blob: 17628b7579b8db3ac2a8eaa89e4fc20b1ce81af7 [file] [log] [blame]
use crate::cell::UnsafeCell;
use crate::ptr;
use crate::sync::atomic::{
AtomicPtr, AtomicU32,
Ordering::{AcqRel, Acquire, Relaxed, Release},
};
use crate::sys::c;
#[cfg(test)]
mod tests;
type Key = c::DWORD;
type Dtor = unsafe extern "C" fn(*mut u8);
// Turns out, like pretty much everything, Windows is pretty close the
// functionality that Unix provides, but slightly different! In the case of
// TLS, Windows does not provide an API to provide a destructor for a TLS
// variable. This ends up being pretty crucial to this implementation, so we
// need a way around this.
//
// The solution here ended up being a little obscure, but fear not, the
// internet has informed me [1][2] that this solution is not unique (no way
// I could have thought of it as well!). The key idea is to insert some hook
// somewhere to run arbitrary code on thread termination. With this in place
// we'll be able to run anything we like, including all TLS destructors!
//
// To accomplish this feat, we perform a number of threads, all contained
// within this module:
//
// * All TLS destructors are tracked by *us*, not the Windows runtime. This
// means that we have a global list of destructors for each TLS key that
// we know about.
// * When a thread exits, we run over the entire list and run dtors for all
// non-null keys. This attempts to match Unix semantics in this regard.
//
// For more details and nitty-gritty, see the code sections below!
//
// [1]: https://www.codeproject.com/Articles/8113/Thread-Local-Storage-The-C-Way
// [2]: https://github.com/ChromiumWebApps/chromium/blob/master/base/threading/thread_local_storage_win.cc#L42
pub struct StaticKey {
/// The key value shifted up by one. Since TLS_OUT_OF_INDEXES == DWORD::MAX
/// is not a valid key value, this allows us to use zero as sentinel value
/// without risking overflow.
key: AtomicU32,
dtor: Option<Dtor>,
next: AtomicPtr<StaticKey>,
/// Currently, destructors cannot be unregistered, so we cannot use racy
/// initialization for keys. Instead, we need synchronize initialization.
/// Use the Windows-provided `Once` since it does not require TLS.
once: UnsafeCell<c::INIT_ONCE>,
}
impl StaticKey {
#[inline]
pub const fn new(dtor: Option<Dtor>) -> StaticKey {
StaticKey {
key: AtomicU32::new(0),
dtor,
next: AtomicPtr::new(ptr::null_mut()),
once: UnsafeCell::new(c::INIT_ONCE_STATIC_INIT),
}
}
#[inline]
pub unsafe fn set(&'static self, val: *mut u8) {
let r = c::TlsSetValue(self.key(), val.cast());
debug_assert_eq!(r, c::TRUE);
}
#[inline]
pub unsafe fn get(&'static self) -> *mut u8 {
c::TlsGetValue(self.key()).cast()
}
#[inline]
unsafe fn key(&'static self) -> Key {
match self.key.load(Acquire) {
0 => self.init(),
key => key - 1,
}
}
#[cold]
unsafe fn init(&'static self) -> Key {
if self.dtor.is_some() {
let mut pending = c::FALSE;
let r = c::InitOnceBeginInitialize(self.once.get(), 0, &mut pending, ptr::null_mut());
assert_eq!(r, c::TRUE);
if pending == c::FALSE {
// Some other thread initialized the key, load it.
self.key.load(Relaxed) - 1
} else {
let key = c::TlsAlloc();
if key == c::TLS_OUT_OF_INDEXES {
// Wakeup the waiting threads before panicking to avoid deadlock.
c::InitOnceComplete(self.once.get(), c::INIT_ONCE_INIT_FAILED, ptr::null_mut());
panic!("out of TLS indexes");
}
self.key.store(key + 1, Release);
register_dtor(self);
let r = c::InitOnceComplete(self.once.get(), 0, ptr::null_mut());
debug_assert_eq!(r, c::TRUE);
key
}
} else {
// If there is no destructor to clean up, we can use racy initialization.
let key = c::TlsAlloc();
assert_ne!(key, c::TLS_OUT_OF_INDEXES, "out of TLS indexes");
match self.key.compare_exchange(0, key + 1, AcqRel, Acquire) {
Ok(_) => key,
Err(new) => {
// Some other thread completed initialization first, so destroy
// our key and use theirs.
let r = c::TlsFree(key);
debug_assert_eq!(r, c::TRUE);
new - 1
}
}
}
}
}
unsafe impl Send for StaticKey {}
unsafe impl Sync for StaticKey {}
// -------------------------------------------------------------------------
// Dtor registration
//
// Windows has no native support for running destructors so we manage our own
// list of destructors to keep track of how to destroy keys. We then install a
// callback later to get invoked whenever a thread exits, running all
// appropriate destructors.
//
// Currently unregistration from this list is not supported. A destructor can be
// registered but cannot be unregistered. There's various simplifying reasons
// for doing this, the big ones being:
//
// 1. Currently we don't even support deallocating TLS keys, so normal operation
// doesn't need to deallocate a destructor.
// 2. There is no point in time where we know we can unregister a destructor
// because it could always be getting run by some remote thread.
//
// Typically processes have a statically known set of TLS keys which is pretty
// small, and we'd want to keep this memory alive for the whole process anyway
// really.
static DTORS: AtomicPtr<StaticKey> = AtomicPtr::new(ptr::null_mut());
/// Should only be called once per key, otherwise loops or breaks may occur in
/// the linked list.
unsafe fn register_dtor(key: &'static StaticKey) {
let this = <*const StaticKey>::cast_mut(key);
// Use acquire ordering to pass along the changes done by the previously
// registered keys when we store the new head with release ordering.
let mut head = DTORS.load(Acquire);
loop {
key.next.store(head, Relaxed);
match DTORS.compare_exchange_weak(head, this, Release, Acquire) {
Ok(_) => break,
Err(new) => head = new,
}
}
}
// -------------------------------------------------------------------------
// Where the Magic (TM) Happens
//
// If you're looking at this code, and wondering "what is this doing?",
// you're not alone! I'll try to break this down step by step:
//
// # What's up with CRT$XLB?
//
// For anything about TLS destructors to work on Windows, we have to be able
// to run *something* when a thread exits. To do so, we place a very special
// static in a very special location. If this is encoded in just the right
// way, the kernel's loader is apparently nice enough to run some function
// of ours whenever a thread exits! How nice of the kernel!
//
// Lots of detailed information can be found in source [1] above, but the
// gist of it is that this is leveraging a feature of Microsoft's PE format
// (executable format) which is not actually used by any compilers today.
// This apparently translates to any callbacks in the ".CRT$XLB" section
// being run on certain events.
//
// So after all that, we use the compiler's #[link_section] feature to place
// a callback pointer into the magic section so it ends up being called.
//
// # What's up with this callback?
//
// The callback specified receives a number of parameters from... someone!
// (the kernel? the runtime? I'm not quite sure!) There are a few events that
// this gets invoked for, but we're currently only interested on when a
// thread or a process "detaches" (exits). The process part happens for the
// last thread and the thread part happens for any normal thread.
//
// # Ok, what's up with running all these destructors?
//
// This will likely need to be improved over time, but this function
// attempts a "poor man's" destructor callback system. Once we've got a list
// of what to run, we iterate over all keys, check their values, and then run
// destructors if the values turn out to be non null (setting them to null just
// beforehand). We do this a few times in a loop to basically match Unix
// semantics. If we don't reach a fixed point after a short while then we just
// inevitably leak something most likely.
//
// # The article mentions weird stuff about "/INCLUDE"?
//
// It sure does! Specifically we're talking about this quote:
//
// The Microsoft run-time library facilitates this process by defining a
// memory image of the TLS Directory and giving it the special name
// “__tls_used” (Intel x86 platforms) or “_tls_used” (other platforms). The
// linker looks for this memory image and uses the data there to create the
// TLS Directory. Other compilers that support TLS and work with the
// Microsoft linker must use this same technique.
//
// Basically what this means is that if we want support for our TLS
// destructors/our hook being called then we need to make sure the linker does
// not omit this symbol. Otherwise it will omit it and our callback won't be
// wired up.
//
// We don't actually use the `/INCLUDE` linker flag here like the article
// mentions because the Rust compiler doesn't propagate linker flags, but
// instead we use a shim function which performs a volatile 1-byte load from
// the address of the symbol to ensure it sticks around.
#[link_section = ".CRT$XLB"]
#[allow(dead_code, unused_variables)]
#[used] // we don't want LLVM eliminating this symbol for any reason, and
// when the symbol makes it to the linker the linker will take over
pub static p_thread_callback: unsafe extern "system" fn(c::LPVOID, c::DWORD, c::LPVOID) =
on_tls_callback;
#[allow(dead_code, unused_variables)]
unsafe extern "system" fn on_tls_callback(h: c::LPVOID, dwReason: c::DWORD, pv: c::LPVOID) {
if dwReason == c::DLL_THREAD_DETACH || dwReason == c::DLL_PROCESS_DETACH {
run_dtors();
#[cfg(target_thread_local)]
super::thread_local_dtor::run_keyless_dtors();
}
// See comments above for what this is doing. Note that we don't need this
// trickery on GNU windows, just on MSVC.
reference_tls_used();
#[cfg(target_env = "msvc")]
unsafe fn reference_tls_used() {
extern "C" {
static _tls_used: u8;
}
crate::intrinsics::volatile_load(&_tls_used);
}
#[cfg(not(target_env = "msvc"))]
unsafe fn reference_tls_used() {}
}
#[allow(dead_code)] // actually called below
unsafe fn run_dtors() {
for _ in 0..5 {
let mut any_run = false;
// Use acquire ordering to observe key initialization.
let mut cur = DTORS.load(Acquire);
while !cur.is_null() {
let key = (*cur).key.load(Relaxed) - 1;
let dtor = (*cur).dtor.unwrap();
let ptr = c::TlsGetValue(key);
if !ptr.is_null() {
c::TlsSetValue(key, ptr::null_mut());
dtor(ptr as *mut _);
any_run = true;
}
cur = (*cur).next.load(Relaxed);
}
if !any_run {
break;
}
}
}