y;
uintptr_t tmp = (x_ptr ^ y_ptr) & mask;
x_ptr = x_ptr ^ tmp;
y_ptr = y_ptr ^ tmp;
*x = (PK11SymKey *)x_ptr;
*y = (PK11SymKey *)y_ptr;
}
/* Note: The Bleichenbacher attack on PKCS#1 necessitates that we NEVER
* return any indication of failure of the Client Key Exchange message,
* where that failure is caused by the content of the client's message.
* This function must not return SECFailure for any reason that is directly
* or indirectly caused by the content of the client's encrypted PMS.
* We must not send an alert and also not drop the connection.
* Instead, we generate a random PMS. This will cause a failure
* in the processing the finished message, which is exactly where
* the failure must occur.
*
* Called from ssl3_HandleClientKeyExchange
*/
static SECStatus
ssl3_HandleRSAClientKeyExchange(sslSocket *ss,
PRUint8 *b,
PRUint32 length,
sslKeyPair *serverKeyPair)
{
SECStatus rv;
SECItem enc_pms;
PK11SymKey *pms = NULL;
PK11SymKey *fauxPms = NULL;
PK11SlotInfo *slot = NULL;
PORT_Assert(ss->opt.noLocks || ssl_HaveRecvBufLock(ss));
PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
PORT_Assert(ss->ssl3.prSpec->epoch == ss->ssl3.pwSpec->epoch);
enc_pms.data = b;
enc_pms.len = length;
if (ss->ssl3.prSpec->version > SSL_LIBRARY_VERSION_3_0) { /* isTLS */
PRUint32 kLen;
rv = ssl3_ConsumeHandshakeNumber(ss, &kLen, 2, &enc_pms.data, &enc_pms.len);
if (rv != SECSuccess) {
PORT_SetError(SSL_ERROR_CLIENT_KEY_EXCHANGE_FAILURE);
return SECFailure;
}
if ((unsigned)kLen < enc_pms.len) {
enc_pms.len = kLen;
}
}
/*
* Get as close to algorithm 2 from RFC 5246; Section 7.4.7.1
* as we can within the constraints of the PKCS#11 interface.
*
* 1. Unconditionally generate a bogus PMS (what RFC 5246
* calls R).
* 2. Attempt the RSA decryption to recover the PMS (what
* RFC 5246 calls M).
* 3. Set PMS = (M == NULL) ? R : M
* 4. Use ssl3_ComputeMasterSecret(PMS) to attempt to derive
* the MS from PMS. This includes performing the version
* check and length check.
* 5. If either the initial RSA decryption failed or
* ssl3_ComputeMasterSecret(PMS) failed, then discard
* M and set PMS = R. Else, discard R and set PMS = M.
*
* We do two derivations here because we can't rely on having
* a function that only performs the PMS version and length
* check. The only redundant cost is that this runs the PRF,
* which isn't necessary here.
*/
/* Generate the bogus PMS (R) */
slot = PK11_GetSlotFromPrivateKey(serverKeyPair->privKey);
if (!slot) {
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
return SECFailure;
}
if (!PK11_DoesMechanism(slot, CKM_SSL3_MASTER_KEY_DERIVE)) {
PK11_FreeSlot(slot);
slot = PK11_GetBestSlot(CKM_SSL3_MASTER_KEY_DERIVE, NULL);
if (!slot) {
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
return SECFailure;
}
}
ssl_GetSpecWriteLock(ss);
fauxPms = ssl3_GenerateRSAPMS(ss, ss->ssl3.prSpec, slot);
ssl_ReleaseSpecWriteLock(ss);
PK11_FreeSlot(slot);
if (fauxPms == NULL) {
ssl_MapLowLevelError(SSL_ERROR_CLIENT_KEY_EXCHANGE_FAILURE);
return SECFailure;
}
/*
* unwrap pms out of the incoming buffer
* Note: CKM_SSL3_MASTER_KEY_DERIVE is NOT the mechanism used to do
* the unwrap. Rather, it is the mechanism with which the
* unwrapped pms will be used.
*/
pms = PK11_PubUnwrapSymKey(serverKeyPair->privKey, &enc_pms,
CKM_SSL3_MASTER_KEY_DERIVE, CKA_DERIVE, 0);
/* Temporarily use the PMS if unwrapping the real PMS fails. */
ssl3_CSwapPK11SymKey(&pms, &fauxPms, pms == NULL);
/* Attempt to derive the MS from the PMS. This is the only way to
* check the version field in the RSA PMS. If this fails, we
* then use the faux PMS in place of the PMS. Note that this
* operation should never fail if we are using the faux PMS
* since it is correctly formatted. */
rv = ssl3_ComputeMasterSecret(ss, pms, NULL);
/* If we succeeded, then select the true PMS, else select the FPMS. */
ssl3_CSwapPK11SymKey(&pms, &fauxPms, (rv != SECSuccess) & (fauxPms != NULL));
/* This step will derive the MS from the PMS, among other things. */
rv = ssl3_InitPendingCipherSpecs(ss, pms, PR_TRUE);
/* Clear both PMS. */
PK11_FreeSymKey(pms);
PK11_FreeSymKey(fauxPms);
if (rv != SECSuccess) {
(void)SSL3_SendAlert(ss, alert_fatal, handshake_failure);
return SECFailure; /* error code set by ssl3_InitPendingCipherSpec */
}
return SECSuccess;
}
static SECStatus
ssl3_HandleDHClientKeyExchange(sslSocket *ss,
PRUint8 *b,
PRUint32 length,
sslKeyPair *serverKeyPair)
{
PK11SymKey *pms;
SECStatus rv;
SECKEYPublicKey clntPubKey;
CK_MECHANISM_TYPE target;
PRBool isTLS;
PORT_Assert(ss->opt.noLocks || ssl_HaveRecvBufLock(ss));
PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
clntPubKey.keyType = dhKey;
clntPubKey.u.dh.prime.len = serverKeyPair->pubKey->u.dh.prime.len;
clntPubKey.u.dh.prime.data = serverKeyPair->pubKey->u.dh.prime.data;
clntPubKey.u.dh.base.len = serverKeyPair->pubKey->u.dh.base.len;
clntPubKey.u.dh.base.data = serverKeyPair->pubKey->u.dh.base.data;
rv = ssl3_ConsumeHandshakeVariable(ss, &clntPubKey.u.dh.publicValue,
2, &b, &length);
if (rv != SECSuccess) {
return SECFailure;
}
if (!ssl_IsValidDHEShare(&serverKeyPair->pubKey->u.dh.prime,
&clntPubKey.u.dh.publicValue)) {
PORT_SetError(SSL_ERROR_RX_MALFORMED_DHE_KEY_SHARE);
return SECFailure;
}
isTLS = (PRBool)(ss->ssl3.prSpec->version > SSL_LIBRARY_VERSION_3_0);
if (isTLS)
target = CKM_TLS_MASTER_KEY_DERIVE_DH;
else
target = CKM_SSL3_MASTER_KEY_DERIVE_DH;
/* Determine the PMS */
pms = PK11_PubDerive(serverKeyPair->privKey, &clntPubKey, PR_FALSE, NULL, NULL,
CKM_DH_PKCS_DERIVE, target, CKA_DERIVE, 0, NULL);
if (pms == NULL) {
ssl_FreeEphemeralKeyPairs(ss);
ssl_MapLowLevelError(SSL_ERROR_CLIENT_KEY_EXCHANGE_FAILURE);
return SECFailure;
}
rv = ssl3_InitPendingCipherSpecs(ss, pms, PR_TRUE);
PK11_FreeSymKey(pms);
ssl_FreeEphemeralKeyPairs(ss);
return rv;
}
/* Called from ssl3_HandlePostHelloHandshakeMessage() when it has deciphered
* a complete ssl3 ClientKeyExchange message from the remote client
* Caller must hold Handshake and RecvBuf locks.
*/
static SECStatus
ssl3_HandleClientKeyExchange(sslSocket *ss, PRUint8 *b, PRUint32 length)
{
sslKeyPair *serverKeyPair = NULL;
SECStatus rv;
const ssl3KEADef *kea_def;
SSL_TRC(3, ("%d: SSL3[%d]: handle client_key_exchange handshake",
SSL_GETPID(), ss->fd));
PORT_Assert(ss->opt.noLocks || ssl_HaveRecvBufLock(ss));
PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
if (ss->ssl3.hs.ws != wait_client_key) {
SSL3_SendAlert(ss, alert_fatal, unexpected_message);
PORT_SetError(SSL_ERROR_RX_UNEXPECTED_CLIENT_KEY_EXCH);
return SECFailure;
}
kea_def = ss->ssl3.hs.kea_def;
if (kea_def->ephemeral) {
sslEphemeralKeyPair *keyPair;
/* There should be exactly one pair. */
PORT_Assert(!PR_CLIST_IS_EMPTY(&ss->ephemeralKeyPairs));
PORT_Assert(PR_PREV_LINK(&ss->ephemeralKeyPairs) ==
PR_NEXT_LINK(&ss->ephemeralKeyPairs));
keyPair = (sslEphemeralKeyPair *)PR_NEXT_LINK(&ss->ephemeralKeyPairs);
serverKeyPair = keyPair->keys;
ss->sec.keaKeyBits =
SECKEY_PublicKeyStrengthInBits(serverKeyPair->pubKey);
} else {
serverKeyPair = ss->sec.serverCert->serverKeyPair;
ss->sec.keaKeyBits = ss->sec.serverCert->serverKeyBits;
}
if (!serverKeyPair) {
SSL3_SendAlert(ss, alert_fatal, handshake_failure);
PORT_SetError(SSL_ERROR_NO_SERVER_KEY_FOR_ALG);
return SECFailure;
}
PORT_Assert(serverKeyPair->pubKey);
PORT_Assert(serverKeyPair->privKey);
ss->sec.keaType = kea_def->exchKeyType;
switch (kea_def->exchKeyType) {
case ssl_kea_rsa:
rv = ssl3_HandleRSAClientKeyExchange(ss, b, length, serverKeyPair);
break;
case ssl_kea_dh:
rv = ssl3_HandleDHClientKeyExchange(ss, b, length, serverKeyPair);
break;
case ssl_kea_ecdh:
rv = ssl3_HandleECDHClientKeyExchange(ss, b, length, serverKeyPair);
break;
default:
(void)ssl3_HandshakeFailure(ss);
PORT_SetError(SEC_ERROR_UNSUPPORTED_KEYALG);
return SECFailure;
}
ssl_FreeEphemeralKeyPairs(ss);
if (rv == SECSuccess) {
ss->ssl3.hs.ws = ss->sec.peerCert ? wait_cert_verify : wait_change_cipher;
} else {
/* PORT_SetError has been called by all the Handle*ClientKeyExchange
* functions above. However, not all error paths result in an alert, so
* this ensures that the server knows about the error. Note that if an
* alert was already sent, SSL3_SendAlert() is a noop. */
PRErrorCode errCode = PORT_GetError();
(void)SSL3_SendAlert(ss, alert_fatal, handshake_failure);
PORT_SetError(errCode);
}
return rv;
}
/* This is TLS's equivalent of sending a no_certificate alert. */
SECStatus
ssl3_SendEmptyCertificate(sslSocket *ss)
{
SECStatus rv;
unsigned int len = 0;
PRBool isTLS13 = PR_FALSE;
const SECItem *context;
if (ss->version >= SSL_LIBRARY_VERSION_TLS_1_3) {
PORT_Assert(ss->ssl3.hs.clientCertRequested);
context = &ss->xtnData.certReqContext;
len = context->len + 1;
isTLS13 = PR_TRUE;
}
rv = ssl3_AppendHandshakeHeader(ss, ssl_hs_certificate, len + 3);
if (rv != SECSuccess) {
return rv;
}
if (isTLS13) {
rv = ssl3_AppendHandshakeVariable(ss, context->data, context->len, 1);
if (rv != SECSuccess) {
return rv;
}
}
return ssl3_AppendHandshakeNumber(ss, 0, 3);
}
/*
* NewSessionTicket
* Called from ssl3_HandleFinished
*/
static SECStatus
ssl3_SendNewSessionTicket(sslSocket *ss)
{
SECItem ticket = { 0, NULL, 0 };
SECStatus rv;
NewSessionTicket nticket = { 0 };
rv = ssl3_EncodeSessionTicket(ss, &nticket, NULL, 0,
ss->ssl3.pwSpec->masterSecret, &ticket);
if (rv != SECSuccess)
goto loser;
/* Serialize the handshake message. Length =
* lifetime (4) + ticket length (2) + ticket. */
rv = ssl3_AppendHandshakeHeader(ss, ssl_hs_new_session_ticket,
4 + 2 + ticket.len);
if (rv != SECSuccess)
goto loser;
/* This is a fixed value. */
rv = ssl3_AppendHandshakeNumber(ss, ssl_ticket_lifetime, 4);
if (rv != SECSuccess)
goto loser;
/* Encode the ticket. */
rv = ssl3_AppendHandshakeVariable(ss, ticket.data, ticket.len, 2);
if (rv != SECSuccess)
goto loser;
rv = SECSuccess;
loser:
if (ticket.data) {
SECITEM_FreeItem(&ticket, PR_FALSE);
}
return rv;
}
static SECStatus
ssl3_HandleNewSessionTicket(sslSocket *ss, PRUint8 *b, PRUint32 length)
{
SECStatus rv;
SECItem ticketData;
PRUint32 temp;
SSL_TRC(3, ("%d: SSL3[%d]: handle session_ticket handshake",
SSL_GETPID(), ss->fd));
PORT_Assert(ss->opt.noLocks || ssl_HaveRecvBufLock(ss));
PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
PORT_Assert(!ss->ssl3.hs.newSessionTicket.ticket.data);
PORT_Assert(!ss->ssl3.hs.receivedNewSessionTicket);
if (ss->ssl3.hs.ws != wait_new_session_ticket) {
SSL3_SendAlert(ss, alert_fatal, unexpected_message);
PORT_SetError(SSL_ERROR_RX_UNEXPECTED_NEW_SESSION_TICKET);
return SECFailure;
}
/* RFC5077 Section 3.3: "The client MUST NOT treat the ticket as valid
* until it has verified the server's Finished message." See the comment in
* ssl3_FinishHandshake for more details.
*/
ss->ssl3.hs.newSessionTicket.received_timestamp = ssl_Time(ss);
if (length < 4) {
(void)SSL3_SendAlert(ss, alert_fatal, decode_error);
PORT_SetError(SSL_ERROR_RX_MALFORMED_NEW_SESSION_TICKET);
return SECFailure;
}
rv = ssl3_ConsumeHandshakeNumber(ss, &temp, 4, &b, &length);
if (rv != SECSuccess) {
PORT_SetError(SSL_ERROR_RX_MALFORMED_NEW_SESSION_TICKET);
return SECFailure;
}
ss->ssl3.hs.newSessionTicket.ticket_lifetime_hint = temp;
rv = ssl3_ConsumeHandshakeVariable(ss, &ticketData, 2, &b, &length);
if (rv != SECSuccess || length != 0) {
(void)SSL3_SendAlert(ss, alert_fatal, decode_error);
PORT_SetError(SSL_ERROR_RX_MALFORMED_NEW_SESSION_TICKET);
return SECFailure; /* malformed */
}
/* If the server sent a zero-length ticket, ignore it and keep the
* existing ticket. */
if (ticketData.len != 0) {
rv = SECITEM_CopyItem(NULL, &ss->ssl3.hs.newSessionTicket.ticket,
&ticketData);
if (rv != SECSuccess) {
return rv;
}
ss->ssl3.hs.receivedNewSessionTicket = PR_TRUE;
}
ss->ssl3.hs.ws = wait_change_cipher;
return SECSuccess;
}
#ifdef NISCC_TEST
static PRInt32 connNum = 0;
static SECStatus
get_fake_cert(SECItem *pCertItem, int *pIndex)
{
PRFileDesc *cf;
char *testdir;
char *startat;
char *stopat;
const char *extension;
int fileNum;
PRInt32 numBytes = 0;
PRStatus prStatus;
PRFileInfo info;
char cfn[100];
pCertItem->data = 0;
if ((testdir = PR_GetEnvSecure("NISCC_TEST")) == NULL) {
return SECSuccess;
}
*pIndex = (NULL != strstr(testdir, "root"));
extension = (strstr(testdir, "simple") ? "" : ".der");
fileNum = PR_ATOMIC_INCREMENT(&connNum) - 1;
if ((startat = PR_GetEnvSecure("START_AT")) != NULL) {
fileNum += atoi(startat);
}
if ((stopat = PR_GetEnvSecure("STOP_AT")) != NULL &&
fileNum >= atoi(stopat)) {
*pIndex = -1;
return SECSuccess;
}
sprintf(cfn, "%s/%08d%s", testdir, fileNum, extension);
cf = PR_Open(cfn, PR_RDONLY, 0);
if (!cf) {
goto loser;
}
prStatus = PR_GetOpenFileInfo(cf, &info);
if (prStatus != PR_SUCCESS) {
PR_Close(cf);
goto loser;
}
pCertItem = SECITEM_AllocItem(NULL, pCertItem, info.size);
if (pCertItem) {
numBytes = PR_Read(cf, pCertItem->data, info.size);
}
PR_Close(cf);
if (numBytes != info.size) {
SECITEM_FreeItem(pCertItem, PR_FALSE);
PORT_SetError(SEC_ERROR_IO);
goto loser;
}
fprintf(stderr, "using %s\n", cfn);
return SECSuccess;
loser:
fprintf(stderr, "failed to use %s\n", cfn);
*pIndex = -1;
return SECFailure;
}
#endif
/*
* Used by both client and server.
* Called from HandleServerHelloDone and from SendServerHelloSequence.
*/
static SECStatus
ssl3_SendCertificate(sslSocket *ss)
{
SECStatus rv;
CERTCertificateList *certChain;
int certChainLen = 0;
int i;
#ifdef NISCC_TEST
SECItem fakeCert;
int ndex = -1;
#endif
PRBool isTLS13 = ss->version >= SSL_LIBRARY_VERSION_TLS_1_3;
SECItem context = { siBuffer, NULL, 0 };
unsigned int contextLen = 0;
SSL_TRC(3, ("%d: SSL3[%d]: send certificate handshake",
SSL_GETPID(), ss->fd));
PORT_Assert(ss->opt.noLocks || ssl_HaveXmitBufLock(ss));
PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
if (ss->sec.localCert)
CERT_DestroyCertificate(ss->sec.localCert);
if (ss->sec.isServer) {
/* A server certificate is selected in ssl3_HandleClientHello. */
PORT_Assert(ss->sec.serverCert);
certChain = ss->sec.serverCert->serverCertChain;
ss->sec.localCert = CERT_DupCertificate(ss->sec.serverCert->serverCert);
} else {
certChain = ss->ssl3.clientCertChain;
ss->sec.localCert = CERT_DupCertificate(ss->ssl3.clientCertificate);
}
#ifdef NISCC_TEST
rv = get_fake_cert(&fakeCert, &ndex);
#endif
if (isTLS13) {
contextLen = 1; /* Size of the context length */
if (!ss->sec.isServer) {
PORT_Assert(ss->ssl3.hs.clientCertRequested);
context = ss->xtnData.certReqContext;
contextLen += context.len;
}
}
if (certChain) {
for (i = 0; i < certChain->len; i++) {
#ifdef NISCC_TEST
if (fakeCert.len > 0 && i == ndex) {
certChainLen += fakeCert.len + 3;
} else {
certChainLen += certChain->certs[i].len + 3;
}
#else
certChainLen += certChain->certs[i].len + 3;
#endif
}
}
rv = ssl3_AppendHandshakeHeader(ss, ssl_hs_certificate,
contextLen + certChainLen + 3);
if (rv != SECSuccess) {
return rv; /* err set by AppendHandshake. */
}
if (isTLS13) {
rv = ssl3_AppendHandshakeVariable(ss, context.data,
context.len, 1);
if (rv != SECSuccess) {
return rv; /* err set by AppendHandshake. */
}
}
rv = ssl3_AppendHandshakeNumber(ss, certChainLen, 3);
if (rv != SECSuccess) {
return rv; /* err set by AppendHandshake. */
}
if (certChain) {
for (i = 0; i < certChain->len; i++) {
#ifdef NISCC_TEST
if (fakeCert.len > 0 && i == ndex) {
rv = ssl3_AppendHandshakeVariable(ss, fakeCert.data,
fakeCert.len, 3);
SECITEM_FreeItem(&fakeCert, PR_FALSE);
} else {
rv = ssl3_AppendHandshakeVariable(ss, certChain->certs[i].data,
certChain->certs[i].len, 3);
}
#else
rv = ssl3_AppendHandshakeVariable(ss, certChain->certs[i].data,
certChain->certs[i].len, 3);
#endif
if (rv != SECSuccess) {
return rv; /* err set by AppendHandshake. */
}
}
}
return SECSuccess;
}
/*
* Used by server only.
* single-stapling, send only a single cert status
*/
SECStatus
ssl3_SendCertificateStatus(sslSocket *ss)
{
SECStatus rv;
int len = 0;
SECItemArray *statusToSend = NULL;
const sslServerCert *serverCert;
SSL_TRC(3, ("%d: SSL3[%d]: send certificate status handshake",
SSL_GETPID(), ss->fd));
PORT_Assert(ss->opt.noLocks || ssl_HaveXmitBufLock(ss));
PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
PORT_Assert(ss->sec.isServer);
if (!ssl3_ExtensionNegotiated(ss, ssl_cert_status_xtn))
return SECSuccess;
/* Use certStatus based on the cert being used. */
serverCert = ss->sec.serverCert;
if (serverCert->certStatusArray && serverCert->certStatusArray->len) {
statusToSend = serverCert->certStatusArray;
}
if (!statusToSend)
return SECSuccess;
/* Use the array's first item only (single stapling) */
len = 1 + statusToSend->items[0].len + 3;
rv = ssl3_AppendHandshakeHeader(ss, ssl_hs_certificate_status, len);
if (rv != SECSuccess) {
return rv; /* err set by AppendHandshake. */
}
rv = ssl3_AppendHandshakeNumber(ss, 1 /*ocsp*/, 1);
if (rv != SECSuccess)
return rv; /* err set by AppendHandshake. */
rv = ssl3_AppendHandshakeVariable(ss,
statusToSend->items[0].data,
statusToSend->items[0].len,
3);
if (rv != SECSuccess)
return rv; /* err set by AppendHandshake. */
return SECSuccess;
}
/* This is used to delete the CA certificates in the peer certificate chain
* from the cert database after they've been validated.
*/
void
ssl3_CleanupPeerCerts(sslSocket *ss)
{
PLArenaPool *arena = ss->ssl3.peerCertArena;
ssl3CertNode *certs = (ssl3CertNode *)ss->ssl3.peerCertChain;
for (; certs; certs = certs->next) {
CERT_DestroyCertificate(certs->cert);
}
if (arena)
PORT_FreeArena(arena, PR_FALSE);
ss->ssl3.peerCertArena = NULL;
ss->ssl3.peerCertChain = NULL;
if (ss->sec.peerCert != NULL) {
if (ss->sec.peerKey) {
SECKEY_DestroyPublicKey(ss->sec.peerKey);
ss->sec.peerKey = NULL;
}
CERT_DestroyCertificate(ss->sec.peerCert);
ss->sec.peerCert = NULL;
}
}
/* Called from ssl3_HandlePostHelloHandshakeMessage() when it has deciphered
* a complete ssl3 CertificateStatus message.
* Caller must hold Handshake and RecvBuf locks.
*/
static SECStatus
ssl3_HandleCertificateStatus(sslSocket *ss, PRUint8 *b, PRUint32 length)
{
SECStatus rv;
if (ss->ssl3.hs.ws != wait_certificate_status) {
(void)SSL3_SendAlert(ss, alert_fatal, unexpected_message);
PORT_SetError(SSL_ERROR_RX_UNEXPECTED_CERT_STATUS);
return SECFailure;
}
rv = ssl_ReadCertificateStatus(ss, b, length);
if (rv != SECSuccess) {
return SECFailure; /* code already set */
}
return ssl3_AuthCertificate(ss);
}
SECStatus
ssl_ReadCertificateStatus(sslSocket *ss, PRUint8 *b, PRUint32 length)
{
PRUint32 status, len;
SECStatus rv;
PORT_Assert(!ss->sec.isServer);
/* Consume the CertificateStatusType enum */
rv = ssl3_ConsumeHandshakeNumber(ss, &status, 1, &b, &length);
if (rv != SECSuccess || status != 1 /* ocsp */) {
return ssl3_DecodeError(ss);
}
rv = ssl3_ConsumeHandshakeNumber(ss, &len, 3, &b, &length);
if (rv != SECSuccess || len != length) {
return ssl3_DecodeError(ss);
}
#define MAX_CERTSTATUS_LEN 0x1ffff /* 128k - 1 */
if (length > MAX_CERTSTATUS_LEN) {
ssl3_DecodeError(ss); /* sets error code */
return SECFailure;
}
#undef MAX_CERTSTATUS_LEN
/* Array size 1, because we currently implement single-stapling only */
SECITEM_AllocArray(NULL, &ss->sec.ci.sid->peerCertStatus, 1);
if (!ss->sec.ci.sid->peerCertStatus.items)
return SECFailure; /* code already set */
ss->sec.ci.sid->peerCertStatus.items[0].data = PORT_Alloc(length);
if (!ss->sec.ci.sid->peerCertStatus.items[0].data) {
SECITEM_FreeArray(&ss->sec.ci.sid->peerCertStatus, PR_FALSE);
return SECFailure; /* code already set */
}
PORT_Memcpy(ss->sec.ci.sid->peerCertStatus.items[0].data, b, length);
ss->sec.ci.sid->peerCertStatus.items[0].len = length;
ss->sec.ci.sid->peerCertStatus.items[0].type = siBuffer;
return SECSuccess;
}
/* Called from ssl3_HandlePostHelloHandshakeMessage() when it has deciphered
* a complete ssl3 Certificate message.
* Caller must hold Handshake and RecvBuf locks.
*/
static SECStatus
ssl3_HandleCertificate(sslSocket *ss, PRUint8 *b, PRUint32 length)
{
SSL_TRC(3, ("%d: SSL3[%d]: handle certificate handshake",
SSL_GETPID(), ss->fd));
PORT_Assert(ss->opt.noLocks || ssl_HaveRecvBufLock(ss));
PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
if ((ss->sec.isServer && ss->ssl3.hs.ws != wait_client_cert) ||
(!ss->sec.isServer && ss->ssl3.hs.ws != wait_server_cert)) {
(void)SSL3_SendAlert(ss, alert_fatal, unexpected_message);
PORT_SetError(SSL_ERROR_RX_UNEXPECTED_CERTIFICATE);
return SECFailure;
}
if (ss->sec.isServer) {
dtls_ReceivedFirstMessageInFlight(ss);
}
return ssl3_CompleteHandleCertificate(ss, b, length);
}
/* Called from ssl3_HandleCertificate
*/
SECStatus
ssl3_CompleteHandleCertificate(sslSocket *ss, PRUint8 *b, PRUint32 length)
{
ssl3CertNode *c;
ssl3CertNode *lastCert = NULL;
PRUint32 remaining = 0;
PRUint32 size;
SECStatus rv;
PRBool isServer = ss->sec.isServer;
PRBool isTLS;
SSL3AlertDescription desc;
int errCode = SSL_ERROR_RX_MALFORMED_CERTIFICATE;
SECItem certItem;
ssl3_CleanupPeerCerts(ss);
isTLS = (PRBool)(ss->ssl3.prSpec->version > SSL_LIBRARY_VERSION_3_0);
/* It is reported that some TLS client sends a Certificate message
** with a zero-length message body. We'll treat that case like a
** normal no_certificates message to maximize interoperability.
*/
if (length) {
rv = ssl3_ConsumeHandshakeNumber(ss, &remaining, 3, &b, &length);
if (rv != SECSuccess)
goto loser; /* fatal alert already sent by ConsumeHandshake. */
if (remaining > length)
goto decode_loser;
}
if (!remaining) {
if (!(isTLS && isServer)) {
desc = bad_certificate;
goto alert_loser;
}
/* This is TLS's version of a no_certificate alert. */
/* I'm a server. I've requested a client cert. He hasn't got one. */
rv = ssl3_HandleNoCertificate(ss);
if (rv != SECSuccess) {
errCode = PORT_GetError();
goto loser;
}
if (ss->version < SSL_LIBRARY_VERSION_TLS_1_3) {
ss->ssl3.hs.ws = wait_client_key;
} else {
TLS13_SET_HS_STATE(ss, wait_finished);
}
return SECSuccess;
}
ss->ssl3.peerCertArena = PORT_NewArena(DER_DEFAULT_CHUNKSIZE);
if (ss->ssl3.peerCertArena == NULL) {
goto loser; /* don't send alerts on memory errors */
}
/* First get the peer cert. */
if (remaining < 3)
goto decode_loser;
remaining -= 3;
rv = ssl3_ConsumeHandshakeNumber(ss, &size, 3, &b, &length);
if (rv != SECSuccess)
goto loser; /* fatal alert already sent by ConsumeHandshake. */
if (size == 0 || remaining < size)
goto decode_loser;
certItem.data = b;
certItem.len = size;
b += size;
length -= size;
remaining -= size;
ss->sec.peerCert = CERT_NewTempCertificate(ss->dbHandle, &certItem, NULL,
PR_FALSE, PR_TRUE);
if (ss->sec.peerCert == NULL) {
/* We should report an alert if the cert was bad, but not if the
* problem was just some local problem, like memory error.
*/
goto ambiguous_err;
}
/* Now get all of the CA certs. */
while (remaining > 0) {
if (remaining < 3)
goto decode_loser;
remaining -= 3;
rv = ssl3_ConsumeHandshakeNumber(ss, &size, 3, &b, &length);
if (rv != SECSuccess)
goto loser; /* fatal alert already sent by ConsumeHandshake. */
if (size == 0 || remaining < size)
goto decode_loser;
certItem.data = b;
certItem.len = size;
b += size;
length -= size;
remaining -= size;
c = PORT_ArenaNew(ss->ssl3.peerCertArena, ssl3CertNode);
if (c == NULL) {
goto loser; /* don't send alerts on memory errors */
}
c->cert = CERT_NewTempCertificate(ss->dbHandle, &certItem, NULL,
PR_FALSE, PR_TRUE);
if (c->cert == NULL) {
goto ambiguous_err;
}
c->next = NULL;
if (lastCert) {
lastCert->next = c;
} else {
ss->ssl3.peerCertChain = c;
}
lastCert = c;
}
SECKEY_UpdateCertPQG(ss->sec.peerCert);
if (!isServer &&
ss->version < SSL_LIBRARY_VERSION_TLS_1_3 &&
ssl3_ExtensionNegotiated(ss, ssl_cert_status_xtn)) {
ss->ssl3.hs.ws = wait_certificate_status;
rv = SECSuccess;
} else {
rv = ssl3_AuthCertificate(ss); /* sets ss->ssl3.hs.ws */
}
return rv;
ambiguous_err:
errCode = PORT_GetError();
switch (errCode) {
case PR_OUT_OF_MEMORY_ERROR:
case SEC_ERROR_BAD_DATABASE:
case SEC_ERROR_NO_MEMORY:
if (isTLS) {
desc = internal_error;
goto alert_loser;
}
goto loser;
}
ssl3_SendAlertForCertError(ss, errCode);
goto loser;
decode_loser:
desc = isTLS ? decode_error : bad_certificate;
alert_loser:
(void)SSL3_SendAlert(ss, alert_fatal, desc);
loser:
(void)ssl_MapLowLevelError(errCode);
return SECFailure;
}
SECStatus
ssl_SetAuthKeyBits(sslSocket *ss, const SECKEYPublicKey *pubKey)
{
SECStatus rv;
PRUint32 minKey;
PRInt32 optval;
ss->sec.authKeyBits = SECKEY_PublicKeyStrengthInBits(pubKey);
switch (SECKEY_GetPublicKeyType(pubKey)) {
case rsaKey:
case rsaPssKey:
case rsaOaepKey:
rv = NSS_OptionGet(NSS_RSA_MIN_KEY_SIZE, &optval);
if (rv == SECSuccess && optval > 0) {
minKey = (PRUint32)optval;
} else {
minKey = SSL_RSA_MIN_MODULUS_BITS;
}
break;
case dsaKey:
rv = NSS_OptionGet(NSS_DSA_MIN_KEY_SIZE, &optval);
if (rv == SECSuccess && optval > 0) {
minKey = (PRUint32)optval;
} else {
minKey = SSL_DSA_MIN_P_BITS;
}
break;
case dhKey:
rv = NSS_OptionGet(NSS_DH_MIN_KEY_SIZE, &optval);
if (rv == SECSuccess && optval > 0) {
minKey = (PRUint32)optval;
} else {
minKey = SSL_DH_MIN_P_BITS;
}
break;
case ecKey:
/* Don't check EC strength here on the understanding that we only
* support curves we like. */
minKey = ss->sec.authKeyBits;
break;
default:
FATAL_ERROR(ss, SEC_ERROR_LIBRARY_FAILURE, internal_error);
return SECFailure;
}
/* Too small: not good enough. Send a fatal alert. */
if (ss->sec.authKeyBits < minKey) {
FATAL_ERROR(ss, SSL_ERROR_WEAK_SERVER_CERT_KEY,
ss->version >= SSL_LIBRARY_VERSION_TLS_1_0
? insufficient_security
: illegal_parameter);
return SECFailure;
}
/* PreliminaryChannelInfo.authKeyBits, scheme, and peerDelegCred are now valid. */
ss->ssl3.hs.preliminaryInfo |= ssl_preinfo_peer_auth;
return SECSuccess;
}
SECStatus
ssl3_HandleServerSpki(sslSocket *ss)
{
PORT_Assert(!ss->sec.isServer);
SECKEYPublicKey *pubKey;
if (ss->version >= SSL_LIBRARY_VERSION_TLS_1_3 &&
tls13_IsVerifyingWithDelegatedCredential(ss)) {
sslDelegatedCredential *dc = ss->xtnData.peerDelegCred;
pubKey = SECKEY_ExtractPublicKey(dc->spki);
if (!pubKey) {
PORT_SetError(SSL_ERROR_EXTRACT_PUBLIC_KEY_FAILURE);
return SECFailure;
}
/* Because we have only a single authType (ssl_auth_tls13_any)
* for TLS 1.3 at this point, set the scheme so that the
* callback can interpret |authKeyBits| correctly.
*/
ss->sec.signatureScheme = dc->expectedCertVerifyAlg;
} else {
pubKey = CERT_ExtractPublicKey(ss->sec.peerCert);
if (!pubKey) {
PORT_SetError(SSL_ERROR_EXTRACT_PUBLIC_KEY_FAILURE);
return SECFailure;
}
}
SECStatus rv = ssl_SetAuthKeyBits(ss, pubKey);
SECKEY_DestroyPublicKey(pubKey);
if (rv != SECSuccess) {
return rv; /* Alert sent and code set. */
}
return SECSuccess;
}
SECStatus
ssl3_AuthCertificate(sslSocket *ss)
{
SECStatus rv;
PRBool isServer = ss->sec.isServer;
int errCode;
ss->ssl3.hs.authCertificatePending = PR_FALSE;
PORT_Assert((ss->ssl3.hs.preliminaryInfo & ssl_preinfo_all) ==
ssl_preinfo_all);
if (!ss->sec.isServer) {
/* Set the |spki| used to verify the handshake. When verifying with a
* delegated credential (DC), this corresponds to the DC public key;
* otherwise it correspond to the public key of the peer's end-entity
* certificate. */
rv = ssl3_HandleServerSpki(ss);
if (rv != SECSuccess) {
/* Alert sent and code set (if not SSL_ERROR_EXTRACT_PUBLIC_KEY_FAILURE).
* In either case, we're done here. */
errCode = PORT_GetError();
goto loser;
}
if (ss->version < SSL_LIBRARY_VERSION_TLS_1_3) {
ss->sec.authType = ss->ssl3.hs.kea_def->authKeyType;
ss->sec.keaType = ss->ssl3.hs.kea_def->exchKeyType;
}
}
/*
* Ask caller-supplied callback function to validate cert chain.
*/
rv = (SECStatus)(*ss->authCertificate)(ss->authCertificateArg, ss->fd,
PR_TRUE, isServer);
if (rv != SECSuccess) {
errCode = PORT_GetError();
if (errCode == 0) {
errCode = SSL_ERROR_BAD_CERTIFICATE;
}
if (rv != SECWouldBlock) {
if (ss->handleBadCert) {
rv = (*ss->handleBadCert)(ss->badCertArg, ss->fd);
}
}
if (rv == SECWouldBlock) {
if (ss->sec.isServer) {
errCode = SSL_ERROR_FEATURE_NOT_SUPPORTED_FOR_SERVERS;
goto loser;
}
ss->ssl3.hs.authCertificatePending = PR_TRUE;
rv = SECSuccess;
}
if (rv != SECSuccess) {
ssl3_SendAlertForCertError(ss, errCode);
goto loser;
}
}
if (ss->sec.ci.sid->peerCert) {
CERT_DestroyCertificate(ss->sec.ci.sid->peerCert);
}
ss->sec.ci.sid->peerCert = CERT_DupCertificate(ss->sec.peerCert);
if (!ss->sec.isServer) {
if (ss->version >= SSL_LIBRARY_VERSION_TLS_1_3) {
TLS13_SET_HS_STATE(ss, wait_cert_verify);
} else {
/* Ephemeral suites require ServerKeyExchange. */
if (ss->ssl3.hs.kea_def->ephemeral) {
/* require server_key_exchange */
ss->ssl3.hs.ws = wait_server_key;
} else {
/* disallow server_key_exchange */
ss->ssl3.hs.ws = wait_cert_request;
/* This is static RSA key exchange so set the key exchange
* details to compensate for that. */
ss->sec.keaKeyBits = ss->sec.authKeyBits;
ss->sec.signatureScheme = ssl_sig_none;
ss->sec.keaGroup = NULL;
}
}
} else {
/* Server */
if (ss->version < SSL_LIBRARY_VERSION_TLS_1_3) {
ss->ssl3.hs.ws = wait_client_key;
} else {
TLS13_SET_HS_STATE(ss, wait_cert_verify);
}
}
PORT_Assert(rv == SECSuccess);
if (rv != SECSuccess) {
errCode = SEC_ERROR_LIBRARY_FAILURE;
goto loser;
}
return SECSuccess;
loser:
(void)ssl_MapLowLevelError(errCode);
return SECFailure;
}
static SECStatus ssl3_FinishHandshake(sslSocket *ss);
static SECStatus
ssl3_AlwaysFail(sslSocket *ss)
{
/* The caller should have cleared the callback. */
ss->ssl3.hs.restartTarget = ssl3_AlwaysFail;
PORT_SetError(PR_INVALID_STATE_ERROR);
return SECFailure;
}
/* Caller must hold 1stHandshakeLock.
*/
SECStatus
ssl3_AuthCertificateComplete(sslSocket *ss, PRErrorCode error)
{
SECStatus rv;
PORT_Assert(ss->opt.noLocks || ssl_Have1stHandshakeLock(ss));
if (ss->sec.isServer) {
PORT_SetError(SSL_ERROR_FEATURE_NOT_SUPPORTED_FOR_SERVERS);
return SECFailure;
}
ssl_GetRecvBufLock(ss);
ssl_GetSSL3HandshakeLock(ss);
if (!ss->ssl3.hs.authCertificatePending) {
PORT_SetError(PR_INVALID_STATE_ERROR);
rv = SECFailure;
goto done;
}
ss->ssl3.hs.authCertificatePending = PR_FALSE;
if (error != 0) {
ss->ssl3.hs.restartTarget = ssl3_AlwaysFail;
ssl3_SendAlertForCertError(ss, error);
rv = SECSuccess;
} else if (ss->ssl3.hs.restartTarget != NULL) {
sslRestartTarget target = ss->ssl3.hs.restartTarget;
ss->ssl3.hs.restartTarget = NULL;
if (target == ssl3_FinishHandshake) {
SSL_TRC(3, ("%d: SSL3[%p]: certificate authentication lost the race"
" with peer's finished message",
SSL_GETPID(), ss->fd));
}
rv = target(ss);
} else {
SSL_TRC(3, ("%d: SSL3[%p]: certificate authentication won the race with"
" peer's finished message",
SSL_GETPID(), ss->fd));
PORT_Assert(!ss->ssl3.hs.isResuming);
PORT_Assert(ss->ssl3.hs.ws != idle_handshake);
if (ss->opt.enableFalseStart &&
!ss->firstHsDone &&
!ss->ssl3.hs.isResuming &&
ssl3_WaitingForServerSecondRound(ss)) {
/* ssl3_SendClientSecondRound deferred the false start check because
* certificate authentication was pending, so we do it now if we still
* haven't received all of the server's second round yet.
*/
rv = ssl3_CheckFalseStart(ss);
} else {
rv = SECSuccess;
}
}
done:
ssl_ReleaseSSL3HandshakeLock(ss);
ssl_ReleaseRecvBufLock(ss);
return rv;
}
static SECStatus
ssl3_ComputeTLSFinished(sslSocket *ss, ssl3CipherSpec *spec,
PRBool isServer,
const SSL3Hashes *hashes,
TLSFinished *tlsFinished)
{
SECStatus rv;
CK_TLS_MAC_PARAMS tls_mac_params;
SECItem param = { siBuffer, NULL, 0 };
PK11Context *prf_context;
unsigned int retLen;
PORT_Assert(spec->masterSecret);
if (!spec->masterSecret) {
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
return SECFailure;
}
if (spec->version < SSL_LIBRARY_VERSION_TLS_1_2) {
tls_mac_params.prfHashMechanism = CKM_TLS_PRF;
} else {
tls_mac_params.prfHashMechanism = ssl3_GetPrfHashMechanism(ss);
}
tls_mac_params.ulMacLength = 12;
tls_mac_params.ulServerOrClient = isServer ? 1 : 2;
param.data = (unsigned char *)&tls_mac_params;
param.len = sizeof(tls_mac_params);
prf_context = PK11_CreateContextBySymKey(CKM_TLS_MAC, CKA_SIGN,
spec->masterSecret, &param);
if (!prf_context)
return SECFailure;
rv = PK11_DigestBegin(prf_context);
rv |= PK11_DigestOp(prf_context, hashes->u.raw, hashes->len);
rv |= PK11_DigestFinal(prf_context, tlsFinished->verify_data, &retLen,
sizeof tlsFinished->verify_data);
PORT_Assert(rv != SECSuccess || retLen == sizeof tlsFinished->verify_data);
PK11_DestroyContext(prf_context, PR_TRUE);
return rv;
}
/* The calling function must acquire and release the appropriate
* lock (e.g., ssl_GetSpecReadLock / ssl_ReleaseSpecReadLock for
* ss->ssl3.crSpec).
*/
SECStatus
ssl3_TLSPRFWithMasterSecret(sslSocket *ss, ssl3CipherSpec *spec,
const char *label, unsigned int labelLen,
const unsigned char *val, unsigned int valLen,
unsigned char *out, unsigned int outLen)
{
SECItem param = { siBuffer, NULL, 0 };
CK_MECHANISM_TYPE mech = CKM_TLS_PRF_GENERAL;
PK11Context *prf_context;
unsigned int retLen;
SECStatus rv;
if (!spec->masterSecret) {
PORT_Assert(spec->masterSecret);
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
return SECFailure;
}
if (spec->version >= SSL_LIBRARY_VERSION_TLS_1_2) {
/* Bug 1312976 non-SHA256 exporters are broken. */
if (ssl3_GetPrfHashMechanism(ss) != CKM_SHA256) {
PORT_Assert(0);
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
return SECFailure;
}
mech = CKM_NSS_TLS_PRF_GENERAL_SHA256;
}
prf_context = PK11_CreateContextBySymKey(mech, CKA_SIGN,
spec->masterSecret, &param);
if (!prf_context)
return SECFailure;
rv = PK11_DigestBegin(prf_context);
rv |= PK11_DigestOp(prf_context, (unsigned char *)label, labelLen);
rv |= PK11_DigestOp(prf_context, val, valLen);
rv |= PK11_DigestFinal(prf_context, out, &retLen, outLen);
PORT_Assert(rv != SECSuccess || retLen == outLen);
PK11_DestroyContext(prf_context, PR_TRUE);
return rv;
}
/* called from ssl3_SendClientSecondRound
* ssl3_HandleFinished
*/
static SECStatus
ssl3_SendNextProto(sslSocket *ss)
{
SECStatus rv;
int padding_len;
static const unsigned char padding[32] = { 0 };
if (ss->xtnData.nextProto.len == 0 ||
ss->xtnData.nextProtoState == SSL_NEXT_PROTO_SELECTED) {
return SECSuccess;
}
PORT_Assert(ss->opt.noLocks || ssl_HaveXmitBufLock(ss));
PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
padding_len = 32 - ((ss->xtnData.nextProto.len + 2) % 32);
rv = ssl3_AppendHandshakeHeader(ss, ssl_hs_next_proto, ss->xtnData.nextProto.len + 2 + padding_len);
if (rv != SECSuccess) {
return rv; /* error code set by AppendHandshakeHeader */
}
rv = ssl3_AppendHandshakeVariable(ss, ss->xtnData.nextProto.data,
ss->xtnData.nextProto.len, 1);
if (rv != SECSuccess) {
return rv; /* error code set by AppendHandshake */
}
rv = ssl3_AppendHandshakeVariable(ss, padding, padding_len, 1);
if (rv != SECSuccess) {
return rv; /* error code set by AppendHandshake */
}
return rv;
}
/* called from ssl3_SendFinished and tls13_DeriveSecret.
*
* This function is simply a debugging aid and therefore does not return a
* SECStatus. */
void
ssl3_RecordKeyLog(sslSocket *ss, const char *label, PK11SymKey *secret)
{
#ifdef NSS_ALLOW_SSLKEYLOGFILE
SECStatus rv;
SECItem *keyData;
/* Longest label is "CLIENT_HANDSHAKE_TRAFFIC_SECRET", master secret is 48
* bytes which happens to be the largest in TLS 1.3 as well (SHA384).
* Maximum line length: "CLIENT_HANDSHAKE_TRAFFIC_SECRET" (31) + " " (1) +
* client_random (32*2) + " " (1) +
* traffic_secret (48*2) + "\n" (1) = 194. */
char buf[200];
unsigned int offset, len;
PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
if (!ssl_keylog_iob)
return;
rv = PK11_ExtractKeyValue(secret);
if (rv != SECSuccess)
return;
/* keyData does not need to be freed. */
keyData = PK11_GetKeyData(secret);
if (!keyData || !keyData->data)
return;
len = strlen(label) + 1 + /* label + space */
SSL3_RANDOM_LENGTH * 2 + 1 + /* client random (hex) + space */
keyData->len * 2 + 1; /* secret (hex) + newline */
PORT_Assert(len <= sizeof(buf));
if (len > sizeof(buf))
return;
/* https://developer.mozilla.org/en/NSS_Key_Log_Format */
/* There could be multiple, concurrent writers to the
* keylog, so we have to do everything in a single call to
* fwrite. */
strcpy(buf, label);
offset = strlen(label);
buf[offset++] += ' ';
hexEncode(buf + offset, ss->ssl3.hs.client_random, SSL3_RANDOM_LENGTH);
offset += SSL3_RANDOM_LENGTH * 2;
buf[offset++] = ' ';
hexEncode(buf + offset, keyData->data, keyData->len);
offset += keyData->len * 2;
buf[offset++] = '\n';
PORT_Assert(offset == len);
PZ_Lock(ssl_keylog_lock);
if (fwrite(buf, len, 1, ssl_keylog_iob) == 1)
fflush(ssl_keylog_iob);
PZ_Unlock(ssl_keylog_lock);
#endif
}
/* called from ssl3_SendClientSecondRound
* ssl3_HandleClientHello
* ssl3_HandleFinished
*/
static SECStatus
ssl3_SendFinished(sslSocket *ss, PRInt32 flags)
{
ssl3CipherSpec *cwSpec;
PRBool isTLS;
PRBool isServer = ss->sec.isServer;
SECStatus rv;
SSL3Sender sender = isServer ? sender_server : sender_client;
SSL3Hashes hashes;
TLSFinished tlsFinished;
SSL_TRC(3, ("%d: SSL3[%d]: send finished handshake", SSL_GETPID(), ss->fd));
PORT_Assert(ss->opt.noLocks || ssl_HaveXmitBufLock(ss));
PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
ssl_GetSpecReadLock(ss);
cwSpec = ss->ssl3.cwSpec;
isTLS = (PRBool)(cwSpec->version > SSL_LIBRARY_VERSION_3_0);
rv = ssl3_ComputeHandshakeHashes(ss, cwSpec, &hashes, sender);
if (isTLS && rv == SECSuccess) {
rv = ssl3_ComputeTLSFinished(ss, cwSpec, isServer, &hashes, &tlsFinished);
}
ssl_ReleaseSpecReadLock(ss);
if (rv != SECSuccess) {
goto fail; /* err code was set by ssl3_ComputeHandshakeHashes */
}
if (isTLS) {
if (isServer)
ss->ssl3.hs.finishedMsgs.tFinished[1] = tlsFinished;
else
ss->ssl3.hs.finishedMsgs.tFinished[0] = tlsFinished;
ss->ssl3.hs.finishedBytes = sizeof tlsFinished;
rv = ssl3_AppendHandshakeHeader(ss, ssl_hs_finished, sizeof tlsFinished);
if (rv != SECSuccess)
goto fail; /* err set by AppendHandshake. */
rv = ssl3_AppendHandshake(ss, &tlsFinished, sizeof tlsFinished);
if (rv != SECSuccess)
goto fail; /* err set by AppendHandshake. */
} else {
if (isServer)
ss->ssl3.hs.finishedMsgs.sFinished[1] = hashes.u.s;
else
ss->ssl3.hs.finishedMsgs.sFinished[0] = hashes.u.s;
PORT_Assert(hashes.len == sizeof hashes.u.s);
ss->ssl3.hs.finishedBytes = sizeof hashes.u.s;
rv = ssl3_AppendHandshakeHeader(ss, ssl_hs_finished, sizeof hashes.u.s);
if (rv != SECSuccess)
goto fail; /* err set by AppendHandshake. */
rv = ssl3_AppendHandshake(ss, &hashes.u.s, sizeof hashes.u.s);
if (rv != SECSuccess)
goto fail; /* err set by AppendHandshake. */
}
rv = ssl3_FlushHandshake(ss, flags);
if (rv != SECSuccess) {
goto fail; /* error code set by ssl3_FlushHandshake */
}
ssl3_RecordKeyLog(ss, "CLIENT_RANDOM", ss->ssl3.cwSpec->masterSecret);
return SECSuccess;
fail:
return rv;
}
/* wrap the master secret, and put it into the SID.
* Caller holds the Spec read lock.
*/
SECStatus
ssl3_CacheWrappedSecret(sslSocket *ss, sslSessionID *sid,
PK11SymKey *secret)
{
PK11SymKey *wrappingKey = NULL;
PK11SlotInfo *symKeySlot;
void *pwArg = ss->pkcs11PinArg;
SECStatus rv = SECFailure;
PRBool isServer = ss->sec.isServer;
CK_MECHANISM_TYPE mechanism = CKM_INVALID_MECHANISM;
symKeySlot = PK11_GetSlotFromKey(secret);
if (!isServer) {
int wrapKeyIndex;
int incarnation;
/* these next few functions are mere accessors and don't fail. */
sid->u.ssl3.masterWrapIndex = wrapKeyIndex =
PK11_GetCurrentWrapIndex(symKeySlot);
PORT_Assert(wrapKeyIndex == 0); /* array has only one entry! */
sid->u.ssl3.masterWrapSeries = incarnation =
PK11_GetSlotSeries(symKeySlot);
sid->u.ssl3.masterSlotID = PK11_GetSlotID(symKeySlot);
sid->u.ssl3.masterModuleID = PK11_GetModuleID(symKeySlot);
sid->u.ssl3.masterValid = PR_TRUE;
/* Get the default wrapping key, for wrapping the master secret before
* placing it in the SID cache entry. */
wrappingKey = PK11_GetWrapKey(symKeySlot, wrapKeyIndex,
CKM_INVALID_MECHANISM, incarnation,
pwArg);
if (wrappingKey) {
mechanism = PK11_GetMechanism(wrappingKey); /* can't fail. */
} else {
int keyLength;
/* if the wrappingKey doesn't exist, attempt to create it.
* Note: we intentionally ignore errors here. If we cannot
* generate a wrapping key, it is not fatal to this SSL connection,
* but we will not be able to restart this session.
*/
mechanism = PK11_GetBestWrapMechanism(symKeySlot);
keyLength = PK11_GetBestKeyLength(symKeySlot, mechanism);
/* Zero length means fixed key length algorithm, or error.
* It's ambiguous.
*/
wrappingKey = PK11_KeyGen(symKeySlot, mechanism, NULL,
keyLength, pwArg);
if (wrappingKey) {
/* The thread safety characteristics of PK11_[SG]etWrapKey is
* abominable. This protects against races in calling
* PK11_SetWrapKey by dropping and re-acquiring the canonical
* value once it is set. The mutex in PK11_[SG]etWrapKey will
* ensure that races produce the same value in the end. */
PK11_SetWrapKey(symKeySlot, wrapKeyIndex, wrappingKey);
PK11_FreeSymKey(wrappingKey);
wrappingKey = PK11_GetWrapKey(symKeySlot, wrapKeyIndex,
CKM_INVALID_MECHANISM, incarnation, pwArg);
if (!wrappingKey) {
PK11_FreeSlot(symKeySlot);
return SECFailure;
}
}
}
} else {
/* server socket using session cache. */
mechanism = PK11_GetBestWrapMechanism(symKeySlot);
if (mechanism != CKM_INVALID_MECHANISM) {
wrappingKey =
ssl3_GetWrappingKey(ss, symKeySlot, mechanism, pwArg);
if (wrappingKey) {
mechanism = PK11_GetMechanism(wrappingKey); /* can't fail. */
}
}
}
sid->u.ssl3.masterWrapMech = mechanism;
PK11_FreeSlot(symKeySlot);
if (wrappingKey) {
SECItem wmsItem;
wmsItem.data = sid->u.ssl3.keys.wrapped_master_secret;
wmsItem.len = sizeof sid->u.ssl3.keys.wrapped_master_secret;
rv = PK11_WrapSymKey(mechanism, NULL, wrappingKey,
secret, &wmsItem);
/* rv is examined below. */
sid->u.ssl3.keys.wrapped_master_secret_len = wmsItem.len;
PK11_FreeSymKey(wrappingKey);
}
return rv;
}
/* Called from ssl3_HandlePostHelloHandshakeMessage() when it has deciphered
* a complete ssl3 Finished message from the peer.
* Caller must hold Handshake and RecvBuf locks.
*/
static SECStatus
ssl3_HandleFinished(sslSocket *ss, PRUint8 *b, PRUint32 length)
{
SECStatus rv = SECSuccess;
PRBool isServer = ss->sec.isServer;
PRBool isTLS;
SSL3Hashes hashes;
PORT_Assert(ss->opt.noLocks || ssl_HaveRecvBufLock(ss));
PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
SSL_TRC(3, ("%d: SSL3[%d]: handle finished handshake",
SSL_GETPID(), ss->fd));
if (ss->ssl3.hs.ws != wait_finished) {
SSL3_SendAlert(ss, alert_fatal, unexpected_message);
PORT_SetError(SSL_ERROR_RX_UNEXPECTED_FINISHED);
return SECFailure;
}
if (!ss->sec.isServer || !ss->opt.requestCertificate) {
dtls_ReceivedFirstMessageInFlight(ss);
}
rv = ssl3_ComputeHandshakeHashes(ss, ss->ssl3.crSpec, &hashes,
isServer ? sender_client : sender_server);
if (rv != SECSuccess) {
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
return SECFailure;
}
rv = ssl_HashHandshakeMessage(ss, ssl_hs_finished, b, length);
if (rv != SECSuccess) {
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
return rv;
}
isTLS = (PRBool)(ss->ssl3.crSpec->version > SSL_LIBRARY_VERSION_3_0);
if (isTLS) {
TLSFinished tlsFinished;
if (length != sizeof(tlsFinished)) {
#ifndef UNSAFE_FUZZER_MODE
(void)SSL3_SendAlert(ss, alert_fatal, decode_error);
PORT_SetError(SSL_ERROR_RX_MALFORMED_FINISHED);
return SECFailure;
#endif
}
rv = ssl3_ComputeTLSFinished(ss, ss->ssl3.crSpec, !isServer,
&hashes, &tlsFinished);
if (!isServer)
ss->ssl3.hs.finishedMsgs.tFinished[1] = tlsFinished;
else
ss->ssl3.hs.finishedMsgs.tFinished[0] = tlsFinished;
ss->ssl3.hs.finishedBytes = sizeof(tlsFinished);
if (rv != SECSuccess ||
0 != NSS_SecureMemcmp(&tlsFinished, b,
PR_MIN(length, ss->ssl3.hs.finishedBytes))) {
#ifndef UNSAFE_FUZZER_MODE
(void)SSL3_SendAlert(ss, alert_fatal, decrypt_error);
PORT_SetError(SSL_ERROR_BAD_HANDSHAKE_HASH_VALUE);
return SECFailure;
#endif
}
} else {
if (length != sizeof(SSL3Finished)) {
(void)ssl3_IllegalParameter(ss);
PORT_SetError(SSL_ERROR_RX_MALFORMED_FINISHED);
return SECFailure;
}
if (!isServer)
ss->ssl3.hs.finishedMsgs.sFinished[1] = hashes.u.s;
else
ss->ssl3.hs.finishedMsgs.sFinished[0] = hashes.u.s;
PORT_Assert(hashes.len == sizeof hashes.u.s);
ss->ssl3.hs.finishedBytes = sizeof hashes.u.s;
if (0 != NSS_SecureMemcmp(&hashes.u.s, b, length)) {
(void)ssl3_HandshakeFailure(ss);
PORT_SetError(SSL_ERROR_BAD_HANDSHAKE_HASH_VALUE);
return SECFailure;
}
}
ssl_GetXmitBufLock(ss); /*************************************/
if ((isServer && !ss->ssl3.hs.isResuming) ||
(!isServer && ss->ssl3.hs.isResuming)) {
PRInt32 flags = 0;
/* Send a NewSessionTicket message if the client sent us
* either an empty session ticket, or one that did not verify.
* (Note that if either of these conditions was met, then the
* server has sent a SessionTicket extension in the
* ServerHello message.)
*/
if (isServer && !ss->ssl3.hs.isResuming &&
ssl3_ExtensionNegotiated(ss, ssl_session_ticket_xtn) &&
ssl3_KEASupportsTickets(ss->ssl3.hs.kea_def)) {
/* RFC 5077 Section 3.3: "In the case of a full handshake, the
* server MUST verify the client's Finished message before sending
* the ticket." Presumably, this also means that the client's
* certificate, if any, must be verified beforehand too.
*/
rv = ssl3_SendNewSessionTicket(ss);
if (rv != SECSuccess) {
goto xmit_loser;
}
}
rv = ssl3_SendChangeCipherSpecs(ss);
if (rv != SECSuccess) {
goto xmit_loser; /* err is set. */
}
/* If this thread is in SSL_SecureSend (trying to write some data)
** then set the ssl_SEND_FLAG_FORCE_INTO_BUFFER flag, so that the
** last two handshake messages (change cipher spec and finished)
** will be sent in the same send/write call as the application data.
*/
if (ss->writerThread == PR_GetCurrentThread()) {
flags = ssl_SEND_FLAG_FORCE_INTO_BUFFER;
}
if (!isServer && !ss->firstHsDone) {
rv = ssl3_SendNextProto(ss);
if (rv != SECSuccess) {
goto xmit_loser; /* err code was set. */
}
}
if (IS_DTLS(ss)) {
flags |= ssl_SEND_FLAG_NO_RETRANSMIT;
}
rv = ssl3_SendFinished(ss, flags);
if (rv != SECSuccess) {
goto xmit_loser; /* err is set. */
}
}
xmit_loser:
ssl_ReleaseXmitBufLock(ss); /*************************************/
if (rv != SECSuccess) {
return rv;
}
if (ss->ssl3.hs.authCertificatePending) {
if (ss->ssl3.hs.restartTarget) {
PR_NOT_REACHED("ssl3_HandleFinished: unexpected restartTarget");
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
return SECFailure;
}
ss->ssl3.hs.restartTarget = ssl3_FinishHandshake;
PORT_SetError(PR_WOULD_BLOCK_ERROR);
return SECFailure;
}
rv = ssl3_FinishHandshake(ss);
return rv;
}
SECStatus
ssl3_FillInCachedSID(sslSocket *ss, sslSessionID *sid, PK11SymKey *secret)
{
PORT_Assert(secret);
/* fill in the sid */
sid->u.ssl3.cipherSuite = ss->ssl3.hs.cipher_suite;
sid->u.ssl3.policy = ss->ssl3.policy;
sid->version = ss->version;
sid->authType = ss->sec.authType;
sid->authKeyBits = ss->sec.authKeyBits;
sid->keaType = ss->sec.keaType;
sid->keaKeyBits = ss->sec.keaKeyBits;
if (ss->sec.keaGroup) {
sid->keaGroup = ss->sec.keaGroup->name;
} else {
sid->keaGroup = ssl_grp_none;
}
sid->sigScheme = ss->sec.signatureScheme;
sid->lastAccessTime = sid->creationTime = ssl_Time(ss);
sid->expirationTime = sid->creationTime + (ssl_ticket_lifetime * PR_USEC_PER_SEC);
sid->localCert = CERT_DupCertificate(ss->sec.localCert);
if (ss->sec.isServer) {
sid->namedCurve = ss->sec.serverCert->namedCurve;
}
if (ss->xtnData.nextProtoState != SSL_NEXT_PROTO_NO_SUPPORT &&
ss->xtnData.nextProto.data) {
SECITEM_FreeItem(&sid->u.ssl3.alpnSelection, PR_FALSE);
if (SECITEM_CopyItem(
NULL, &sid->u.ssl3.alpnSelection, &ss->xtnData.nextProto) != SECSuccess) {
return SECFailure; /* error already set. */
}
}
/* Copy the master secret (wrapped or unwrapped) into the sid */
return ssl3_CacheWrappedSecret(ss, ss->sec.ci.sid, secret);
}
/* The return type is SECStatus instead of void because this function needs
* to have type sslRestartTarget.
*/
SECStatus
ssl3_FinishHandshake(sslSocket *ss)
{
PORT_Assert(ss->opt.noLocks || ssl_HaveRecvBufLock(ss));
PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
PORT_Assert(ss->ssl3.hs.restartTarget == NULL);
sslSessionID *sid = ss->sec.ci.sid;
SECStatus sidRv = SECFailure;
/* The first handshake is now completed. */
ss->handshake = NULL;
if (sid->cached == never_cached && !ss->opt.noCache) {
/* If the wrap fails, don't cache the sid. The connection proceeds
* normally, so the rv is only used to determine whether we cache. */
sidRv = ssl3_FillInCachedSID(ss, sid, ss->ssl3.crSpec->masterSecret);
}
/* RFC 5077 Section 3.3: "The client MUST NOT treat the ticket as valid
* until it has verified the server's Finished message." When the server
* sends a NewSessionTicket in a resumption handshake, we must wait until
* the handshake is finished (we have verified the server's Finished
* AND the server's certificate) before we update the ticket in the sid.
*
* This must be done before we call ssl_CacheSessionID(ss)
* because CacheSID requires the session ticket to already be set, and also
* because of the lazy lock creation scheme used by CacheSID and
* ssl3_SetSIDSessionTicket. */
if (ss->ssl3.hs.receivedNewSessionTicket) {
PORT_Assert(!ss->sec.isServer);
if (sidRv == SECSuccess) {
/* The sid takes over the ticket data */
ssl3_SetSIDSessionTicket(ss->sec.ci.sid,
&ss->ssl3.hs.newSessionTicket);
} else {
PORT_Assert(ss->ssl3.hs.newSessionTicket.ticket.data);
SECITEM_FreeItem(&ss->ssl3.hs.newSessionTicket.ticket,
PR_FALSE);
}
PORT_Assert(!ss->ssl3.hs.newSessionTicket.ticket.data);
ss->ssl3.hs.receivedNewSessionTicket = PR_FALSE;
}
if (sidRv == SECSuccess) {
PORT_Assert(ss->sec.ci.sid->cached == never_cached);
ssl_CacheSessionID(ss);
}
ss->ssl3.hs.canFalseStart = PR_FALSE; /* False Start phase is complete */
ss->ssl3.hs.ws = idle_handshake;
ssl_FinishHandshake(ss);
return SECSuccess;
}
SECStatus
ssl_HashHandshakeMessageInt(sslSocket *ss, SSLHandshakeType ct,
PRUint32 dtlsSeq,
const PRUint8 *b, PRUint32 length,
sslUpdateHandshakeHashes updateHashes)
{
PRUint8 hdr[4];
PRUint8 dtlsData[8];
SECStatus rv;
PRINT_BUF(50, (ss, "Hash handshake message:", b, length));
hdr[0] = (PRUint8)ct;
hdr[1] = (PRUint8)(length >> 16);
hdr[2] = (PRUint8)(length >> 8);
hdr[3] = (PRUint8)(length);
rv = updateHashes(ss, (unsigned char *)hdr, 4);
if (rv != SECSuccess)
return rv; /* err code already set. */
/* Extra data to simulate a complete DTLS handshake fragment */
if (IS_DTLS(ss)) {
/* Sequence number */
dtlsData[0] = MSB(dtlsSeq);
dtlsData[1] = LSB(dtlsSeq);
/* Fragment offset */
dtlsData[2] = 0;
dtlsData[3] = 0;
dtlsData[4] = 0;
/* Fragment length */
dtlsData[5] = (PRUint8)(length >> 16);
dtlsData[6] = (PRUint8)(length >> 8);
dtlsData[7] = (PRUint8)(length);
rv = updateHashes(ss, (unsigned char *)dtlsData, sizeof(dtlsData));
if (rv != SECSuccess)
return rv; /* err code already set. */
}
/* The message body */
rv = updateHashes(ss, b, length);
if (rv != SECSuccess)
return rv; /* err code already set. */
return SECSuccess;
}
SECStatus
ssl_HashHandshakeMessage(sslSocket *ss, SSLHandshakeType ct,
const PRUint8 *b, PRUint32 length)
{
return ssl_HashHandshakeMessageInt(ss, ct, ss->ssl3.hs.recvMessageSeq,
b, length, ssl3_UpdateHandshakeHashes);
}
SECStatus
ssl_HashHandshakeMessageDefault(sslSocket *ss, SSLHandshakeType ct,
const PRUint8 *b, PRUint32 length)
{
return ssl_HashHandshakeMessageInt(ss, ct, ss->ssl3.hs.recvMessageSeq,
b, length, ssl3_UpdateDefaultHandshakeHashes);
}
SECStatus
ssl_HashHandshakeMessageEchInner(sslSocket *ss, SSLHandshakeType ct,
const PRUint8 *b, PRUint32 length)
{
return ssl_HashHandshakeMessageInt(ss, ct, ss->ssl3.hs.recvMessageSeq,
b, length, ssl3_UpdateInnerHandshakeHashes);
}
SECStatus
ssl_HashPostHandshakeMessage(sslSocket *ss, SSLHandshakeType ct,
const PRUint8 *b, PRUint32 length)
{
return ssl_HashHandshakeMessageInt(ss, ct, ss->ssl3.hs.recvMessageSeq,
b, length, ssl3_UpdatePostHandshakeHashes);
}
/* Called from ssl3_HandleHandshake() when it has gathered a complete ssl3
* handshake message.
* Caller must hold Handshake and RecvBuf locks.
*/
SECStatus
ssl3_HandleHandshakeMessage(sslSocket *ss, PRUint8 *b, PRUint32 length,
PRBool endOfRecord)
{
SECStatus rv = SECSuccess;
PRUint16 epoch;
PORT_Assert(ss->opt.noLocks || ssl_HaveRecvBufLock(ss));
PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
SSL_TRC(30, ("%d: SSL3[%d]: handle handshake message: %s", SSL_GETPID(),
ss->fd, ssl3_DecodeHandshakeType(ss->ssl3.hs.msg_type)));
/* Start new handshake hashes when we start a new handshake. */
if (ss->ssl3.hs.msg_type == ssl_hs_client_hello) {
ssl3_RestartHandshakeHashes(ss);
}
switch (ss->ssl3.hs.msg_type) {
case ssl_hs_hello_request:
case ssl_hs_hello_verify_request:
/* We don't include hello_request and hello_verify_request messages
* in the handshake hashes */
break;
/* Defer hashing of these messages until the message handlers. */
case ssl_hs_client_hello:
case ssl_hs_server_hello:
case ssl_hs_certificate_verify:
case ssl_hs_finished:
break;
default:
if (!tls13_IsPostHandshake(ss)) {
rv = ssl_HashHandshakeMessage(ss, ss->ssl3.hs.msg_type, b, length);
if (rv != SECSuccess) {
return SECFailure;
}
}
}
PORT_SetError(0); /* each message starts with no error. */
if (ss->ssl3.hs.ws == wait_certificate_status &&
ss->ssl3.hs.msg_type != ssl_hs_certificate_status) {
/* If we negotiated the certificate_status extension then we deferred
* certificate validation until we get the CertificateStatus messsage.
* But the CertificateStatus message is optional. If the server did
* not send it then we need to validate the certificate now. If the
* server does send the CertificateStatus message then we will
* authenticate the certificate in ssl3_HandleCertificateStatus.
*/
rv = ssl3_AuthCertificate(ss); /* sets ss->ssl3.hs.ws */
if (rv != SECSuccess) {
/* This can't block. */
PORT_Assert(PORT_GetError() != PR_WOULD_BLOCK_ERROR);
return SECFailure;
}
}
epoch = ss->ssl3.crSpec->epoch;
switch (ss->ssl3.hs.msg_type) {
case ssl_hs_client_hello:
if (!ss->sec.isServer) {
(void)SSL3_SendAlert(ss, alert_fatal, unexpected_message);
PORT_SetError(SSL_ERROR_RX_UNEXPECTED_CLIENT_HELLO);
return SECFailure;
}
rv = ssl3_HandleClientHello(ss, b, length);
break;
case ssl_hs_server_hello:
if (ss->sec.isServer) {
(void)SSL3_SendAlert(ss, alert_fatal, unexpected_message);
PORT_SetError(SSL_ERROR_RX_UNEXPECTED_SERVER_HELLO);
return SECFailure;
}
rv = ssl3_HandleServerHello(ss, b, length);
break;
default:
if (ss->version < SSL_LIBRARY_VERSION_TLS_1_3) {
rv = ssl3_HandlePostHelloHandshakeMessage(ss, b, length);
} else {
rv = tls13_HandlePostHelloHandshakeMessage(ss, b, length);
}
break;
}
if (ss->version >= SSL_LIBRARY_VERSION_TLS_1_3 &&
(epoch != ss->ssl3.crSpec->epoch) && !endOfRecord) {
/* If we changed read cipher states, there must not be any
* data in the input queue. */
(void)SSL3_SendAlert(ss, alert_fatal, unexpected_message);
PORT_SetError(SSL_ERROR_RX_UNEXPECTED_HANDSHAKE);
return SECFailure;
}
if (IS_DTLS(ss) && (rv != SECFailure)) {
/* Increment the expected sequence number */
ss->ssl3.hs.recvMessageSeq++;
}
/* Taint the message so that it's easier to detect UAFs. */
PORT_Memset(b, 'N', length);
return rv;
}
static SECStatus
ssl3_HandlePostHelloHandshakeMessage(sslSocket *ss, PRUint8 *b,
PRUint32 length)
{
SECStatus rv;
PORT_Assert(ss->version < SSL_LIBRARY_VERSION_TLS_1_3);
switch (ss->ssl3.hs.msg_type) {
case ssl_hs_hello_request:
if (length != 0) {
(void)ssl3_DecodeError(ss);
PORT_SetError(SSL_ERROR_RX_MALFORMED_HELLO_REQUEST);
return SECFailure;
}
if (ss->sec.isServer) {
(void)SSL3_SendAlert(ss, alert_fatal, unexpected_message);
PORT_SetError(SSL_ERROR_RX_UNEXPECTED_HELLO_REQUEST);
return SECFailure;
}
rv = ssl3_HandleHelloRequest(ss);
break;
case ssl_hs_hello_verify_request:
if (!IS_DTLS(ss) || ss->sec.isServer) {
(void)SSL3_SendAlert(ss, alert_fatal, unexpected_message);
PORT_SetError(SSL_ERROR_RX_UNEXPECTED_HELLO_VERIFY_REQUEST);
return SECFailure;
}
rv = dtls_HandleHelloVerifyRequest(ss, b, length);
break;
case ssl_hs_certificate:
rv = ssl3_HandleCertificate(ss, b, length);
break;
case ssl_hs_certificate_status:
rv = ssl3_HandleCertificateStatus(ss, b, length);
break;
case ssl_hs_server_key_exchange:
if (ss->sec.isServer) {
(void)SSL3_SendAlert(ss, alert_fatal, unexpected_message);
PORT_SetError(SSL_ERROR_RX_UNEXPECTED_SERVER_KEY_EXCH);
return SECFailure;
}
rv = ssl3_HandleServerKeyExchange(ss, b, length);
break;
case ssl_hs_certificate_request:
if (ss->sec.isServer) {
(void)SSL3_SendAlert(ss, alert_fatal, unexpected_message);
PORT_SetError(SSL_ERROR_RX_UNEXPECTED_CERT_REQUEST);
return SECFailure;
}
rv = ssl3_HandleCertificateRequest(ss, b, length);
break;
case ssl_hs_server_hello_done:
if (length != 0) {
(void)ssl3_DecodeError(ss);
PORT_SetError(SSL_ERROR_RX_MALFORMED_HELLO_DONE);
return SECFailure;
}
if (ss->sec.isServer) {
(void)SSL3_SendAlert(ss, alert_fatal, unexpected_message);
PORT_SetError(SSL_ERROR_RX_UNEXPECTED_HELLO_DONE);
return SECFailure;
}
rv = ssl3_HandleServerHelloDone(ss);
break;
case ssl_hs_certificate_verify:
if (!ss->sec.isServer) {
(void)SSL3_SendAlert(ss, alert_fatal, unexpected_message);
PORT_SetError(SSL_ERROR_RX_UNEXPECTED_CERT_VERIFY);
return SECFailure;
}
rv = ssl3_HandleCertificateVerify(ss, b, length);
break;
case ssl_hs_client_key_exchange:
if (!ss->sec.isServer) {
(void)SSL3_SendAlert(ss, alert_fatal, unexpected_message);
PORT_SetError(SSL_ERROR_RX_UNEXPECTED_CLIENT_KEY_EXCH);
return SECFailure;
}
rv = ssl3_HandleClientKeyExchange(ss, b, length);
break;
case ssl_hs_new_session_ticket:
if (ss->sec.isServer) {
(void)SSL3_SendAlert(ss, alert_fatal, unexpected_message);
PORT_SetError(SSL_ERROR_RX_UNEXPECTED_NEW_SESSION_TICKET);
return SECFailure;
}
rv = ssl3_HandleNewSessionTicket(ss, b, length);
break;
case ssl_hs_finished:
rv = ssl3_HandleFinished(ss, b, length);
break;
default:
(void)SSL3_SendAlert(ss, alert_fatal, unexpected_message);
PORT_SetError(SSL_ERROR_RX_UNKNOWN_HANDSHAKE);
rv = SECFailure;
}
return rv;
}
/* Called only from ssl3_HandleRecord, for each (deciphered) ssl3 record.
* origBuf is the decrypted ssl record content.
* Caller must hold the handshake and RecvBuf locks.
*/
static SECStatus
ssl3_HandleHandshake(sslSocket *ss, sslBuffer *origBuf)
{
sslBuffer buf = *origBuf; /* Work from a copy. */
SECStatus rv;
PORT_Assert(ss->opt.noLocks || ssl_HaveRecvBufLock(ss));
PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
while (buf.len > 0) {
if (ss->ssl3.hs.header_bytes < 4) {
PRUint8 t;
t = *(buf.buf++);
buf.len--;
if (ss->ssl3.hs.header_bytes++ == 0)
ss->ssl3.hs.msg_type = (SSLHandshakeType)t;
else
ss->ssl3.hs.msg_len = (ss->ssl3.hs.msg_len << 8) + t;
if (ss->ssl3.hs.header_bytes < 4)
continue;
#define MAX_HANDSHAKE_MSG_LEN 0x1ffff /* 128k - 1 */
if (ss->ssl3.hs.msg_len > MAX_HANDSHAKE_MSG_LEN) {
(void)ssl3_DecodeError(ss);
PORT_SetError(SSL_ERROR_RX_MALFORMED_HANDSHAKE);
goto loser;
}
#undef MAX_HANDSHAKE_MSG_LEN
/* If msg_len is zero, be sure we fall through,
** even if buf.len is zero.
*/
if (ss->ssl3.hs.msg_len > 0)
continue;
}
/*
* Header has been gathered and there is at least one byte of new
* data available for this message. If it can be done right out
* of the original buffer, then use it from there.
*/
if (ss->ssl3.hs.msg_body.len == 0 && buf.len >= ss->ssl3.hs.msg_len) {
/* handle it from input buffer */
rv = ssl3_HandleHandshakeMessage(ss, buf.buf, ss->ssl3.hs.msg_len,
buf.len == ss->ssl3.hs.msg_len);
buf.buf += ss->ssl3.hs.msg_len;
buf.len -= ss->ssl3.hs.msg_len;
ss->ssl3.hs.msg_len = 0;
ss->ssl3.hs.header_bytes = 0;
if (rv != SECSuccess) {
goto loser;
}
} else {
/* must be copied to msg_body and dealt with from there */
unsigned int bytes;
PORT_Assert(ss->ssl3.hs.msg_body.len < ss->ssl3.hs.msg_len);
bytes = PR_MIN(buf.len, ss->ssl3.hs.msg_len - ss->ssl3.hs.msg_body.len);
/* Grow the buffer if needed */
rv = sslBuffer_Grow(&ss->ssl3.hs.msg_body, ss->ssl3.hs.msg_len);
if (rv != SECSuccess) {
/* sslBuffer_Grow has set a memory error code. */
goto loser;
}
PORT_Memcpy(ss->ssl3.hs.msg_body.buf + ss->ssl3.hs.msg_body.len,
buf.buf, bytes);
ss->ssl3.hs.msg_body.len += bytes;
buf.buf += bytes;
buf.len -= bytes;
PORT_Assert(ss->ssl3.hs.msg_body.len <= ss->ssl3.hs.msg_len);
/* if we have a whole message, do it */
if (ss->ssl3.hs.msg_body.len == ss->ssl3.hs.msg_len) {
rv = ssl3_HandleHandshakeMessage(
ss, ss->ssl3.hs.msg_body.buf, ss->ssl3.hs.msg_len,
buf.len == 0);
ss->ssl3.hs.msg_body.len = 0;
ss->ssl3.hs.msg_len = 0;
ss->ssl3.hs.header_bytes = 0;
if (rv != SECSuccess) {
goto loser;
}
} else {
PORT_Assert(buf.len == 0);
break;
}
}
} /* end loop */
origBuf->len = 0; /* So ssl3_GatherAppDataRecord will keep looping. */
return SECSuccess;
loser : {
/* Make sure to remove any data that was consumed. */
unsigned int consumed = origBuf->len - buf.len;
PORT_Assert(consumed == buf.buf - origBuf->buf);
if (consumed > 0) {
memmove(origBuf->buf, origBuf->buf + consumed, buf.len);
origBuf->len = buf.len;
}
}
return SECFailure;
}
/* SECStatusToMask returns, in constant time, a mask value of all ones if
* rv == SECSuccess. Otherwise it returns zero. */
static unsigned int
SECStatusToMask(SECStatus rv)
{
return PORT_CT_EQ(rv, SECSuccess);
}
/* ssl_ConstantTimeGE returns 0xffffffff if a>=b and 0x00 otherwise. */
static unsigned char
ssl_ConstantTimeGE(unsigned int a, unsigned int b)
{
return PORT_CT_GE(a, b);
}
/* ssl_ConstantTimeEQ returns 0xffffffff if a==b and 0x00 otherwise. */
static unsigned char
ssl_ConstantTimeEQ(unsigned char a, unsigned char b)
{
return PORT_CT_EQ(a, b);
}
/* ssl_constantTimeSelect return a if mask is 0xFF and b if mask is 0x00 */
static unsigned char
ssl_constantTimeSelect(unsigned char mask, unsigned char a, unsigned char b)
{
return (mask & a) | (~mask & b);
}
static SECStatus
ssl_RemoveSSLv3CBCPadding(sslBuffer *plaintext,
unsigned int blockSize,
unsigned int macSize)
{
unsigned int paddingLength, good;
const unsigned int overhead = 1 /* padding length byte */ + macSize;
/* These lengths are all public so we can test them in non-constant
* time. */
if (overhead > plaintext->len) {
return SECFailure;
}
paddingLength = plaintext->buf[plaintext->len - 1];
/* SSLv3 padding bytes are random and cannot be checked. */
good = PORT_CT_GE(plaintext->len, paddingLength + overhead);
/* SSLv3 requires that the padding is minimal. */
good &= PORT_CT_GE(blockSize, paddingLength + 1);
plaintext->len -= good & (paddingLength + 1);
return (good & SECSuccess) | (~good & SECFailure);
}
SECStatus
ssl_RemoveTLSCBCPadding(sslBuffer *plaintext, unsigned int macSize)
{
unsigned int paddingLength, good, toCheck, i;
const unsigned int overhead = 1 /* padding length byte */ + macSize;
/* These lengths are all public so we can test them in non-constant
* time. */
if (overhead > plaintext->len) {
return SECFailure;
}
paddingLength = plaintext->buf[plaintext->len - 1];
good = PORT_CT_GE(plaintext->len, paddingLength + overhead);
/* The padding consists of a length byte at the end of the record and then
* that many bytes of padding, all with the same value as the length byte.
* Thus, with the length byte included, there are paddingLength+1 bytes of
* padding.
*
* We can't check just |paddingLength+1| bytes because that leaks
* decrypted information. Therefore we always have to check the maximum
* amount of padding possible. (Again, the length of the record is
* public information so we can use it.) */
toCheck = 256; /* maximum amount of padding + 1. */
if (toCheck > plaintext->len) {
toCheck = plaintext->len;
}
for (i = 0; i < toCheck; i++) {
/* If i <= paddingLength then the MSB of t is zero and mask is
* 0xff. Otherwise, mask is 0. */
unsigned char mask = PORT_CT_LE(i, paddingLength);
unsigned char b = plaintext->buf[plaintext->len - 1 - i];
/* The final |paddingLength+1| bytes should all have the value
* |paddingLength|. Therefore the XOR should be zero. */
good &= ~(mask & (paddingLength ^ b));
}
/* If any of the final |paddingLength+1| bytes had the wrong value,
* one or more of the lower eight bits of |good| will be cleared. We
* AND the bottom 8 bits together and duplicate the result to all the
* bits. */
good &= good >> 4;
good &= good >> 2;
good &= good >> 1;
good <<= sizeof(good) * 8 - 1;
good = PORT_CT_DUPLICATE_MSB_TO_ALL(good);
plaintext->len -= good & (paddingLength + 1);
return (good & SECSuccess) | (~good & SECFailure);
}
/* On entry:
* originalLength >= macSize
* macSize <= MAX_MAC_LENGTH
* plaintext->len >= macSize
*/
static void
ssl_CBCExtractMAC(sslBuffer *plaintext,
unsigned int originalLength,
PRUint8 *out,
unsigned int macSize)
{
unsigned char rotatedMac[MAX_MAC_LENGTH];
/* macEnd is the index of |plaintext->buf| just after the end of the
* MAC. */
unsigned macEnd = plaintext->len;
unsigned macStart = macEnd - macSize;
/* scanStart contains the number of bytes that we can ignore because
* the MAC's position can only vary by 255 bytes. */
unsigned scanStart = 0;
unsigned i, j;
unsigned char rotateOffset;
if (originalLength > macSize + 255 + 1) {
scanStart = originalLength - (macSize + 255 + 1);
}
/* We want to compute
* rotateOffset = (macStart - scanStart) % macSize
* But the time to compute this varies based on the amount of padding. Thus
* we explicitely handle all mac sizes with (hopefully) constant time modulo
* using Barrett reduction:
* q := (rotateOffset * m) >> k
* rotateOffset -= q * n
* if (n <= rotateOffset) rotateOffset -= n
*/
rotateOffset = macStart - scanStart;
/* rotateOffset < 255 + 1 + 48 = 304 */
if (macSize == 16) {
rotateOffset &= 15;
} else if (macSize == 20) {
/*
* Correctness: rotateOffset * ( 1/20 - 25/2^9 ) < 1
* with rotateOffset <= 853
*/
unsigned q = (rotateOffset * 25) >> 9;
rotateOffset -= q * 20;
rotateOffset -= ssl_constantTimeSelect(ssl_ConstantTimeGE(rotateOffset, 20),
20, 0);
} else if (macSize == 32) {
rotateOffset &= 31;
} else if (macSize == 48) {
/*
* Correctness: rotateOffset * ( 1/48 - 10/2^9 ) < 1
* with rotateOffset < 768
*/
unsigned q = (rotateOffset * 10) >> 9;
rotateOffset -= q * 48;
rotateOffset -= ssl_constantTimeSelect(ssl_ConstantTimeGE(rotateOffset, 48),
48, 0);
} else {
/*
* SHA384 (macSize == 48) is the largest we support. We should never
* get here.
*/
PORT_Assert(0);
rotateOffset = rotateOffset % macSize;
}
memset(rotatedMac, 0, macSize);
for (i = scanStart; i < originalLength;) {
for (j = 0; j < macSize && i < originalLength; i++, j++) {
unsigned char macStarted = ssl_ConstantTimeGE(i, macStart);
unsigned char macEnded = ssl_ConstantTimeGE(i, macEnd);
unsigned char b = 0;
b = plaintext->buf[i];
rotatedMac[j] |= b & macStarted & ~macEnded;
}
}
/* Now rotate the MAC. If we knew that the MAC fit into a CPU cache line
* we could line-align |rotatedMac| and rotate in place. */
memset(out, 0, macSize);
rotateOffset = macSize - rotateOffset;
rotateOffset = ssl_constantTimeSelect(ssl_ConstantTimeGE(rotateOffset, macSize),
0, rotateOffset);
for (i = 0; i < macSize; i++) {
for (j = 0; j < macSize; j++) {
out[j] |= rotatedMac[i] & ssl_ConstantTimeEQ(j, rotateOffset);
}
rotateOffset++;
rotateOffset = ssl_constantTimeSelect(ssl_ConstantTimeGE(rotateOffset, macSize),
0, rotateOffset);
}
}
/* Unprotect an SSL3 record and leave the result in plaintext.
*
* If SECFailure is returned, we:
* 1. Set |*alert| to the alert to be sent.
* 2. Call PORT_SetError() with an appropriate code.
*
* Called by ssl3_HandleRecord. Caller must hold the spec read lock.
* Therefore, we MUST not call SSL3_SendAlert().
*
*/
static SECStatus
ssl3_UnprotectRecord(sslSocket *ss,
ssl3CipherSpec *spec,
SSL3Ciphertext *cText, sslBuffer *plaintext,
SSL3AlertDescription *alert)
{
const ssl3BulkCipherDef *cipher_def = spec->cipherDef;
PRBool isTLS;
unsigned int good;
unsigned int ivLen = 0;
SSLContentType rType;
SSL3ProtocolVersion rVersion;
unsigned int minLength;
unsigned int originalLen = 0;
PRUint8 headerBuf[13];
sslBuffer header = SSL_BUFFER(headerBuf);
PRUint8 hash[MAX_MAC_LENGTH];
PRUint8 givenHashBuf[MAX_MAC_LENGTH];
PRUint8 *givenHash;
unsigned int hashBytes = MAX_MAC_LENGTH + 1;
SECStatus rv;
PORT_Assert(spec->direction == ssl_secret_read);
good = ~0U;
minLength = spec->macDef->mac_size;
if (cipher_def->type == type_block) {
/* CBC records have a padding length byte at the end. */
minLength++;
if (spec->version >= SSL_LIBRARY_VERSION_TLS_1_1) {
/* With >= TLS 1.1, CBC records have an explicit IV. */
minLength += cipher_def->iv_size;
}
} else if (cipher_def->type == type_aead) {
minLength = cipher_def->explicit_nonce_size + cipher_def->tag_size;
}
/* We can perform this test in variable time because the record's total
* length and the ciphersuite are both public knowledge. */
if (cText->buf->len < minLength) {
goto decrypt_loser;
}
if (cipher_def->type == type_block &&
spec->version >= SSL_LIBRARY_VERSION_TLS_1_1) {
/* Consume the per-record explicit IV. RFC 4346 Section 6.2.3.2 states
* "The receiver decrypts the entire GenericBlockCipher structure and
* then discards the first cipher block corresponding to the IV
* component." Instead, we decrypt the first cipher block and then
* discard it before decrypting the rest.
*/
PRUint8 iv[MAX_IV_LENGTH];
unsigned int decoded;
ivLen = cipher_def->iv_size;
if (ivLen < 8 || ivLen > sizeof(iv)) {
*alert = internal_error;
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
return SECFailure;
}
PRINT_BUF(80, (ss, "IV (ciphertext):", cText->buf->buf, ivLen));
/* The decryption result is garbage, but since we just throw away
* the block it doesn't matter. The decryption of the next block
* depends only on the ciphertext of the IV block.
*/
rv = spec->cipher(spec->cipherContext, iv, &decoded,
sizeof(iv), cText->buf->buf, ivLen);
good &= SECStatusToMask(rv);
}
PRINT_BUF(80, (ss, "ciphertext:", cText->buf->buf + ivLen,
cText->buf->len - ivLen));
isTLS = (PRBool)(spec->version > SSL_LIBRARY_VERSION_3_0);
if (isTLS && cText->buf->len - ivLen > (MAX_FRAGMENT_LENGTH + 2048)) {
*alert = record_overflow;
PORT_SetError(SSL_ERROR_RX_RECORD_TOO_LONG);
return SECFailure;
}
rType = (SSLContentType)cText->hdr[0];
rVersion = ((SSL3ProtocolVersion)cText->hdr[1] << 8) |
(SSL3ProtocolVersion)cText->hdr[2];
if (cipher_def->type == type_aead) {
/* XXX For many AEAD ciphers, the plaintext is shorter than the
* ciphertext by a fixed byte count, but it is not true in general.
* Each AEAD cipher should provide a function that returns the
* plaintext length for a given ciphertext. */
const unsigned int explicitNonceLen = cipher_def->explicit_nonce_size;
const unsigned int tagLen = cipher_def->tag_size;
unsigned int nonceLen = explicitNonceLen;
unsigned int decryptedLen = cText->buf->len - nonceLen - tagLen;
/* even though read doesn't return and IV, we still need a space to put
* the combined iv/nonce n the gcm 1.2 case*/
unsigned char ivOut[MAX_IV_LENGTH];
unsigned char *iv = NULL;
unsigned char *nonce = NULL;
ivLen = cipher_def->iv_size;
rv = ssl3_BuildRecordPseudoHeader(
spec->epoch, cText->seqNum,
rType, isTLS, rVersion, IS_DTLS(ss), decryptedLen, &header);
PORT_Assert(rv == SECSuccess);
/* build the iv */
if (explicitNonceLen == 0) {
nonceLen = sizeof(cText->seqNum);
iv = spec->keyMaterial.iv;
nonce = SSL_BUFFER_BASE(&header);
} else {
PORT_Memcpy(ivOut, spec->keyMaterial.iv, ivLen);
PORT_Memset(ivOut + ivLen, 0, explicitNonceLen);
iv = ivOut;
nonce = cText->buf->buf;
nonceLen = explicitNonceLen;
}
rv = tls13_AEAD(spec->cipherContext, PR_TRUE,
CKG_NO_GENERATE, 0, /* iv generator params
* (not used in decrypt)*/
iv, /* iv in */
NULL, /* iv out */
ivLen + explicitNonceLen, /* full iv length */
nonce, nonceLen, /* nonce in */
SSL_BUFFER_BASE(&header), /* aad */
SSL_BUFFER_LEN(&header), /* aadlen */
plaintext->buf, /* output */
&plaintext->len, /* out len */
plaintext->space, /* max out */
tagLen,
cText->buf->buf + explicitNonceLen, /* input */
cText->buf->len - explicitNonceLen); /* input len */
if (rv != SECSuccess) {
good = 0;
}
} else {
if (cipher_def->type == type_block &&
((cText->buf->len - ivLen) % cipher_def->block_size) != 0) {
goto decrypt_loser;
}
/* decrypt from cText buf to plaintext. */
rv = spec->cipher(
spec->cipherContext, plaintext->buf, &plaintext->len,
plaintext->space, cText->buf->buf + ivLen, cText->buf->len - ivLen);
if (rv != SECSuccess) {
goto decrypt_loser;
}
PRINT_BUF(80, (ss, "cleartext:", plaintext->buf, plaintext->len));
originalLen = plaintext->len;
/* If it's a block cipher, check and strip the padding. */
if (cipher_def->type == type_block) {
const unsigned int blockSize = cipher_def->block_size;
const unsigned int macSize = spec->macDef->mac_size;
if (!isTLS) {
good &= SECStatusToMask(ssl_RemoveSSLv3CBCPadding(
plaintext, blockSize, macSize));
} else {
good &= SECStatusToMask(ssl_RemoveTLSCBCPadding(
plaintext, macSize));
}
}
/* compute the MAC */
rv = ssl3_BuildRecordPseudoHeader(
spec->epoch, cText->seqNum,
rType, isTLS, rVersion, IS_DTLS(ss),
plaintext->len - spec->macDef->mac_size, &header);
PORT_Assert(rv == SECSuccess);
if (cipher_def->type == type_block) {
rv = ssl3_ComputeRecordMACConstantTime(
spec, SSL_BUFFER_BASE(&header), SSL_BUFFER_LEN(&header),
plaintext->buf, plaintext->len, originalLen,
hash, &hashBytes);
ssl_CBCExtractMAC(plaintext, originalLen, givenHashBuf,
spec->macDef->mac_size);
givenHash = givenHashBuf;
/* plaintext->len will always have enough space to remove the MAC
* because in ssl_Remove{SSLv3|TLS}CBCPadding we only adjust
* plaintext->len if the result has enough space for the MAC and we
* tested the unadjusted size against minLength, above. */
plaintext->len -= spec->macDef->mac_size;
} else {
/* This is safe because we checked the minLength above. */
plaintext->len -= spec->macDef->mac_size;
rv = ssl3_ComputeRecordMAC(
spec, SSL_BUFFER_BASE(&header), SSL_BUFFER_LEN(&header),
plaintext->buf, plaintext->len, hash, &hashBytes);
/* We can read the MAC directly from the record because its location
* is public when a stream cipher is used. */
givenHash = plaintext->buf + plaintext->len;
}
good &= SECStatusToMask(rv);
if (hashBytes != (unsigned)spec->macDef->mac_size ||
NSS_SecureMemcmp(givenHash, hash, spec->macDef->mac_size) != 0) {
/* We're allowed to leak whether or not the MAC check was correct */
good = 0;
}
}
if (good == 0) {
decrypt_loser:
/* always log mac error, in case attacker can read server logs. */
PORT_SetError(SSL_ERROR_BAD_MAC_READ);
*alert = bad_record_mac;
return SECFailure;
}
return SECSuccess;
}
SECStatus
ssl3_HandleNonApplicationData(sslSocket *ss, SSLContentType rType,
DTLSEpoch epoch, sslSequenceNumber seqNum,
sslBuffer *databuf)
{
SECStatus rv;
/* check for Token Presence */
if (!ssl3_ClientAuthTokenPresent(ss->sec.ci.sid)) {
PORT_SetError(SSL_ERROR_TOKEN_INSERTION_REMOVAL);
return SECFailure;
}
ssl_GetSSL3HandshakeLock(ss);
/* All the functions called in this switch MUST set error code if
** they return SECFailure.
*/
switch (rType) {
case ssl_ct_change_cipher_spec:
rv = ssl3_HandleChangeCipherSpecs(ss, databuf);
break;
case ssl_ct_alert:
rv = ssl3_HandleAlert(ss, databuf);
break;
case ssl_ct_handshake:
if (!IS_DTLS(ss)) {
rv = ssl3_HandleHandshake(ss, databuf);
} else {
rv = dtls_HandleHandshake(ss, epoch, seqNum, databuf);
}
break;
case ssl_ct_ack:
if (IS_DTLS(ss) && tls13_MaybeTls13(ss)) {
rv = dtls13_HandleAck(ss, databuf);
break;
}
/* Fall through. */
default:
SSL_DBG(("%d: SSL3[%d]: bogus content type=%d",
SSL_GETPID(), ss->fd, rType));
PORT_SetError(SSL_ERROR_RX_UNKNOWN_RECORD_TYPE);
ssl3_DecodeError(ss);
rv = SECFailure;
break;
}
ssl_ReleaseSSL3HandshakeLock(ss);
return rv;
}
/* Find the cipher spec to use for a given record. For TLS, this
* is the current cipherspec. For DTLS, we look up by epoch.
* In DTLS < 1.3 this just means the current epoch or nothing,
* but in DTLS >= 1.3, we keep multiple reading cipherspecs.
* Returns NULL if no appropriate cipher spec is found.
*/
static ssl3CipherSpec *
ssl3_GetCipherSpec(sslSocket *ss, SSL3Ciphertext *cText)
{
ssl3CipherSpec *crSpec = ss->ssl3.crSpec;
ssl3CipherSpec *newSpec = NULL;
DTLSEpoch epoch;
if (!IS_DTLS(ss)) {
return crSpec;
}
epoch = dtls_ReadEpoch(crSpec, cText->hdr);
if (crSpec->epoch == epoch) {
return crSpec;
}
if (ss->version >= SSL_LIBRARY_VERSION_TLS_1_3) {
/* Try to find the cipher spec. */
newSpec = ssl_FindCipherSpecByEpoch(ss, ssl_secret_read,
epoch);
if (newSpec != NULL) {
return newSpec;
}
}
SSL_TRC(10, ("%d: DTLS[%d]: Couldn't find cipherspec from epoch %d",
SSL_GETPID(), ss->fd, epoch));
return NULL;
}
/* MAX_EXPANSION is the amount by which a record might plausibly be expanded
* when protected. It's the worst case estimate, so the sum of block cipher
* padding (up to 256 octets), HMAC (48 octets for SHA-384), and IV (16
* octets for AES). */
#define MAX_EXPANSION (256 + 48 + 16)
/* if cText is non-null, then decipher and check the MAC of the
* SSL record from cText->buf (typically gs->inbuf)
* into databuf (typically gs->buf), and any previous contents of databuf
* is lost. Then handle databuf according to its SSL record type,
* unless it's an application record.
*
* If cText is NULL, then the ciphertext has previously been deciphered and
* checked, and is already sitting in databuf. It is processed as an SSL
* Handshake message.
*
* DOES NOT process the decrypted application data.
* On return, databuf contains the decrypted record.
*
* Called from ssl3_GatherCompleteHandshake
* ssl3_RestartHandshakeAfterCertReq
*
* Caller must hold the RecvBufLock.
*
* This function aquires and releases the SSL3Handshake Lock, holding the
* lock around any calls to functions that handle records other than
* Application Data records.
*/
SECStatus
ssl3_HandleRecord(sslSocket *ss, SSL3Ciphertext *cText)
{
SECStatus rv;
PRBool isTLS;
DTLSEpoch epoch;
ssl3CipherSpec *spec = NULL;
PRUint16 recordSizeLimit;
PRBool outOfOrderSpec = PR_FALSE;
SSLContentType rType;
sslBuffer *plaintext = &ss->gs.buf;
SSL3AlertDescription alert = internal_error;
PORT_Assert(ss->opt.noLocks || ssl_HaveRecvBufLock(ss));
/* check for Token Presence */
if (!ssl3_ClientAuthTokenPresent(ss->sec.ci.sid)) {
PORT_SetError(SSL_ERROR_TOKEN_INSERTION_REMOVAL);
return SECFailure;
}
/* Clear out the buffer in case this exits early. Any data then won't be
* processed twice. */
plaintext->len = 0;
/* We're waiting for another ClientHello, which will appear unencrypted.
* Use the content type to tell whether this should be discarded. */
if (ss->ssl3.hs.zeroRttIgnore == ssl_0rtt_ignore_hrr &&
cText->hdr[0] == ssl_ct_application_data) {
PORT_Assert(ss->ssl3.hs.ws == wait_client_hello);
return SECSuccess;
}
ssl_GetSpecReadLock(ss); /******************************************/
spec = ssl3_GetCipherSpec(ss, cText);
if (!spec) {
PORT_Assert(IS_DTLS(ss));
ssl_ReleaseSpecReadLock(ss); /*****************************/
return SECSuccess;
}
if (spec != ss->ssl3.crSpec) {
PORT_Assert(IS_DTLS(ss));
SSL_TRC(3, ("%d: DTLS[%d]: Handling out-of-epoch record from epoch=%d",
SSL_GETPID(), ss->fd, spec->epoch));
outOfOrderSpec = PR_TRUE;
}
isTLS = (PRBool)(spec->version > SSL_LIBRARY_VERSION_3_0);
if (IS_DTLS(ss)) {
if (dtls13_MaskSequenceNumber(ss, spec, cText->hdr,
SSL_BUFFER_BASE(cText->buf), SSL_BUFFER_LEN(cText->buf)) != SECSuccess) {
ssl_ReleaseSpecReadLock(ss); /*****************************/
/* code already set. */
return SECFailure;
}
if (!dtls_IsRelevant(ss, spec, cText, &cText->seqNum)) {
ssl_ReleaseSpecReadLock(ss); /*****************************/
return SECSuccess;
}
} else {
cText->seqNum = spec->nextSeqNum;
}
if (cText->seqNum >= spec->cipherDef->max_records) {
ssl_ReleaseSpecReadLock(ss); /*****************************/
SSL_TRC(3, ("%d: SSL[%d]: read sequence number at limit 0x%0llx",
SSL_GETPID(), ss->fd, cText->seqNum));
PORT_SetError(SSL_ERROR_TOO_MANY_RECORDS);
return SECFailure;
}
recordSizeLimit = spec->recordSizeLimit;
if (cText->buf->len > recordSizeLimit + MAX_EXPANSION) {
ssl_ReleaseSpecReadLock(ss); /*****************************/
SSL3_SendAlert(ss, alert_fatal, record_overflow);
PORT_SetError(SSL_ERROR_RX_RECORD_TOO_LONG);
return SECFailure;
}
if (plaintext->space < recordSizeLimit + MAX_EXPANSION) {
rv = sslBuffer_Grow(plaintext, recordSizeLimit + MAX_EXPANSION);
if (rv != SECSuccess) {
ssl_ReleaseSpecReadLock(ss); /*************************/
SSL_DBG(("%d: SSL3[%d]: HandleRecord, tried to get %d bytes",
SSL_GETPID(), ss->fd, recordSizeLimit + MAX_EXPANSION));
/* sslBuffer_Grow has set a memory error code. */
/* Perhaps we should send an alert. (but we have no memory!) */
return SECFailure;
}
}
/* Most record types aside from protected TLS 1.3 records carry the content
* type in the first octet. TLS 1.3 will override this value later. */
rType = cText->hdr[0];
/* Encrypted application data records could arrive before the handshake
* completes in DTLS 1.3. These can look like valid TLS 1.2 application_data
* records in epoch 0, which is never valid. Pretend they didn't decrypt. */
if (spec->epoch == 0 && ((IS_DTLS(ss) &&
dtls_IsDtls13Ciphertext(0, rType)) ||
rType == ssl_ct_application_data)) {
PORT_SetError(SSL_ERROR_RX_UNEXPECTED_APPLICATION_DATA);
alert = unexpected_message;
rv = SECFailure;
} else {
#ifdef UNSAFE_FUZZER_MODE
rv = Null_Cipher(NULL, plaintext->buf, &plaintext->len,
plaintext->space, cText->buf->buf, cText->buf->len);
#else
/* IMPORTANT: Unprotect functions MUST NOT send alerts
* because we still hold the spec read lock. Instead, if they
* return SECFailure, they set *alert to the alert to be sent. */
if (spec->version < SSL_LIBRARY_VERSION_TLS_1_3 ||
spec->epoch == 0) {
rv = ssl3_UnprotectRecord(ss, spec, cText, plaintext, &alert);
} else {
rv = tls13_UnprotectRecord(ss, spec, cText, plaintext, &rType,
&alert);
}
#endif
}
if (rv != SECSuccess) {
ssl_ReleaseSpecReadLock(ss); /***************************/
SSL_DBG(("%d: SSL3[%d]: decryption failed", SSL_GETPID(), ss->fd));
/* Ensure that we don't process this data again. */
plaintext->len = 0;
/* Ignore a CCS if compatibility mode is negotiated. Note that this
* will fail if the server fails to negotiate compatibility mode in a
* 0-RTT session that is resumed from a session that did negotiate it.
* We don't care about that corner case right now. */
if (ss->version >= SSL_LIBRARY_VERSION_TLS_1_3 &&
cText->hdr[0] == ssl_ct_change_cipher_spec &&
ss->ssl3.hs.ws != idle_handshake &&
cText->buf->len == 1 &&
cText->buf->buf[0] == change_cipher_spec_choice) {
if (!ss->ssl3.hs.rejectCcs) {
/* Allow only the first CCS. */
ss->ssl3.hs.rejectCcs = PR_TRUE;
return SECSuccess;
} else {
alert = unexpected_message;
PORT_SetError(SSL_ERROR_RX_MALFORMED_CHANGE_CIPHER);
}
}
if ((IS_DTLS(ss) && !dtls13_AeadLimitReached(spec)) ||
(!IS_DTLS(ss) && ss->sec.isServer &&
ss->ssl3.hs.zeroRttIgnore == ssl_0rtt_ignore_trial)) {
/* Silently drop the packet unless we sent a fatal alert. */
if (ss->ssl3.fatalAlertSent) {
return SECFailure;
}
return SECSuccess;
}
int errCode = PORT_GetError();
SSL3_SendAlert(ss, alert_fatal, alert);
/* Reset the error code in case SSL3_SendAlert called
* PORT_SetError(). */
PORT_SetError(errCode);
return SECFailure;
}
/* SECSuccess */
if (IS_DTLS(ss)) {
dtls_RecordSetRecvd(&spec->recvdRecords, cText->seqNum);
spec->nextSeqNum = PR_MAX(spec->nextSeqNum, cText->seqNum + 1);
} else {
++spec->nextSeqNum;
}
epoch = spec->epoch;
ssl_ReleaseSpecReadLock(ss); /*****************************************/
/*
* The decrypted data is now in plaintext.
*/
/* IMPORTANT: We are in DTLS 1.3 mode and we have processed something
* from the wrong epoch. Divert to a divert processing function to make
* sure we don't accidentally use the data unsafely. */
if (outOfOrderSpec) {
PORT_Assert(IS_DTLS(ss) && ss->version >= SSL_LIBRARY_VERSION_TLS_1_3);
return dtls13_HandleOutOfEpochRecord(ss, spec, rType, plaintext);
}
/* Check the length of the plaintext. */
if (isTLS && plaintext->len > recordSizeLimit) {
plaintext->len = 0;
SSL3_SendAlert(ss, alert_fatal, record_overflow);
PORT_SetError(SSL_ERROR_RX_RECORD_TOO_LONG);
return SECFailure;
}
/* Application data records are processed by the caller of this
** function, not by this function.
*/
if (rType == ssl_ct_application_data) {
if (ss->firstHsDone)
return SECSuccess;
if (ss->version >= SSL_LIBRARY_VERSION_TLS_1_3 &&
ss->sec.isServer &&
ss->ssl3.hs.zeroRttState == ssl_0rtt_accepted) {
return tls13_HandleEarlyApplicationData(ss, plaintext);
}
plaintext->len = 0;
(void)SSL3_SendAlert(ss, alert_fatal, unexpected_message);
PORT_SetError(SSL_ERROR_RX_UNEXPECTED_APPLICATION_DATA);
return SECFailure;
}
return ssl3_HandleNonApplicationData(ss, rType, epoch, cText->seqNum,
plaintext);
}
/*
* Initialization functions
*/
void
ssl_InitSecState(sslSecurityInfo *sec)
{
sec->authType = ssl_auth_null;
sec->authKeyBits = 0;
sec->signatureScheme = ssl_sig_none;
sec->keaType = ssl_kea_null;
sec->keaKeyBits = 0;
sec->keaGroup = NULL;
}
SECStatus
ssl3_InitState(sslSocket *ss)
{
SECStatus rv;
ss->ssl3.policy = SSL_ALLOWED;
ssl_InitSecState(&ss->sec);
ssl_GetSpecWriteLock(ss);
PR_INIT_CLIST(&ss->ssl3.hs.cipherSpecs);
rv = ssl_SetupNullCipherSpec(ss, ssl_secret_read);
rv |= ssl_SetupNullCipherSpec(ss, ssl_secret_write);
ss->ssl3.pwSpec = ss->ssl3.prSpec = NULL;
ssl_ReleaseSpecWriteLock(ss);
if (rv != SECSuccess) {
/* Rely on ssl_CreateNullCipherSpec() to set error code. */
return SECFailure;
}
ss->ssl3.hs.sendingSCSV = PR_FALSE;
ss->ssl3.hs.preliminaryInfo = 0;
ss->ssl3.hs.ws = (ss->sec.isServer) ? wait_client_hello : idle_handshake;
ssl3_ResetExtensionData(&ss->xtnData, ss);
PR_INIT_CLIST(&ss->ssl3.hs.remoteExtensions);
PR_INIT_CLIST(&ss->ssl3.hs.echOuterExtensions);
if (IS_DTLS(ss)) {
ss->ssl3.hs.sendMessageSeq = 0;
ss->ssl3.hs.recvMessageSeq = 0;
ss->ssl3.hs.rtTimer->timeout = DTLS_RETRANSMIT_INITIAL_MS;
ss->ssl3.hs.rtRetries = 0;
ss->ssl3.hs.recvdHighWater = -1;
PR_INIT_CLIST(&ss->ssl3.hs.lastMessageFlight);
dtls_SetMTU(ss, 0); /* Set the MTU to the highest plateau */
}
ss->ssl3.hs.currentSecret = NULL;
ss->ssl3.hs.resumptionMasterSecret = NULL;
ss->ssl3.hs.dheSecret = NULL;
ss->ssl3.hs.clientEarlyTrafficSecret = NULL;
ss->ssl3.hs.clientHsTrafficSecret = NULL;
ss->ssl3.hs.serverHsTrafficSecret = NULL;
ss->ssl3.hs.clientTrafficSecret = NULL;
ss->ssl3.hs.serverTrafficSecret = NULL;
ss->ssl3.hs.echHpkeCtx = NULL;
ss->ssl3.hs.echAccepted = PR_FALSE;
PORT_Assert(!ss->ssl3.hs.messages.buf && !ss->ssl3.hs.messages.space);
ss->ssl3.hs.messages.buf = NULL;
ss->ssl3.hs.messages.space = 0;
ss->ssl3.hs.receivedNewSessionTicket = PR_FALSE;
PORT_Memset(&ss->ssl3.hs.newSessionTicket, 0,
sizeof(ss->ssl3.hs.newSessionTicket));
ss->ssl3.hs.zeroRttState = ssl_0rtt_none;
return SECSuccess;
}
/* record the export policy for this cipher suite */
SECStatus
ssl3_SetPolicy(ssl3CipherSuite which, int policy)
{
ssl3CipherSuiteCfg *suite;
suite = ssl_LookupCipherSuiteCfgMutable(which, cipherSuites);
if (suite == NULL) {
return SECFailure; /* err code was set by ssl_LookupCipherSuiteCfg */
}
suite->policy = policy;
return SECSuccess;
}
SECStatus
ssl3_GetPolicy(ssl3CipherSuite which, PRInt32 *oPolicy)
{
const ssl3CipherSuiteCfg *suite;
PRInt32 policy;
SECStatus rv;
suite = ssl_LookupCipherSuiteCfg(which, cipherSuites);
if (suite) {
policy = suite->policy;
rv = SECSuccess;
} else {
policy = SSL_NOT_ALLOWED;
rv = SECFailure; /* err code was set by Lookup. */
}
*oPolicy = policy;
return rv;
}
/* record the user preference for this suite */
SECStatus
ssl3_CipherPrefSetDefault(ssl3CipherSuite which, PRBool enabled)
{
ssl3CipherSuiteCfg *suite;
suite = ssl_LookupCipherSuiteCfgMutable(which, cipherSuites);
if (suite == NULL) {
return SECFailure; /* err code was set by ssl_LookupCipherSuiteCfg */
}
suite->enabled = enabled;
return SECSuccess;
}
/* return the user preference for this suite */
SECStatus
ssl3_CipherPrefGetDefault(ssl3CipherSuite which, PRBool *enabled)
{
const ssl3CipherSuiteCfg *suite;
PRBool pref;
SECStatus rv;
suite = ssl_LookupCipherSuiteCfg(which, cipherSuites);
if (suite) {
pref = suite->enabled;
rv = SECSuccess;
} else {
pref = SSL_NOT_ALLOWED;
rv = SECFailure; /* err code was set by Lookup. */
}
*enabled = pref;
return rv;
}
SECStatus
ssl3_CipherPrefSet(sslSocket *ss, ssl3CipherSuite which, PRBool enabled)
{
ssl3CipherSuiteCfg *suite;
suite = ssl_LookupCipherSuiteCfgMutable(which, ss->cipherSuites);
if (suite == NULL) {
return SECFailure; /* err code was set by ssl_LookupCipherSuiteCfg */
}
suite->enabled = enabled;
return SECSuccess;
}
SECStatus
ssl3_CipherPrefGet(const sslSocket *ss, ssl3CipherSuite which, PRBool *enabled)
{
const ssl3CipherSuiteCfg *suite;
PRBool pref;
SECStatus rv;
suite = ssl_LookupCipherSuiteCfg(which, ss->cipherSuites);
if (suite) {
pref = suite->enabled;
rv = SECSuccess;
} else {
pref = SSL_NOT_ALLOWED;
rv = SECFailure; /* err code was set by Lookup. */
}
*enabled = pref;
return rv;
}
SECStatus
SSL_SignatureSchemePrefSet(PRFileDesc *fd, const SSLSignatureScheme *schemes,
unsigned int count)
{
sslSocket *ss;
unsigned int i;
unsigned int supported = 0;
ss = ssl_FindSocket(fd);
if (!ss) {
SSL_DBG(("%d: SSL[%d]: bad socket in SSL_SignatureSchemePrefSet",
SSL_GETPID(), fd));
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
if (!count) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
for (i = 0; i < count; ++i) {
if (ssl_IsSupportedSignatureScheme(schemes[i])) {
++supported;
}
}
/* We don't check for duplicates, so it's possible to get too many. */
if (supported > MAX_SIGNATURE_SCHEMES) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
ss->ssl3.signatureSchemeCount = 0;
for (i = 0; i < count; ++i) {
if (!ssl_IsSupportedSignatureScheme(schemes[i])) {
SSL_DBG(("%d: SSL[%d]: invalid signature scheme %d ignored",
SSL_GETPID(), fd, schemes[i]));
continue;
}
ss->ssl3.signatureSchemes[ss->ssl3.signatureSchemeCount++] = schemes[i];
}
if (ss->ssl3.signatureSchemeCount == 0) {
PORT_SetError(SSL_ERROR_NO_SUPPORTED_SIGNATURE_ALGORITHM);
return SECFailure;
}
return SECSuccess;
}
SECStatus
SSL_SignaturePrefSet(PRFileDesc *fd, const SSLSignatureAndHashAlg *algorithms,
unsigned int count)
{
SSLSignatureScheme schemes[MAX_SIGNATURE_SCHEMES];
unsigned int i;
count = PR_MIN(PR_ARRAY_SIZE(schemes), count);
for (i = 0; i < count; ++i) {
schemes[i] = (algorithms[i].hashAlg << 8) | algorithms[i].sigAlg;
}
return SSL_SignatureSchemePrefSet(fd, schemes, count);
}
SECStatus
SSL_SignatureSchemePrefGet(PRFileDesc *fd, SSLSignatureScheme *schemes,
unsigned int *count, unsigned int maxCount)
{
sslSocket *ss;
ss = ssl_FindSocket(fd);
if (!ss) {
SSL_DBG(("%d: SSL[%d]: bad socket in SSL_SignatureSchemePrefGet",
SSL_GETPID(), fd));
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
if (!schemes || !count ||
maxCount < ss->ssl3.signatureSchemeCount) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
PORT_Memcpy(schemes, ss->ssl3.signatureSchemes,
ss->ssl3.signatureSchemeCount * sizeof(SSLSignatureScheme));
*count = ss->ssl3.signatureSchemeCount;
return SECSuccess;
}
SECStatus
SSL_SignaturePrefGet(PRFileDesc *fd, SSLSignatureAndHashAlg *algorithms,
unsigned int *count, unsigned int maxCount)
{
sslSocket *ss;
unsigned int i;
ss = ssl_FindSocket(fd);
if (!ss) {
SSL_DBG(("%d: SSL[%d]: bad socket in SSL_SignaturePrefGet",
SSL_GETPID(), fd));
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
if (!algorithms || !count ||
maxCount < ss->ssl3.signatureSchemeCount) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
for (i = 0; i < ss->ssl3.signatureSchemeCount; ++i) {
algorithms[i].hashAlg = (ss->ssl3.signatureSchemes[i] >> 8) & 0xff;
algorithms[i].sigAlg = ss->ssl3.signatureSchemes[i] & 0xff;
}
*count = ss->ssl3.signatureSchemeCount;
return SECSuccess;
}
unsigned int
SSL_SignatureMaxCount(void)
{
return MAX_SIGNATURE_SCHEMES;
}
/* copy global default policy into socket. */
void
ssl3_InitSocketPolicy(sslSocket *ss)
{
PORT_Memcpy(ss->cipherSuites, cipherSuites, sizeof(cipherSuites));
PORT_Memcpy(ss->ssl3.signatureSchemes, defaultSignatureSchemes,
sizeof(defaultSignatureSchemes));
ss->ssl3.signatureSchemeCount = PR_ARRAY_SIZE(defaultSignatureSchemes);
}
/*
** If ssl3 socket has completed the first handshake, and is in idle state,
** then start a new handshake.
** If flushCache is true, the SID cache will be flushed first, forcing a
** "Full" handshake (not a session restart handshake), to be done.
**
** called from SSL_RedoHandshake(), which already holds the handshake locks.
*/
SECStatus
ssl3_RedoHandshake(sslSocket *ss, PRBool flushCache)
{
sslSessionID *sid = ss->sec.ci.sid;
SECStatus rv;
PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss));
if (!ss->firstHsDone || (ss->ssl3.hs.ws != idle_handshake)) {
PORT_SetError(SSL_ERROR_HANDSHAKE_NOT_COMPLETED);
return SECFailure;
}
if (IS_DTLS(ss)) {
dtls_RehandshakeCleanup(ss);
}
if (ss->opt.enableRenegotiation == SSL_RENEGOTIATE_NEVER ||
ss->version >= SSL_LIBRARY_VERSION_TLS_1_3) {
PORT_SetError(SSL_ERROR_RENEGOTIATION_NOT_ALLOWED);
return SECFailure;
}
if (ss->version > ss->vrange.max || ss->version < ss->vrange.min) {
PORT_SetError(SSL_ERROR_UNSUPPORTED_VERSION);
return SECFailure;
}
if (sid && flushCache) {
ssl_UncacheSessionID(ss); /* remove it from whichever cache it's in. */
ssl_FreeSID(sid); /* dec ref count and free if zero. */
ss->sec.ci.sid = NULL;
}
ssl_GetXmitBufLock(ss); /**************************************/
/* start off a new handshake. */
if (ss->sec.isServer) {
rv = ssl3_SendHelloRequest(ss);
} else {
rv = ssl3_SendClientHello(ss, client_hello_renegotiation);
}
ssl_ReleaseXmitBufLock(ss); /**************************************/
return rv;
}
/* Called from ssl_DestroySocketContents() in sslsock.c */
void
ssl3_DestroySSL3Info(sslSocket *ss)
{
if (ss->ssl3.clientCertificate != NULL)
CERT_DestroyCertificate(ss->ssl3.clientCertificate);
if (ss->ssl3.clientPrivateKey != NULL)
SECKEY_DestroyPrivateKey(ss->ssl3.clientPrivateKey);
if (ss->ssl3.peerCertArena != NULL)
ssl3_CleanupPeerCerts(ss);
if (ss->ssl3.clientCertChain != NULL) {
CERT_DestroyCertificateList(ss->ssl3.clientCertChain);
ss->ssl3.clientCertChain = NULL;
}
if (ss->ssl3.ca_list) {
CERT_FreeDistNames(ss->ssl3.ca_list);
}
/* clean up handshake */
if (ss->ssl3.hs.md5) {
PK11_DestroyContext(ss->ssl3.hs.md5, PR_TRUE);
}
if (ss->ssl3.hs.sha) {
PK11_DestroyContext(ss->ssl3.hs.sha, PR_TRUE);
}
if (ss->ssl3.hs.shaEchInner) {
PK11_DestroyContext(ss->ssl3.hs.shaEchInner, PR_TRUE);
}
if (ss->ssl3.hs.shaPostHandshake) {
PK11_DestroyContext(ss->ssl3.hs.shaPostHandshake, PR_TRUE);
}
if (ss->ssl3.hs.messages.buf) {
sslBuffer_Clear(&ss->ssl3.hs.messages);
}
if (ss->ssl3.hs.echInnerMessages.buf) {
sslBuffer_Clear(&ss->ssl3.hs.echInnerMessages);
}
/* free the SSL3Buffer (msg_body) */
PORT_Free(ss->ssl3.hs.msg_body.buf);
SECITEM_FreeItem(&ss->ssl3.hs.newSessionTicket.ticket, PR_FALSE);
SECITEM_FreeItem(&ss->ssl3.hs.srvVirtName, PR_FALSE);
SECITEM_FreeItem(&ss->ssl3.hs.fakeSid, PR_FALSE);
/* Destroy the DTLS data */
if (IS_DTLS(ss)) {
dtls_FreeHandshakeMessages(&ss->ssl3.hs.lastMessageFlight);
if (ss->ssl3.hs.recvdFragments.buf) {
PORT_Free(ss->ssl3.hs.recvdFragments.buf);
}
}
/* Destroy remote extensions */
ssl3_DestroyRemoteExtensions(&ss->ssl3.hs.remoteExtensions);
ssl3_DestroyRemoteExtensions(&ss->ssl3.hs.echOuterExtensions);
ssl3_DestroyExtensionData(&ss->xtnData);
/* Destroy cipher specs */
ssl_DestroyCipherSpecs(&ss->ssl3.hs.cipherSpecs);
/* Destroy TLS 1.3 keys */
if (ss->ssl3.hs.currentSecret)
PK11_FreeSymKey(ss->ssl3.hs.currentSecret);
if (ss->ssl3.hs.resumptionMasterSecret)
PK11_FreeSymKey(ss->ssl3.hs.resumptionMasterSecret);
if (ss->ssl3.hs.dheSecret)
PK11_FreeSymKey(ss->ssl3.hs.dheSecret);
if (ss->ssl3.hs.clientEarlyTrafficSecret)
PK11_FreeSymKey(ss->ssl3.hs.clientEarlyTrafficSecret);
if (ss->ssl3.hs.clientHsTrafficSecret)
PK11_FreeSymKey(ss->ssl3.hs.clientHsTrafficSecret);
if (ss->ssl3.hs.serverHsTrafficSecret)
PK11_FreeSymKey(ss->ssl3.hs.serverHsTrafficSecret);
if (ss->ssl3.hs.clientTrafficSecret)
PK11_FreeSymKey(ss->ssl3.hs.clientTrafficSecret);
if (ss->ssl3.hs.serverTrafficSecret)
PK11_FreeSymKey(ss->ssl3.hs.serverTrafficSecret);
if (ss->ssl3.hs.earlyExporterSecret)
PK11_FreeSymKey(ss->ssl3.hs.earlyExporterSecret);
if (ss->ssl3.hs.exporterSecret)
PK11_FreeSymKey(ss->ssl3.hs.exporterSecret);
ss->ssl3.hs.zeroRttState = ssl_0rtt_none;
/* Destroy TLS 1.3 buffered early data. */
tls13_DestroyEarlyData(&ss->ssl3.hs.bufferedEarlyData);
/* Destroy TLS 1.3 PSKs. */
tls13_DestroyPskList(&ss->ssl3.hs.psks);
/* TLS 1.3 ECH state. */
PK11_HPKE_DestroyContext(ss->ssl3.hs.echHpkeCtx, PR_TRUE);
PORT_Free((void *)ss->ssl3.hs.echPublicName); /* CONST */
sslBuffer_Clear(&ss->ssl3.hs.greaseEchBuf);
}
/* check if the current cipher spec is FIPS. We only need to
* check the contexts here, if the kea, prf or keys were not FIPS,
* that status would have been rolled up in the create context
* call */
static PRBool
ssl_cipherSpecIsFips(ssl3CipherSpec *spec)
{
if (!spec || !spec->cipherDef) {
return PR_FALSE;
}
if (spec->cipherDef->type != type_aead) {
if (spec->keyMaterial.macContext == NULL) {
return PR_FALSE;
}
if (!PK11_ContextGetFIPSStatus(spec->keyMaterial.macContext)) {
return PR_FALSE;
}
}
if (!spec->cipherContext) {
return PR_FALSE;
}
return PK11_ContextGetFIPSStatus(spec->cipherContext);
}
/* return true if the current operation is running in FIPS mode */
PRBool
ssl_isFIPS(sslSocket *ss)
{
if (!ssl_cipherSpecIsFips(ss->ssl3.crSpec)) {
return PR_FALSE;
}
return ssl_cipherSpecIsFips(ss->ssl3.cwSpec);
}
/*
* parse the policy value for a single algorithm in a cipher_suite,
* return TRUE if we disallow by the cipher suite by policy
* (we don't have to parse any more algorithm policies on this cipher suite),
* otherwise return FALSE.
* 1. If we don't have the required policy, disable by default, disallow by
* policy and return TRUE (no more processing needed).
* 2. If we have the required policy, and we are disabled, return FALSE,
* (if we are disabled, we only need to parse policy, not default).
* 3. If we have the required policy, and we aren't adjusting the defaults
* return FALSE. (only parsing the policy, not default).
* 4. We have the required policy and we are adjusting the defaults.
* If we are setting default = FALSE, set isDisabled to true so that
* we don't try to re-enable the cipher suite based on a different
* algorithm.
*/
PRBool
ssl_HandlePolicy(int cipher_suite, SECOidTag policyOid,
PRUint32 requiredPolicy, PRBool *isDisabled)
{
PRUint32 policy;
SECStatus rv;
/* first fetch the policy for this algorithm */
rv = NSS_GetAlgorithmPolicy(policyOid, &policy);
if (rv != SECSuccess) {
return PR_FALSE; /* no policy value, continue to the next algorithm */
}
/* first, are we allowed by policy, if not turn off allow and disable */
if (!(policy & requiredPolicy)) {
ssl_CipherPrefSetDefault(cipher_suite, PR_FALSE);
ssl_CipherPolicySet(cipher_suite, SSL_NOT_ALLOWED);
return PR_TRUE;
}
/* If we are already disabled, or the policy isn't setting a default
* we are done processing this algorithm */
if (*isDisabled || (policy & NSS_USE_DEFAULT_NOT_VALID)) {
return PR_FALSE;
}
/* set the default value for the cipher suite. If we disable the cipher
* suite, remember that so we don't process the next default. This has
* the effect of disabling the whole cipher suite if any of the
* algorithms it uses are disabled by default. We still have to
* process the upper level because the cipher suite is still allowed
* by policy, and we may still have to disallow it based on other
* algorithms in the cipher suite. */
if (policy & NSS_USE_DEFAULT_SSL_ENABLE) {
ssl_CipherPrefSetDefault(cipher_suite, PR_TRUE);
} else {
*isDisabled = PR_TRUE;
ssl_CipherPrefSetDefault(cipher_suite, PR_FALSE);
}
return PR_FALSE;
}
#define MAP_NULL(x) (((x) != 0) ? (x) : SEC_OID_NULL_CIPHER)
SECStatus
ssl3_ApplyNSSPolicy(void)
{
unsigned i;
SECStatus rv;
PRUint32 policy = 0;
rv = NSS_GetAlgorithmPolicy(SEC_OID_APPLY_SSL_POLICY, &policy);
if (rv != SECSuccess || !(policy & NSS_USE_POLICY_IN_SSL)) {
return SECSuccess; /* do nothing */
}
/* disable every ciphersuite */
for (i = 1; i < PR_ARRAY_SIZE(cipher_suite_defs); ++i) {
const ssl3CipherSuiteDef *suite = &cipher_suite_defs[i];
SECOidTag policyOid;
PRBool isDisabled = PR_FALSE;
/* if we haven't explicitly disabled it below enable by policy */
ssl_CipherPolicySet(suite->cipher_suite, SSL_ALLOWED);
/* now check the various key exchange, ciphers and macs and
* if we ever disallow by policy, we are done, go to the next cipher
*/
policyOid = MAP_NULL(kea_defs[suite->key_exchange_alg].oid);
if (ssl_HandlePolicy(suite->cipher_suite, policyOid,
NSS_USE_ALG_IN_SSL_KX, &isDisabled)) {
continue;
}
policyOid = MAP_NULL(ssl_GetBulkCipherDef(suite)->oid);
if (ssl_HandlePolicy(suite->cipher_suite, policyOid,
NSS_USE_ALG_IN_SSL, &isDisabled)) {
continue;
}
if (ssl_GetBulkCipherDef(suite)->type != type_aead) {
policyOid = MAP_NULL(ssl_GetMacDefByAlg(suite->mac_alg)->oid);
if (ssl_HandlePolicy(suite->cipher_suite, policyOid,
NSS_USE_ALG_IN_SSL, &isDisabled)) {
continue;
}
}
}
rv = ssl3_ConstrainRangeByPolicy();
return rv;
}
/* End of ssl3con.c */