blob: bdf94c792c27c34a3742392440ea53cb7e4adeda [file] [log] [blame]
use crate::ops::{ControlFlow, Try};
/// An iterator able to yield elements from both ends.
///
/// Something that implements `DoubleEndedIterator` has one extra capability
/// over something that implements [`Iterator`]: the ability to also take
/// `Item`s from the back, as well as the front.
///
/// It is important to note that both back and forth work on the same range,
/// and do not cross: iteration is over when they meet in the middle.
///
/// In a similar fashion to the [`Iterator`] protocol, once a
/// `DoubleEndedIterator` returns [`None`] from a [`next_back()`], calling it
/// again may or may not ever return [`Some`] again. [`next()`] and
/// [`next_back()`] are interchangeable for this purpose.
///
/// [`next_back()`]: DoubleEndedIterator::next_back
/// [`next()`]: Iterator::next
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// let numbers = vec![1, 2, 3, 4, 5, 6];
///
/// let mut iter = numbers.iter();
///
/// assert_eq!(Some(&1), iter.next());
/// assert_eq!(Some(&6), iter.next_back());
/// assert_eq!(Some(&5), iter.next_back());
/// assert_eq!(Some(&2), iter.next());
/// assert_eq!(Some(&3), iter.next());
/// assert_eq!(Some(&4), iter.next());
/// assert_eq!(None, iter.next());
/// assert_eq!(None, iter.next_back());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[cfg_attr(not(test), rustc_diagnostic_item = "DoubleEndedIterator")]
pub trait DoubleEndedIterator: Iterator {
/// Removes and returns an element from the end of the iterator.
///
/// Returns `None` when there are no more elements.
///
/// The [trait-level] docs contain more details.
///
/// [trait-level]: DoubleEndedIterator
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// let numbers = vec![1, 2, 3, 4, 5, 6];
///
/// let mut iter = numbers.iter();
///
/// assert_eq!(Some(&1), iter.next());
/// assert_eq!(Some(&6), iter.next_back());
/// assert_eq!(Some(&5), iter.next_back());
/// assert_eq!(Some(&2), iter.next());
/// assert_eq!(Some(&3), iter.next());
/// assert_eq!(Some(&4), iter.next());
/// assert_eq!(None, iter.next());
/// assert_eq!(None, iter.next_back());
/// ```
///
/// # Remarks
///
/// The elements yielded by `DoubleEndedIterator`'s methods may differ from
/// the ones yielded by [`Iterator`]'s methods:
///
/// ```
/// let vec = vec![(1, 'a'), (1, 'b'), (1, 'c'), (2, 'a'), (2, 'b')];
/// let uniq_by_fst_comp = || {
/// let mut seen = std::collections::HashSet::new();
/// vec.iter().copied().filter(move |x| seen.insert(x.0))
/// };
///
/// assert_eq!(uniq_by_fst_comp().last(), Some((2, 'a')));
/// assert_eq!(uniq_by_fst_comp().next_back(), Some((2, 'b')));
///
/// assert_eq!(
/// uniq_by_fst_comp().fold(vec![], |mut v, x| {v.push(x); v}),
/// vec![(1, 'a'), (2, 'a')]
/// );
/// assert_eq!(
/// uniq_by_fst_comp().rfold(vec![], |mut v, x| {v.push(x); v}),
/// vec![(2, 'b'), (1, 'c')]
/// );
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
fn next_back(&mut self) -> Option<Self::Item>;
/// Advances the iterator from the back by `n` elements.
///
/// `advance_back_by` is the reverse version of [`advance_by`]. This method will
/// eagerly skip `n` elements starting from the back by calling [`next_back`] up
/// to `n` times until [`None`] is encountered.
///
/// `advance_back_by(n)` will return [`Ok(())`] if the iterator successfully advances by
/// `n` elements, or [`Err(k)`] if [`None`] is encountered, where `k` is the number of
/// elements the iterator is advanced by before running out of elements (i.e. the length
/// of the iterator). Note that `k` is always less than `n`.
///
/// Calling `advance_back_by(0)` can do meaningful work, for example [`Flatten`] can advance its
/// outer iterator until it finds an inner iterator that is not empty, which then often
/// allows it to return a more accurate `size_hint()` than in its initial state.
///
/// [`advance_by`]: Iterator::advance_by
/// [`Flatten`]: crate::iter::Flatten
/// [`next_back`]: DoubleEndedIterator::next_back
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(iter_advance_by)]
///
/// let a = [3, 4, 5, 6];
/// let mut iter = a.iter();
///
/// assert_eq!(iter.advance_back_by(2), Ok(()));
/// assert_eq!(iter.next_back(), Some(&4));
/// assert_eq!(iter.advance_back_by(0), Ok(()));
/// assert_eq!(iter.advance_back_by(100), Err(1)); // only `&3` was skipped
/// ```
///
/// [`Ok(())`]: Ok
/// [`Err(k)`]: Err
#[inline]
#[unstable(feature = "iter_advance_by", reason = "recently added", issue = "77404")]
fn advance_back_by(&mut self, n: usize) -> Result<(), usize> {
for i in 0..n {
self.next_back().ok_or(i)?;
}
Ok(())
}
/// Returns the `n`th element from the end of the iterator.
///
/// This is essentially the reversed version of [`Iterator::nth()`].
/// Although like most indexing operations, the count starts from zero, so
/// `nth_back(0)` returns the first value from the end, `nth_back(1)` the
/// second, and so on.
///
/// Note that all elements between the end and the returned element will be
/// consumed, including the returned element. This also means that calling
/// `nth_back(0)` multiple times on the same iterator will return different
/// elements.
///
/// `nth_back()` will return [`None`] if `n` is greater than or equal to the
/// length of the iterator.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// let a = [1, 2, 3];
/// assert_eq!(a.iter().nth_back(2), Some(&1));
/// ```
///
/// Calling `nth_back()` multiple times doesn't rewind the iterator:
///
/// ```
/// let a = [1, 2, 3];
///
/// let mut iter = a.iter();
///
/// assert_eq!(iter.nth_back(1), Some(&2));
/// assert_eq!(iter.nth_back(1), None);
/// ```
///
/// Returning `None` if there are less than `n + 1` elements:
///
/// ```
/// let a = [1, 2, 3];
/// assert_eq!(a.iter().nth_back(10), None);
/// ```
#[inline]
#[stable(feature = "iter_nth_back", since = "1.37.0")]
fn nth_back(&mut self, n: usize) -> Option<Self::Item> {
self.advance_back_by(n).ok()?;
self.next_back()
}
/// This is the reverse version of [`Iterator::try_fold()`]: it takes
/// elements starting from the back of the iterator.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// let a = ["1", "2", "3"];
/// let sum = a.iter()
/// .map(|&s| s.parse::<i32>())
/// .try_rfold(0, |acc, x| x.and_then(|y| Ok(acc + y)));
/// assert_eq!(sum, Ok(6));
/// ```
///
/// Short-circuiting:
///
/// ```
/// let a = ["1", "rust", "3"];
/// let mut it = a.iter();
/// let sum = it
/// .by_ref()
/// .map(|&s| s.parse::<i32>())
/// .try_rfold(0, |acc, x| x.and_then(|y| Ok(acc + y)));
/// assert!(sum.is_err());
///
/// // Because it short-circuited, the remaining elements are still
/// // available through the iterator.
/// assert_eq!(it.next_back(), Some(&"1"));
/// ```
#[inline]
#[stable(feature = "iterator_try_fold", since = "1.27.0")]
fn try_rfold<B, F, R>(&mut self, init: B, mut f: F) -> R
where
Self: Sized,
F: FnMut(B, Self::Item) -> R,
R: Try<Output = B>,
{
let mut accum = init;
while let Some(x) = self.next_back() {
accum = f(accum, x)?;
}
try { accum }
}
/// An iterator method that reduces the iterator's elements to a single,
/// final value, starting from the back.
///
/// This is the reverse version of [`Iterator::fold()`]: it takes elements
/// starting from the back of the iterator.
///
/// `rfold()` takes two arguments: an initial value, and a closure with two
/// arguments: an 'accumulator', and an element. The closure returns the value that
/// the accumulator should have for the next iteration.
///
/// The initial value is the value the accumulator will have on the first
/// call.
///
/// After applying this closure to every element of the iterator, `rfold()`
/// returns the accumulator.
///
/// This operation is sometimes called 'reduce' or 'inject'.
///
/// Folding is useful whenever you have a collection of something, and want
/// to produce a single value from it.
///
/// Note: `rfold()` combines elements in a *right-associative* fashion. For associative
/// operators like `+`, the order the elements are combined in is not important, but for non-associative
/// operators like `-` the order will affect the final result.
/// For a *left-associative* version of `rfold()`, see [`Iterator::fold()`].
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// let a = [1, 2, 3];
///
/// // the sum of all of the elements of a
/// let sum = a.iter()
/// .rfold(0, |acc, &x| acc + x);
///
/// assert_eq!(sum, 6);
/// ```
///
/// This example demonstrates the right-associative nature of `rfold()`:
/// it builds a string, starting with an initial value
/// and continuing with each element from the back until the front:
///
/// ```
/// let numbers = [1, 2, 3, 4, 5];
///
/// let zero = "0".to_string();
///
/// let result = numbers.iter().rfold(zero, |acc, &x| {
/// format!("({x} + {acc})")
/// });
///
/// assert_eq!(result, "(1 + (2 + (3 + (4 + (5 + 0)))))");
/// ```
#[doc(alias = "foldr")]
#[inline]
#[stable(feature = "iter_rfold", since = "1.27.0")]
fn rfold<B, F>(mut self, init: B, mut f: F) -> B
where
Self: Sized,
F: FnMut(B, Self::Item) -> B,
{
let mut accum = init;
while let Some(x) = self.next_back() {
accum = f(accum, x);
}
accum
}
/// Searches for an element of an iterator from the back that satisfies a predicate.
///
/// `rfind()` takes a closure that returns `true` or `false`. It applies
/// this closure to each element of the iterator, starting at the end, and if any
/// of them return `true`, then `rfind()` returns [`Some(element)`]. If they all return
/// `false`, it returns [`None`].
///
/// `rfind()` is short-circuiting; in other words, it will stop processing
/// as soon as the closure returns `true`.
///
/// Because `rfind()` takes a reference, and many iterators iterate over
/// references, this leads to a possibly confusing situation where the
/// argument is a double reference. You can see this effect in the
/// examples below, with `&&x`.
///
/// [`Some(element)`]: Some
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// let a = [1, 2, 3];
///
/// assert_eq!(a.iter().rfind(|&&x| x == 2), Some(&2));
///
/// assert_eq!(a.iter().rfind(|&&x| x == 5), None);
/// ```
///
/// Stopping at the first `true`:
///
/// ```
/// let a = [1, 2, 3];
///
/// let mut iter = a.iter();
///
/// assert_eq!(iter.rfind(|&&x| x == 2), Some(&2));
///
/// // we can still use `iter`, as there are more elements.
/// assert_eq!(iter.next_back(), Some(&1));
/// ```
#[inline]
#[stable(feature = "iter_rfind", since = "1.27.0")]
fn rfind<P>(&mut self, predicate: P) -> Option<Self::Item>
where
Self: Sized,
P: FnMut(&Self::Item) -> bool,
{
#[inline]
fn check<T>(mut predicate: impl FnMut(&T) -> bool) -> impl FnMut((), T) -> ControlFlow<T> {
move |(), x| {
if predicate(&x) { ControlFlow::Break(x) } else { ControlFlow::CONTINUE }
}
}
self.try_rfold((), check(predicate)).break_value()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, I: DoubleEndedIterator + ?Sized> DoubleEndedIterator for &'a mut I {
fn next_back(&mut self) -> Option<I::Item> {
(**self).next_back()
}
fn advance_back_by(&mut self, n: usize) -> Result<(), usize> {
(**self).advance_back_by(n)
}
fn nth_back(&mut self, n: usize) -> Option<I::Item> {
(**self).nth_back(n)
}
}