blob: e67411e16860e679cbb83cb2c6a7080f9542a0e5 [file] [log] [blame]
#![allow(missing_docs, nonstandard_style)]
use crate::ffi::{CStr, OsStr, OsString};
use crate::io::ErrorKind;
use crate::mem::MaybeUninit;
use crate::os::windows::ffi::{OsStrExt, OsStringExt};
use crate::path::PathBuf;
use crate::time::Duration;
pub use self::rand::hashmap_random_keys;
#[macro_use]
pub mod compat;
pub mod alloc;
pub mod args;
pub mod c;
pub mod cmath;
pub mod env;
pub mod fs;
pub mod handle;
pub mod io;
pub mod locks;
pub mod memchr;
pub mod net;
pub mod os;
pub mod os_str;
pub mod path;
pub mod pipe;
pub mod process;
pub mod rand;
pub mod stdio;
pub mod thread;
pub mod thread_local_dtor;
pub mod thread_local_key;
pub mod thread_parker;
pub mod time;
cfg_if::cfg_if! {
if #[cfg(not(target_vendor = "uwp"))] {
pub mod stack_overflow;
} else {
pub mod stack_overflow_uwp;
pub use self::stack_overflow_uwp as stack_overflow;
}
}
// SAFETY: must be called only once during runtime initialization.
// NOTE: this is not guaranteed to run, for example when Rust code is called externally.
pub unsafe fn init(_argc: isize, _argv: *const *const u8, _sigpipe: u8) {
stack_overflow::init();
// Normally, `thread::spawn` will call `Thread::set_name` but since this thread already
// exists, we have to call it ourselves.
thread::Thread::set_name(&CStr::from_bytes_with_nul_unchecked(b"main\0"));
}
// SAFETY: must be called only once during runtime cleanup.
// NOTE: this is not guaranteed to run, for example when the program aborts.
pub unsafe fn cleanup() {
net::cleanup();
}
pub fn decode_error_kind(errno: i32) -> ErrorKind {
use ErrorKind::*;
match errno as c::DWORD {
c::ERROR_ACCESS_DENIED => return PermissionDenied,
c::ERROR_ALREADY_EXISTS => return AlreadyExists,
c::ERROR_FILE_EXISTS => return AlreadyExists,
c::ERROR_BROKEN_PIPE => return BrokenPipe,
c::ERROR_FILE_NOT_FOUND => return NotFound,
c::ERROR_PATH_NOT_FOUND => return NotFound,
c::ERROR_NO_DATA => return BrokenPipe,
c::ERROR_INVALID_NAME => return InvalidFilename,
c::ERROR_INVALID_PARAMETER => return InvalidInput,
c::ERROR_NOT_ENOUGH_MEMORY | c::ERROR_OUTOFMEMORY => return OutOfMemory,
c::ERROR_SEM_TIMEOUT
| c::WAIT_TIMEOUT
| c::ERROR_DRIVER_CANCEL_TIMEOUT
| c::ERROR_OPERATION_ABORTED
| c::ERROR_SERVICE_REQUEST_TIMEOUT
| c::ERROR_COUNTER_TIMEOUT
| c::ERROR_TIMEOUT
| c::ERROR_RESOURCE_CALL_TIMED_OUT
| c::ERROR_CTX_MODEM_RESPONSE_TIMEOUT
| c::ERROR_CTX_CLIENT_QUERY_TIMEOUT
| c::FRS_ERR_SYSVOL_POPULATE_TIMEOUT
| c::ERROR_DS_TIMELIMIT_EXCEEDED
| c::DNS_ERROR_RECORD_TIMED_OUT
| c::ERROR_IPSEC_IKE_TIMED_OUT
| c::ERROR_RUNLEVEL_SWITCH_TIMEOUT
| c::ERROR_RUNLEVEL_SWITCH_AGENT_TIMEOUT => return TimedOut,
c::ERROR_CALL_NOT_IMPLEMENTED => return Unsupported,
c::ERROR_HOST_UNREACHABLE => return HostUnreachable,
c::ERROR_NETWORK_UNREACHABLE => return NetworkUnreachable,
c::ERROR_DIRECTORY => return NotADirectory,
c::ERROR_DIRECTORY_NOT_SUPPORTED => return IsADirectory,
c::ERROR_DIR_NOT_EMPTY => return DirectoryNotEmpty,
c::ERROR_WRITE_PROTECT => return ReadOnlyFilesystem,
c::ERROR_DISK_FULL | c::ERROR_HANDLE_DISK_FULL => return StorageFull,
c::ERROR_SEEK_ON_DEVICE => return NotSeekable,
c::ERROR_DISK_QUOTA_EXCEEDED => return FilesystemQuotaExceeded,
c::ERROR_FILE_TOO_LARGE => return FileTooLarge,
c::ERROR_BUSY => return ResourceBusy,
c::ERROR_POSSIBLE_DEADLOCK => return Deadlock,
c::ERROR_NOT_SAME_DEVICE => return CrossesDevices,
c::ERROR_TOO_MANY_LINKS => return TooManyLinks,
c::ERROR_FILENAME_EXCED_RANGE => return InvalidFilename,
_ => {}
}
match errno {
c::WSAEACCES => PermissionDenied,
c::WSAEADDRINUSE => AddrInUse,
c::WSAEADDRNOTAVAIL => AddrNotAvailable,
c::WSAECONNABORTED => ConnectionAborted,
c::WSAECONNREFUSED => ConnectionRefused,
c::WSAECONNRESET => ConnectionReset,
c::WSAEINVAL => InvalidInput,
c::WSAENOTCONN => NotConnected,
c::WSAEWOULDBLOCK => WouldBlock,
c::WSAETIMEDOUT => TimedOut,
c::WSAEHOSTUNREACH => HostUnreachable,
c::WSAENETDOWN => NetworkDown,
c::WSAENETUNREACH => NetworkUnreachable,
_ => Uncategorized,
}
}
pub fn unrolled_find_u16s(needle: u16, haystack: &[u16]) -> Option<usize> {
let ptr = haystack.as_ptr();
let mut start = &haystack[..];
// For performance reasons unfold the loop eight times.
while start.len() >= 8 {
macro_rules! if_return {
($($n:literal,)+) => {
$(
if start[$n] == needle {
return Some(((&start[$n] as *const u16).addr() - ptr.addr()) / 2);
}
)+
}
}
if_return!(0, 1, 2, 3, 4, 5, 6, 7,);
start = &start[8..];
}
for c in start {
if *c == needle {
return Some(((c as *const u16).addr() - ptr.addr()) / 2);
}
}
None
}
pub fn to_u16s<S: AsRef<OsStr>>(s: S) -> crate::io::Result<Vec<u16>> {
fn inner(s: &OsStr) -> crate::io::Result<Vec<u16>> {
// Most paths are ASCII, so reserve capacity for as much as there are bytes
// in the OsStr plus one for the null-terminating character. We are not
// wasting bytes here as paths created by this function are primarily used
// in an ephemeral fashion.
let mut maybe_result = Vec::with_capacity(s.len() + 1);
maybe_result.extend(s.encode_wide());
if unrolled_find_u16s(0, &maybe_result).is_some() {
return Err(crate::io::const_io_error!(
ErrorKind::InvalidInput,
"strings passed to WinAPI cannot contain NULs",
));
}
maybe_result.push(0);
Ok(maybe_result)
}
inner(s.as_ref())
}
// Many Windows APIs follow a pattern of where we hand a buffer and then they
// will report back to us how large the buffer should be or how many bytes
// currently reside in the buffer. This function is an abstraction over these
// functions by making them easier to call.
//
// The first callback, `f1`, is yielded a (pointer, len) pair which can be
// passed to a syscall. The `ptr` is valid for `len` items (u16 in this case).
// The closure is expected to return what the syscall returns which will be
// interpreted by this function to determine if the syscall needs to be invoked
// again (with more buffer space).
//
// Once the syscall has completed (errors bail out early) the second closure is
// yielded the data which has been read from the syscall. The return value
// from this closure is then the return value of the function.
fn fill_utf16_buf<F1, F2, T>(mut f1: F1, f2: F2) -> crate::io::Result<T>
where
F1: FnMut(*mut u16, c::DWORD) -> c::DWORD,
F2: FnOnce(&[u16]) -> T,
{
// Start off with a stack buf but then spill over to the heap if we end up
// needing more space.
//
// This initial size also works around `GetFullPathNameW` returning
// incorrect size hints for some short paths:
// https://github.com/dylni/normpath/issues/5
let mut stack_buf: [MaybeUninit<u16>; 512] = MaybeUninit::uninit_array();
let mut heap_buf: Vec<MaybeUninit<u16>> = Vec::new();
unsafe {
let mut n = stack_buf.len();
loop {
let buf = if n <= stack_buf.len() {
&mut stack_buf[..]
} else {
let extra = n - heap_buf.len();
heap_buf.reserve(extra);
// We used `reserve` and not `reserve_exact`, so in theory we
// may have gotten more than requested. If so, we'd like to use
// it... so long as we won't cause overflow.
n = heap_buf.capacity().min(c::DWORD::MAX as usize);
// Safety: MaybeUninit<u16> does not need initialization
heap_buf.set_len(n);
&mut heap_buf[..]
};
// This function is typically called on windows API functions which
// will return the correct length of the string, but these functions
// also return the `0` on error. In some cases, however, the
// returned "correct length" may actually be 0!
//
// To handle this case we call `SetLastError` to reset it to 0 and
// then check it again if we get the "0 error value". If the "last
// error" is still 0 then we interpret it as a 0 length buffer and
// not an actual error.
c::SetLastError(0);
let k = match f1(buf.as_mut_ptr().cast::<u16>(), n as c::DWORD) {
0 if c::GetLastError() == 0 => 0,
0 => return Err(crate::io::Error::last_os_error()),
n => n,
} as usize;
if k == n && c::GetLastError() == c::ERROR_INSUFFICIENT_BUFFER {
n = n.saturating_mul(2).min(c::DWORD::MAX as usize);
} else if k > n {
n = k;
} else if k == n {
// It is impossible to reach this point.
// On success, k is the returned string length excluding the null.
// On failure, k is the required buffer length including the null.
// Therefore k never equals n.
unreachable!();
} else {
// Safety: First `k` values are initialized.
let slice: &[u16] = MaybeUninit::slice_assume_init_ref(&buf[..k]);
return Ok(f2(slice));
}
}
}
}
fn os2path(s: &[u16]) -> PathBuf {
PathBuf::from(OsString::from_wide(s))
}
pub fn truncate_utf16_at_nul(v: &[u16]) -> &[u16] {
match unrolled_find_u16s(0, v) {
// don't include the 0
Some(i) => &v[..i],
None => v,
}
}
pub trait IsZero {
fn is_zero(&self) -> bool;
}
macro_rules! impl_is_zero {
($($t:ident)*) => ($(impl IsZero for $t {
fn is_zero(&self) -> bool {
*self == 0
}
})*)
}
impl_is_zero! { i8 i16 i32 i64 isize u8 u16 u32 u64 usize }
pub fn cvt<I: IsZero>(i: I) -> crate::io::Result<I> {
if i.is_zero() { Err(crate::io::Error::last_os_error()) } else { Ok(i) }
}
pub fn dur2timeout(dur: Duration) -> c::DWORD {
// Note that a duration is a (u64, u32) (seconds, nanoseconds) pair, and the
// timeouts in windows APIs are typically u32 milliseconds. To translate, we
// have two pieces to take care of:
//
// * Nanosecond precision is rounded up
// * Greater than u32::MAX milliseconds (50 days) is rounded up to INFINITE
// (never time out).
dur.as_secs()
.checked_mul(1000)
.and_then(|ms| ms.checked_add((dur.subsec_nanos() as u64) / 1_000_000))
.and_then(|ms| ms.checked_add(if dur.subsec_nanos() % 1_000_000 > 0 { 1 } else { 0 }))
.map(|ms| if ms > <c::DWORD>::MAX as u64 { c::INFINITE } else { ms as c::DWORD })
.unwrap_or(c::INFINITE)
}
/// Use `__fastfail` to abort the process
///
/// This is the same implementation as in libpanic_abort's `__rust_start_panic`. See
/// that function for more information on `__fastfail`
#[allow(unreachable_code)]
pub fn abort_internal() -> ! {
#[allow(unused)]
const FAST_FAIL_FATAL_APP_EXIT: usize = 7;
#[cfg(not(miri))] // inline assembly does not work in Miri
unsafe {
cfg_if::cfg_if! {
if #[cfg(any(target_arch = "x86", target_arch = "x86_64"))] {
core::arch::asm!("int $$0x29", in("ecx") FAST_FAIL_FATAL_APP_EXIT);
crate::intrinsics::unreachable();
} else if #[cfg(all(target_arch = "arm", target_feature = "thumb-mode"))] {
core::arch::asm!(".inst 0xDEFB", in("r0") FAST_FAIL_FATAL_APP_EXIT);
crate::intrinsics::unreachable();
} else if #[cfg(target_arch = "aarch64")] {
core::arch::asm!("brk 0xF003", in("x0") FAST_FAIL_FATAL_APP_EXIT);
crate::intrinsics::unreachable();
}
}
}
crate::intrinsics::abort();
}
/// Align the inner value to 8 bytes.
///
/// This is enough for almost all of the buffers we're likely to work with in
/// the Windows APIs we use.
#[repr(C, align(8))]
#[derive(Copy, Clone)]
pub(crate) struct Align8<T: ?Sized>(pub T);