blob: e171532850b90b6e721df5d782b394ea952961ca [file] [log] [blame]
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "enctool.h"
#include "argparse.h"
#include "util.h"
#include "nss.h"
#include <assert.h>
#include <chrono>
#include <fstream>
#include <iomanip>
#include <iostream>
void EncTool::PrintError(const std::string& m, size_t line_number) {
std::cerr << m << " - enctool.cc:" << line_number << std::endl;
}
void EncTool::PrintError(const std::string& m, PRErrorCode err,
size_t line_number) {
std::cerr << m << " (error " << err << ")"
<< " - enctool.cc:" << line_number << std::endl;
}
void EncTool::PrintBytes(const std::vector<uint8_t>& bytes,
const std::string& txt) {
if (debug_) {
std::cerr << txt << ": ";
for (uint8_t b : bytes) {
std::cerr << std::setfill('0') << std::setw(2) << std::hex
<< static_cast<int>(b);
}
std::cerr << std::endl << std::dec;
}
}
std::vector<uint8_t> EncTool::GenerateRandomness(size_t num_bytes) {
std::vector<uint8_t> bytes(num_bytes);
if (PK11_GenerateRandom(bytes.data(), num_bytes) != SECSuccess) {
PrintError("No randomness available. Abort!", __LINE__);
exit(1);
}
return bytes;
}
bool EncTool::WriteBytes(const std::vector<uint8_t>& bytes,
std::string out_file) {
std::fstream output(out_file, std::ios::out | std::ios::binary);
if (!output.good()) {
return false;
}
output.write(reinterpret_cast<const char*>(
const_cast<const unsigned char*>(bytes.data())),
bytes.size());
output.flush();
output.close();
return true;
}
bool EncTool::GetKey(const std::vector<uint8_t>& key_bytes,
ScopedSECItem& key_item) {
if (key_bytes.empty()) {
return false;
}
// Build key.
key_item =
ScopedSECItem(SECITEM_AllocItem(nullptr, nullptr, key_bytes.size()));
if (!key_item) {
return false;
}
key_item->type = siBuffer;
memcpy(key_item->data, key_bytes.data(), key_bytes.size());
key_item->len = key_bytes.size();
return true;
}
bool EncTool::GetAesGcmKey(const std::vector<uint8_t>& aad,
const std::vector<uint8_t>& iv_bytes,
const std::vector<uint8_t>& key_bytes,
ScopedSECItem& aes_key, ScopedSECItem& params) {
if (iv_bytes.empty()) {
return false;
}
// GCM params.
CK_NSS_GCM_PARAMS* gcm_params = static_cast<CK_NSS_GCM_PARAMS*>(
PORT_Malloc(sizeof(struct CK_NSS_GCM_PARAMS)));
if (!gcm_params) {
return false;
}
uint8_t* iv = static_cast<uint8_t*>(PORT_Malloc(iv_bytes.size()));
if (!iv) {
return false;
}
memcpy(iv, iv_bytes.data(), iv_bytes.size());
gcm_params->pIv = iv;
gcm_params->ulIvLen = iv_bytes.size();
gcm_params->ulTagBits = 128;
if (aad.empty()) {
gcm_params->pAAD = nullptr;
gcm_params->ulAADLen = 0;
} else {
uint8_t* ad = static_cast<uint8_t*>(PORT_Malloc(aad.size()));
if (!ad) {
return false;
}
memcpy(ad, aad.data(), aad.size());
gcm_params->pAAD = ad;
gcm_params->ulAADLen = aad.size();
}
params =
ScopedSECItem(SECITEM_AllocItem(nullptr, nullptr, sizeof(*gcm_params)));
if (!params) {
return false;
}
params->len = sizeof(*gcm_params);
params->type = siBuffer;
params->data = reinterpret_cast<unsigned char*>(gcm_params);
return GetKey(key_bytes, aes_key);
}
bool EncTool::GenerateAesGcmKey(const std::vector<uint8_t>& aad,
ScopedSECItem& aes_key, ScopedSECItem& params) {
size_t key_size = 16, iv_size = 12;
std::vector<uint8_t> iv_bytes = GenerateRandomness(iv_size);
PrintBytes(iv_bytes, "IV");
std::vector<uint8_t> key_bytes = GenerateRandomness(key_size);
PrintBytes(key_bytes, "key");
// Maybe write out the key and parameters.
if (write_key_ && !WriteBytes(key_bytes, key_file_)) {
return false;
}
if (write_iv_ && !WriteBytes(iv_bytes, iv_file_)) {
return false;
}
return GetAesGcmKey(aad, iv_bytes, key_bytes, aes_key, params);
}
bool EncTool::ReadAesGcmKey(const std::vector<uint8_t>& aad,
ScopedSECItem& aes_key, ScopedSECItem& params) {
std::vector<uint8_t> iv_bytes = ReadInputData(iv_file_);
PrintBytes(iv_bytes, "IV");
std::vector<uint8_t> key_bytes = ReadInputData(key_file_);
PrintBytes(key_bytes, "key");
return GetAesGcmKey(aad, iv_bytes, key_bytes, aes_key, params);
}
bool EncTool::GetChachaKey(const std::vector<uint8_t>& aad,
const std::vector<uint8_t>& iv_bytes,
const std::vector<uint8_t>& key_bytes,
ScopedSECItem& chacha_key, ScopedSECItem& params) {
if (iv_bytes.empty()) {
return false;
}
// AEAD params.
CK_NSS_AEAD_PARAMS* aead_params = static_cast<CK_NSS_AEAD_PARAMS*>(
PORT_Malloc(sizeof(struct CK_NSS_AEAD_PARAMS)));
if (!aead_params) {
return false;
}
uint8_t* iv = static_cast<uint8_t*>(PORT_Malloc(iv_bytes.size()));
if (!iv) {
return false;
}
memcpy(iv, iv_bytes.data(), iv_bytes.size());
aead_params->pNonce = iv;
aead_params->ulNonceLen = iv_bytes.size();
aead_params->ulTagLen = 16;
if (aad.empty()) {
aead_params->pAAD = nullptr;
aead_params->ulAADLen = 0;
} else {
uint8_t* ad = static_cast<uint8_t*>(PORT_Malloc(aad.size()));
if (!ad) {
return false;
}
memcpy(ad, aad.data(), aad.size());
aead_params->pAAD = ad;
aead_params->ulAADLen = aad.size();
}
params =
ScopedSECItem(SECITEM_AllocItem(nullptr, nullptr, sizeof(*aead_params)));
if (!params) {
return false;
}
params->len = sizeof(*aead_params);
params->type = siBuffer;
params->data = reinterpret_cast<unsigned char*>(aead_params);
return GetKey(key_bytes, chacha_key);
}
bool EncTool::GenerateChachaKey(const std::vector<uint8_t>& aad,
ScopedSECItem& chacha_key,
ScopedSECItem& params) {
size_t key_size = 32, iv_size = 12;
std::vector<uint8_t> iv_bytes = GenerateRandomness(iv_size);
PrintBytes(iv_bytes, "IV");
std::vector<uint8_t> key_bytes = GenerateRandomness(key_size);
PrintBytes(key_bytes, "key");
// Maybe write out the key and parameters.
if (write_key_ && !WriteBytes(key_bytes, key_file_)) {
return false;
}
if (write_iv_ && !WriteBytes(iv_bytes, iv_file_)) {
return false;
}
return GetChachaKey(aad, iv_bytes, key_bytes, chacha_key, params);
}
bool EncTool::ReadChachaKey(const std::vector<uint8_t>& aad,
ScopedSECItem& chacha_key, ScopedSECItem& params) {
std::vector<uint8_t> iv_bytes = ReadInputData(iv_file_);
PrintBytes(iv_bytes, "IV");
std::vector<uint8_t> key_bytes = ReadInputData(key_file_);
PrintBytes(key_bytes, "key");
return GetChachaKey(aad, iv_bytes, key_bytes, chacha_key, params);
}
bool EncTool::DoCipher(std::string file_name, std::string out_file,
bool encrypt, key_func_t get_params) {
SECStatus rv;
unsigned int outLen = 0, chunkSize = 1024;
char buffer[1040];
const unsigned char* bufferStart =
reinterpret_cast<const unsigned char*>(buffer);
ScopedPK11SlotInfo slot(PK11_GetInternalSlot());
if (!slot) {
PrintError("Unable to find security device", PR_GetError(), __LINE__);
return false;
}
ScopedSECItem key, params;
if (!(this->*get_params)(std::vector<uint8_t>(), key, params)) {
PrintError("Geting keys and params failed.", __LINE__);
return false;
}
ScopedPK11SymKey symKey(
PK11_ImportSymKey(slot.get(), cipher_mech_, PK11_OriginUnwrap,
CKA_DECRYPT | CKA_ENCRYPT, key.get(), nullptr));
if (!symKey) {
PrintError("Failure to import key into NSS", PR_GetError(), __LINE__);
return false;
}
std::streambuf* buf;
std::ofstream output_file(out_file, std::ios::out | std::ios::binary);
if (!out_file.empty()) {
if (!output_file.good()) {
return false;
}
buf = output_file.rdbuf();
} else {
buf = std::cout.rdbuf();
}
std::ostream output(buf);
// Read from stdin.
if (file_name.empty()) {
std::vector<uint8_t> data = ReadInputData("");
std::vector<uint8_t> out(data.size() + 16);
if (encrypt) {
rv = PK11_Encrypt(symKey.get(), cipher_mech_, params.get(), out.data(),
&outLen, data.size() + 16, data.data(), data.size());
} else {
rv = PK11_Decrypt(symKey.get(), cipher_mech_, params.get(), out.data(),
&outLen, data.size() + 16, data.data(), data.size());
}
if (rv != SECSuccess) {
PrintError(encrypt ? "Error encrypting" : "Error decrypting",
PR_GetError(), __LINE__);
return false;
};
output.write(reinterpret_cast<char*>(out.data()), outLen);
output.flush();
if (output_file.good()) {
output_file.close();
} else {
output << std::endl;
}
std::cerr << "Done " << (encrypt ? "encrypting" : "decrypting")
<< std::endl;
return true;
}
// Read file from file_name.
std::ifstream input(file_name, std::ios::binary);
if (!input.good()) {
return false;
}
uint8_t out[1040];
while (input) {
if (encrypt) {
input.read(buffer, chunkSize);
rv = PK11_Encrypt(symKey.get(), cipher_mech_, params.get(), out, &outLen,
chunkSize + 16, bufferStart, input.gcount());
} else {
// We have to read the tag when decrypting.
input.read(buffer, chunkSize + 16);
rv = PK11_Decrypt(symKey.get(), cipher_mech_, params.get(), out, &outLen,
chunkSize + 16, bufferStart, input.gcount());
}
if (rv != SECSuccess) {
PrintError(encrypt ? "Error encrypting" : "Error decrypting",
PR_GetError(), __LINE__);
return false;
};
output.write(reinterpret_cast<const char*>(out), outLen);
output.flush();
}
if (output_file.good()) {
output_file.close();
} else {
output << std::endl;
}
std::cerr << "Done " << (encrypt ? "encrypting" : "decrypting") << std::endl;
return true;
}
size_t EncTool::PrintFileSize(std::string file_name) {
std::ifstream input(file_name, std::ifstream::ate | std::ifstream::binary);
auto size = input.tellg();
std::cerr << "Size of file to encrypt: " << size / 1024 / 1024 << " MB"
<< std::endl;
return size;
}
bool EncTool::IsValidCommand(ArgParser arguments) {
// Either encrypt or decrypt is fine.
bool valid = arguments.Has("--encrypt") != arguments.Has("--decrypt");
// An input file is required for decryption only.
valid &= arguments.Has("--in") || arguments.Has("--encrypt");
// An output file is required for encryption only.
valid &= arguments.Has("--out") || arguments.Has("--decrypt");
// Files holding the IV and key are required for decryption.
valid &= arguments.Has("--iv") || arguments.Has("--encrypt");
valid &= arguments.Has("--key") || arguments.Has("--encrypt");
// Cipher is always required.
valid &= arguments.Has("--cipher");
return valid;
}
bool EncTool::Run(const std::vector<std::string>& arguments) {
ArgParser parser(arguments);
if (!IsValidCommand(parser)) {
Usage();
return false;
}
if (NSS_NoDB_Init(nullptr) != SECSuccess) {
PrintError("NSS initialization failed", PR_GetError(), __LINE__);
return false;
}
if (parser.Has("--debug")) {
debug_ = 1;
}
if (parser.Has("--iv")) {
iv_file_ = parser.Get("--iv");
} else {
write_iv_ = false;
}
if (parser.Has("--key")) {
key_file_ = parser.Get("--key");
} else {
write_key_ = false;
}
key_func_t get_params;
bool encrypt = parser.Has("--encrypt");
if (parser.Get("--cipher") == kAESCommand) {
cipher_mech_ = CKM_AES_GCM;
if (encrypt) {
get_params = &EncTool::GenerateAesGcmKey;
} else {
get_params = &EncTool::ReadAesGcmKey;
}
} else if (parser.Get("--cipher") == kChaChaCommand) {
cipher_mech_ = CKM_NSS_CHACHA20_POLY1305;
if (encrypt) {
get_params = &EncTool::GenerateChachaKey;
} else {
get_params = &EncTool::ReadChachaKey;
}
} else {
Usage();
return false;
}
// Don't write out key and iv when decrypting.
if (!encrypt) {
write_key_ = false;
write_iv_ = false;
}
std::string input_file = parser.Has("--in") ? parser.Get("--in") : "";
std::string output_file = parser.Has("--out") ? parser.Get("--out") : "";
size_t file_size = 0;
if (!input_file.empty()) {
file_size = PrintFileSize(input_file);
}
auto begin = std::chrono::high_resolution_clock::now();
if (!DoCipher(input_file, output_file, encrypt, get_params)) {
(void)NSS_Shutdown();
return false;
}
auto end = std::chrono::high_resolution_clock::now();
auto ns =
std::chrono::duration_cast<std::chrono::nanoseconds>(end - begin).count();
auto seconds = ns / 1000000000;
std::cerr << ns << " ns (~" << seconds << " s) and " << std::endl;
std::cerr << "That's approximately " << (double)file_size / ns << " b/ns"
<< std::endl;
if (NSS_Shutdown() != SECSuccess) {
return false;
}
return true;
}
void EncTool::Usage() {
std::string const txt = R"~(
Usage: nss encrypt|decrypt --cipher aes|chacha [--in <file>] [--out <file>]
[--key <file>] [--iv <file>]
--cipher Set the cipher to use.
--cipher aes: Use AES-GCM to encrypt/decrypt.
--cipher chacha: Use ChaCha20/Poly1305 to encrypt/decrypt.
--in The file to encrypt/decrypt. If no file is given, we read
from stdin (only when encrypting).
--out The file to write the ciphertext/plaintext to. If no file
is given we write the plaintext to stdout (only when
decrypting).
--key The file to write the used key to/to read the key
from. Optional parameter. When not given, don't write out
the key.
--iv The file to write the used IV to/to read the IV
from. Optional parameter. When not given, don't write out
the IV.
Examples:
nss encrypt --cipher aes --iv iv --key key --out ciphertext
nss decrypt --cipher chacha --iv iv --key key --in ciphertex
Note: This tool overrides files without asking.
)~";
std::cerr << txt << std::endl;
}