blob: 3c9df3912fb0673f7a35275e5193563df2d93d0f [file] [log] [blame]
//! Bit-oriented Algorithms (BITALG)
//!
//! The intrinsics here correspond to those in the `immintrin.h` C header.
//!
//! The reference is [Intel 64 and IA-32 Architectures Software Developer's
//! Manual Volume 2: Instruction Set Reference, A-Z][intel64_ref].
//!
//! [intel64_ref]: http://www.intel.de/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
use crate::core_arch::simd::i16x16;
use crate::core_arch::simd::i16x32;
use crate::core_arch::simd::i16x8;
use crate::core_arch::simd::i8x16;
use crate::core_arch::simd::i8x32;
use crate::core_arch::simd::i8x64;
use crate::core_arch::simd_llvm::simd_select_bitmask;
use crate::core_arch::x86::__m128i;
use crate::core_arch::x86::__m256i;
use crate::core_arch::x86::__m512i;
use crate::core_arch::x86::__mmask16;
use crate::core_arch::x86::__mmask32;
use crate::core_arch::x86::__mmask64;
use crate::core_arch::x86::__mmask8;
use crate::core_arch::x86::_mm256_setzero_si256;
use crate::core_arch::x86::_mm512_setzero_si512;
use crate::core_arch::x86::_mm_setzero_si128;
use crate::core_arch::x86::m128iExt;
use crate::core_arch::x86::m256iExt;
use crate::core_arch::x86::m512iExt;
use crate::mem::transmute;
#[cfg(test)]
use stdarch_test::assert_instr;
#[allow(improper_ctypes)]
extern "C" {
#[link_name = "llvm.ctpop.v32i16"]
fn popcnt_v32i16(x: i16x32) -> i16x32;
#[link_name = "llvm.ctpop.v16i16"]
fn popcnt_v16i16(x: i16x16) -> i16x16;
#[link_name = "llvm.ctpop.v8i16"]
fn popcnt_v8i16(x: i16x8) -> i16x8;
#[link_name = "llvm.ctpop.v64i8"]
fn popcnt_v64i8(x: i8x64) -> i8x64;
#[link_name = "llvm.ctpop.v32i8"]
fn popcnt_v32i8(x: i8x32) -> i8x32;
#[link_name = "llvm.ctpop.v16i8"]
fn popcnt_v16i8(x: i8x16) -> i8x16;
#[link_name = "llvm.x86.avx512.mask.vpshufbitqmb.512"]
fn bitshuffle_512(data: i8x64, indices: i8x64, mask: __mmask64) -> __mmask64;
#[link_name = "llvm.x86.avx512.mask.vpshufbitqmb.256"]
fn bitshuffle_256(data: i8x32, indices: i8x32, mask: __mmask32) -> __mmask32;
#[link_name = "llvm.x86.avx512.mask.vpshufbitqmb.128"]
fn bitshuffle_128(data: i8x16, indices: i8x16, mask: __mmask16) -> __mmask16;
}
/// For each packed 16-bit integer maps the value to the number of logical 1 bits.
///
/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_popcnt_epi16)
#[inline]
#[target_feature(enable = "avx512bitalg")]
#[cfg_attr(test, assert_instr(vpopcntw))]
pub unsafe fn _mm512_popcnt_epi16(a: __m512i) -> __m512i {
transmute(popcnt_v32i16(a.as_i16x32()))
}
/// For each packed 16-bit integer maps the value to the number of logical 1 bits.
///
/// Uses the writemask in k - elements are zeroed in the result if the corresponding mask bit is not set.
/// Otherwise the computation result is written into the result.
///
/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_popcnt_epi16)
#[inline]
#[target_feature(enable = "avx512bitalg")]
#[cfg_attr(test, assert_instr(vpopcntw))]
pub unsafe fn _mm512_maskz_popcnt_epi16(k: __mmask32, a: __m512i) -> __m512i {
let zero = _mm512_setzero_si512().as_i16x32();
transmute(simd_select_bitmask(k, popcnt_v32i16(a.as_i16x32()), zero))
}
/// For each packed 16-bit integer maps the value to the number of logical 1 bits.
///
/// Uses the writemask in k - elements are copied from src if the corresponding mask bit is not set.
/// Otherwise the computation result is written into the result.
///
/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_popcnt_epi16)
#[inline]
#[target_feature(enable = "avx512bitalg")]
#[cfg_attr(test, assert_instr(vpopcntw))]
pub unsafe fn _mm512_mask_popcnt_epi16(src: __m512i, k: __mmask32, a: __m512i) -> __m512i {
transmute(simd_select_bitmask(
k,
popcnt_v32i16(a.as_i16x32()),
src.as_i16x32(),
))
}
/// For each packed 16-bit integer maps the value to the number of logical 1 bits.
///
/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_popcnt_epi16)
#[inline]
#[target_feature(enable = "avx512bitalg,avx512vl")]
#[cfg_attr(test, assert_instr(vpopcntw))]
pub unsafe fn _mm256_popcnt_epi16(a: __m256i) -> __m256i {
transmute(popcnt_v16i16(a.as_i16x16()))
}
/// For each packed 16-bit integer maps the value to the number of logical 1 bits.
///
/// Uses the writemask in k - elements are zeroed in the result if the corresponding mask bit is not set.
/// Otherwise the computation result is written into the result.
///
/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_maskz_popcnt_epi16)
#[inline]
#[target_feature(enable = "avx512bitalg,avx512vl")]
#[cfg_attr(test, assert_instr(vpopcntw))]
pub unsafe fn _mm256_maskz_popcnt_epi16(k: __mmask16, a: __m256i) -> __m256i {
let zero = _mm256_setzero_si256().as_i16x16();
transmute(simd_select_bitmask(k, popcnt_v16i16(a.as_i16x16()), zero))
}
/// For each packed 16-bit integer maps the value to the number of logical 1 bits.
///
/// Uses the writemask in k - elements are copied from src if the corresponding mask bit is not set.
/// Otherwise the computation result is written into the result.
///
/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_popcnt_epi16)
#[inline]
#[target_feature(enable = "avx512bitalg,avx512vl")]
#[cfg_attr(test, assert_instr(vpopcntw))]
pub unsafe fn _mm256_mask_popcnt_epi16(src: __m256i, k: __mmask16, a: __m256i) -> __m256i {
transmute(simd_select_bitmask(
k,
popcnt_v16i16(a.as_i16x16()),
src.as_i16x16(),
))
}
/// For each packed 16-bit integer maps the value to the number of logical 1 bits.
///
/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_popcnt_epi16)
#[inline]
#[target_feature(enable = "avx512bitalg,avx512vl")]
#[cfg_attr(test, assert_instr(vpopcntw))]
pub unsafe fn _mm_popcnt_epi16(a: __m128i) -> __m128i {
transmute(popcnt_v8i16(a.as_i16x8()))
}
/// For each packed 16-bit integer maps the value to the number of logical 1 bits.
///
/// Uses the writemask in k - elements are zeroed in the result if the corresponding mask bit is not set.
/// Otherwise the computation result is written into the result.
///
/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_popcnt_epi16)
#[inline]
#[target_feature(enable = "avx512bitalg,avx512vl")]
#[cfg_attr(test, assert_instr(vpopcntw))]
pub unsafe fn _mm_maskz_popcnt_epi16(k: __mmask8, a: __m128i) -> __m128i {
let zero = _mm_setzero_si128().as_i16x8();
transmute(simd_select_bitmask(k, popcnt_v8i16(a.as_i16x8()), zero))
}
/// For each packed 16-bit integer maps the value to the number of logical 1 bits.
///
/// Uses the writemask in k - elements are copied from src if the corresponding mask bit is not set.
/// Otherwise the computation result is written into the result.
///
/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_popcnt_epi16)
#[inline]
#[target_feature(enable = "avx512bitalg,avx512vl")]
#[cfg_attr(test, assert_instr(vpopcntw))]
pub unsafe fn _mm_mask_popcnt_epi16(src: __m128i, k: __mmask8, a: __m128i) -> __m128i {
transmute(simd_select_bitmask(
k,
popcnt_v8i16(a.as_i16x8()),
src.as_i16x8(),
))
}
/// For each packed 8-bit integer maps the value to the number of logical 1 bits.
///
/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_popcnt_epi8)
#[inline]
#[target_feature(enable = "avx512bitalg")]
#[cfg_attr(test, assert_instr(vpopcntb))]
pub unsafe fn _mm512_popcnt_epi8(a: __m512i) -> __m512i {
transmute(popcnt_v64i8(a.as_i8x64()))
}
/// For each packed 8-bit integer maps the value to the number of logical 1 bits.
///
/// Uses the writemask in k - elements are zeroed in the result if the corresponding mask bit is not set.
/// Otherwise the computation result is written into the result.
///
/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_maskz_popcnt_epi8)
#[inline]
#[target_feature(enable = "avx512bitalg")]
#[cfg_attr(test, assert_instr(vpopcntb))]
pub unsafe fn _mm512_maskz_popcnt_epi8(k: __mmask64, a: __m512i) -> __m512i {
let zero = _mm512_setzero_si512().as_i8x64();
transmute(simd_select_bitmask(k, popcnt_v64i8(a.as_i8x64()), zero))
}
/// For each packed 8-bit integer maps the value to the number of logical 1 bits.
///
/// Uses the writemask in k - elements are copied from src if the corresponding mask bit is not set.
/// Otherwise the computation result is written into the result.
///
/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_popcnt_epi8)
#[inline]
#[target_feature(enable = "avx512bitalg")]
#[cfg_attr(test, assert_instr(vpopcntb))]
pub unsafe fn _mm512_mask_popcnt_epi8(src: __m512i, k: __mmask64, a: __m512i) -> __m512i {
transmute(simd_select_bitmask(
k,
popcnt_v64i8(a.as_i8x64()),
src.as_i8x64(),
))
}
/// For each packed 8-bit integer maps the value to the number of logical 1 bits.
///
/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_popcnt_epi8)
#[inline]
#[target_feature(enable = "avx512bitalg,avx512vl")]
#[cfg_attr(test, assert_instr(vpopcntb))]
pub unsafe fn _mm256_popcnt_epi8(a: __m256i) -> __m256i {
transmute(popcnt_v32i8(a.as_i8x32()))
}
/// For each packed 8-bit integer maps the value to the number of logical 1 bits.
///
/// Uses the writemask in k - elements are zeroed in the result if the corresponding mask bit is not set.
/// Otherwise the computation result is written into the result.
///
/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_maskz_popcnt_epi8)
#[inline]
#[target_feature(enable = "avx512bitalg,avx512vl")]
#[cfg_attr(test, assert_instr(vpopcntb))]
pub unsafe fn _mm256_maskz_popcnt_epi8(k: __mmask32, a: __m256i) -> __m256i {
let zero = _mm256_setzero_si256().as_i8x32();
transmute(simd_select_bitmask(k, popcnt_v32i8(a.as_i8x32()), zero))
}
/// For each packed 8-bit integer maps the value to the number of logical 1 bits.
///
/// Uses the writemask in k - elements are copied from src if the corresponding mask bit is not set.
/// Otherwise the computation result is written into the result.
///
/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_popcnt_epi8)
#[inline]
#[target_feature(enable = "avx512bitalg,avx512vl")]
#[cfg_attr(test, assert_instr(vpopcntb))]
pub unsafe fn _mm256_mask_popcnt_epi8(src: __m256i, k: __mmask32, a: __m256i) -> __m256i {
transmute(simd_select_bitmask(
k,
popcnt_v32i8(a.as_i8x32()),
src.as_i8x32(),
))
}
/// For each packed 8-bit integer maps the value to the number of logical 1 bits.
///
/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_popcnt_epi8)
#[inline]
#[target_feature(enable = "avx512bitalg,avx512vl")]
#[cfg_attr(test, assert_instr(vpopcntb))]
pub unsafe fn _mm_popcnt_epi8(a: __m128i) -> __m128i {
transmute(popcnt_v16i8(a.as_i8x16()))
}
/// For each packed 8-bit integer maps the value to the number of logical 1 bits.
///
/// Uses the writemask in k - elements are zeroed in the result if the corresponding mask bit is not set.
/// Otherwise the computation result is written into the result.
///
/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskz_popcnt_epi8)
#[inline]
#[target_feature(enable = "avx512bitalg,avx512vl")]
#[cfg_attr(test, assert_instr(vpopcntb))]
pub unsafe fn _mm_maskz_popcnt_epi8(k: __mmask16, a: __m128i) -> __m128i {
let zero = _mm_setzero_si128().as_i8x16();
transmute(simd_select_bitmask(k, popcnt_v16i8(a.as_i8x16()), zero))
}
/// For each packed 8-bit integer maps the value to the number of logical 1 bits.
///
/// Uses the writemask in k - elements are copied from src if the corresponding mask bit is not set.
/// Otherwise the computation result is written into the result.
///
/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_popcnt_epi8)
#[inline]
#[target_feature(enable = "avx512bitalg,avx512vl")]
#[cfg_attr(test, assert_instr(vpopcntb))]
pub unsafe fn _mm_mask_popcnt_epi8(src: __m128i, k: __mmask16, a: __m128i) -> __m128i {
transmute(simd_select_bitmask(
k,
popcnt_v16i8(a.as_i8x16()),
src.as_i8x16(),
))
}
/// Considers the input `b` as packed 64-bit integers and `c` as packed 8-bit integers.
/// Then groups 8 8-bit values from `c`as indices into the the bits of the corresponding 64-bit integer.
/// It then selects these bits and packs them into the output.
///
/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_bitshuffle_epi64_mask)
#[inline]
#[target_feature(enable = "avx512bitalg")]
#[cfg_attr(test, assert_instr(vpshufbitqmb))]
pub unsafe fn _mm512_bitshuffle_epi64_mask(b: __m512i, c: __m512i) -> __mmask64 {
transmute(bitshuffle_512(b.as_i8x64(), c.as_i8x64(), !0))
}
/// Considers the input `b` as packed 64-bit integers and `c` as packed 8-bit integers.
/// Then groups 8 8-bit values from `c`as indices into the the bits of the corresponding 64-bit integer.
/// It then selects these bits and packs them into the output.
///
/// Uses the writemask in k - elements are zeroed in the result if the corresponding mask bit is not set.
/// Otherwise the computation result is written into the result.
///
/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm512_mask_bitshuffle_epi64_mask)
#[inline]
#[target_feature(enable = "avx512bitalg")]
#[cfg_attr(test, assert_instr(vpshufbitqmb))]
pub unsafe fn _mm512_mask_bitshuffle_epi64_mask(k: __mmask64, b: __m512i, c: __m512i) -> __mmask64 {
transmute(bitshuffle_512(b.as_i8x64(), c.as_i8x64(), k))
}
/// Considers the input `b` as packed 64-bit integers and `c` as packed 8-bit integers.
/// Then groups 8 8-bit values from `c`as indices into the the bits of the corresponding 64-bit integer.
/// It then selects these bits and packs them into the output.
///
/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_bitshuffle_epi64_mask)
#[inline]
#[target_feature(enable = "avx512bitalg,avx512vl")]
#[cfg_attr(test, assert_instr(vpshufbitqmb))]
pub unsafe fn _mm256_bitshuffle_epi64_mask(b: __m256i, c: __m256i) -> __mmask32 {
transmute(bitshuffle_256(b.as_i8x32(), c.as_i8x32(), !0))
}
/// Considers the input `b` as packed 64-bit integers and `c` as packed 8-bit integers.
/// Then groups 8 8-bit values from `c`as indices into the the bits of the corresponding 64-bit integer.
/// It then selects these bits and packs them into the output.
///
/// Uses the writemask in k - elements are zeroed in the result if the corresponding mask bit is not set.
/// Otherwise the computation result is written into the result.
///
/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_mask_bitshuffle_epi64_mask)
#[inline]
#[target_feature(enable = "avx512bitalg,avx512vl")]
#[cfg_attr(test, assert_instr(vpshufbitqmb))]
pub unsafe fn _mm256_mask_bitshuffle_epi64_mask(k: __mmask32, b: __m256i, c: __m256i) -> __mmask32 {
transmute(bitshuffle_256(b.as_i8x32(), c.as_i8x32(), k))
}
/// Considers the input `b` as packed 64-bit integers and `c` as packed 8-bit integers.
/// Then groups 8 8-bit values from `c`as indices into the the bits of the corresponding 64-bit integer.
/// It then selects these bits and packs them into the output.
///
/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_bitshuffle_epi64_mask)
#[inline]
#[target_feature(enable = "avx512bitalg,avx512vl")]
#[cfg_attr(test, assert_instr(vpshufbitqmb))]
pub unsafe fn _mm_bitshuffle_epi64_mask(b: __m128i, c: __m128i) -> __mmask16 {
transmute(bitshuffle_128(b.as_i8x16(), c.as_i8x16(), !0))
}
/// Considers the input `b` as packed 64-bit integers and `c` as packed 8-bit integers.
/// Then groups 8 8-bit values from `c`as indices into the the bits of the corresponding 64-bit integer.
/// It then selects these bits and packs them into the output.
///
/// Uses the writemask in k - elements are zeroed in the result if the corresponding mask bit is not set.
/// Otherwise the computation result is written into the result.
///
/// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mask_bitshuffle_epi64_mask)
#[inline]
#[target_feature(enable = "avx512bitalg,avx512vl")]
#[cfg_attr(test, assert_instr(vpshufbitqmb))]
pub unsafe fn _mm_mask_bitshuffle_epi64_mask(k: __mmask16, b: __m128i, c: __m128i) -> __mmask16 {
transmute(bitshuffle_128(b.as_i8x16(), c.as_i8x16(), k))
}
#[cfg(test)]
mod tests {
// Some of the constants in the tests below are just bit patterns. They should not
// be interpreted as integers; signedness does not make sense for them, but
// __mXXXi happens to be defined in terms of signed integers.
#![allow(overflowing_literals)]
use stdarch_test::simd_test;
use crate::core_arch::x86::*;
#[simd_test(enable = "avx512bitalg,avx512f")]
unsafe fn test_mm512_popcnt_epi16() {
let test_data = _mm512_set_epi16(
0, 1, 3, 7, 0xF, 0x1F, 0x3F, 0x7F, 0xFF, 0x1_FF, 0x3_FF, 0x7_FF, 0xF_FF, 0x1F_FF,
0x3F_FF, 0x7F_FF, 0xFF_FF, -1, -100, 255, 256, 2, 4, 8, 16, 32, 64, 128, 256, 512,
1024, 2048,
);
let actual_result = _mm512_popcnt_epi16(test_data);
let reference_result = _mm512_set_epi16(
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 16, 12, 8, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1,
);
assert_eq_m512i(actual_result, reference_result);
}
#[simd_test(enable = "avx512bitalg,avx512f")]
unsafe fn test_mm512_maskz_popcnt_epi16() {
let test_data = _mm512_set_epi16(
0, 1, 3, 7, 0xF, 0x1F, 0x3F, 0x7F, 0xFF, 0x1_FF, 0x3_FF, 0x7_FF, 0xF_FF, 0x1F_FF,
0x3F_FF, 0x7F_FF, 0xFF_FF, -1, -100, 255, 256, 2, 4, 8, 16, 32, 64, 128, 256, 512,
1024, 2048,
);
let mask = 0xFF_FF_00_00;
let actual_result = _mm512_maskz_popcnt_epi16(mask, test_data);
let reference_result = _mm512_set_epi16(
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0,
);
assert_eq_m512i(actual_result, reference_result);
}
#[simd_test(enable = "avx512bitalg,avx512f")]
unsafe fn test_mm512_mask_popcnt_epi16() {
let test_data = _mm512_set_epi16(
0, 1, 3, 7, 0xF, 0x1F, 0x3F, 0x7F, 0xFF, 0x1_FF, 0x3_FF, 0x7_FF, 0xF_FF, 0x1F_FF,
0x3F_FF, 0x7F_FF, 0xFF_FF, -1, -100, 255, 256, 2, 4, 8, 16, 32, 64, 128, 256, 512,
1024, 2048,
);
let mask = 0xFF_FF_00_00;
let actual_result = _mm512_mask_popcnt_epi16(test_data, mask, test_data);
let reference_result = _mm512_set_epi16(
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0xFF_FF, -1, -100, 255, 256, 2,
4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048,
);
assert_eq_m512i(actual_result, reference_result);
}
#[simd_test(enable = "avx512bitalg,avx512f,avx512vl")]
unsafe fn test_mm256_popcnt_epi16() {
let test_data = _mm256_set_epi16(
0, 1, 3, 7, 0xF, 0x1F, 0x3F, 0x7F, 0xFF, 0x1_FF, 0x3_FF, 0x7_FF, 0xF_FF, 0x1F_FF,
0x3F_FF, 0x7F_FF,
);
let actual_result = _mm256_popcnt_epi16(test_data);
let reference_result =
_mm256_set_epi16(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);
assert_eq_m256i(actual_result, reference_result);
}
#[simd_test(enable = "avx512bitalg,avx512f,avx512vl")]
unsafe fn test_mm256_maskz_popcnt_epi16() {
let test_data = _mm256_set_epi16(
0, 1, 3, 7, 0xF, 0x1F, 0x3F, 0x7F, 0xFF, 0x1_FF, 0x3_FF, 0x7_FF, 0xF_FF, 0x1F_FF,
0x3F_FF, 0x7F_FF,
);
let mask = 0xFF_00;
let actual_result = _mm256_maskz_popcnt_epi16(mask, test_data);
let reference_result = _mm256_set_epi16(0, 1, 2, 3, 4, 5, 6, 7, 0, 0, 0, 0, 0, 0, 0, 0);
assert_eq_m256i(actual_result, reference_result);
}
#[simd_test(enable = "avx512bitalg,avx512f,avx512vl")]
unsafe fn test_mm256_mask_popcnt_epi16() {
let test_data = _mm256_set_epi16(
0, 1, 3, 7, 0xF, 0x1F, 0x3F, 0x7F, 0xFF, 0x1_FF, 0x3_FF, 0x7_FF, 0xF_FF, 0x1F_FF,
0x3F_FF, 0x7F_FF,
);
let mask = 0xFF_00;
let actual_result = _mm256_mask_popcnt_epi16(test_data, mask, test_data);
let reference_result = _mm256_set_epi16(
0, 1, 2, 3, 4, 5, 6, 7, 0xFF, 0x1_FF, 0x3_FF, 0x7_FF, 0xF_FF, 0x1F_FF, 0x3F_FF, 0x7F_FF,
);
assert_eq_m256i(actual_result, reference_result);
}
#[simd_test(enable = "avx512bitalg,avx512f,avx512vl")]
unsafe fn test_mm_popcnt_epi16() {
let test_data = _mm_set_epi16(0, 1, 3, 7, 0xF, 0x1F, 0x3F, 0x7F);
let actual_result = _mm_popcnt_epi16(test_data);
let reference_result = _mm_set_epi16(0, 1, 2, 3, 4, 5, 6, 7);
assert_eq_m128i(actual_result, reference_result);
}
#[simd_test(enable = "avx512bitalg,avx512f,avx512vl")]
unsafe fn test_mm_maskz_popcnt_epi16() {
let test_data = _mm_set_epi16(0, 1, 3, 7, 0xF, 0x1F, 0x3F, 0x7F);
let mask = 0xF0;
let actual_result = _mm_maskz_popcnt_epi16(mask, test_data);
let reference_result = _mm_set_epi16(0, 1, 2, 3, 0, 0, 0, 0);
assert_eq_m128i(actual_result, reference_result);
}
#[simd_test(enable = "avx512bitalg,avx512f,avx512vl")]
unsafe fn test_mm_mask_popcnt_epi16() {
let test_data = _mm_set_epi16(0, 1, 3, 7, 0xF, 0x1F, 0x3F, 0x7F);
let mask = 0xF0;
let actual_result = _mm_mask_popcnt_epi16(test_data, mask, test_data);
let reference_result = _mm_set_epi16(0, 1, 2, 3, 0xF, 0x1F, 0x3F, 0x7F);
assert_eq_m128i(actual_result, reference_result);
}
#[simd_test(enable = "avx512bitalg,avx512f")]
unsafe fn test_mm512_popcnt_epi8() {
let test_data = _mm512_set_epi8(
0, 1, 3, 7, 0xF, 0x1F, 0x3F, 0x7F, 0xFF, -1, 2, 4, 8, 16, 32, 64, 128, 171, 206, 100,
217, 109, 253, 190, 177, 254, 179, 215, 230, 68, 201, 172, 183, 154, 84, 56, 227, 189,
140, 35, 117, 219, 169, 226, 170, 13, 22, 159, 251, 73, 121, 143, 145, 85, 91, 137, 90,
225, 21, 249, 211, 155, 228, 70,
);
let actual_result = _mm512_popcnt_epi8(test_data);
let reference_result = _mm512_set_epi8(
0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 1, 1, 1, 1, 1, 1, 1, 5, 5, 3, 5, 5, 7, 6, 4, 7, 5, 6, 5,
2, 4, 4, 6, 4, 3, 3, 5, 6, 3, 3, 5, 6, 4, 4, 4, 3, 3, 6, 7, 3, 5, 5, 3, 4, 5, 3, 4, 4,
3, 6, 5, 5, 4, 3,
);
assert_eq_m512i(actual_result, reference_result);
}
#[simd_test(enable = "avx512bitalg,avx512f")]
unsafe fn test_mm512_maskz_popcnt_epi8() {
let test_data = _mm512_set_epi8(
0, 1, 3, 7, 0xF, 0x1F, 0x3F, 0x7F, 0xFF, -1, 2, 4, 8, 16, 32, 64, 128, 171, 206, 100,
217, 109, 253, 190, 177, 254, 179, 215, 230, 68, 201, 172, 183, 154, 84, 56, 227, 189,
140, 35, 117, 219, 169, 226, 170, 13, 22, 159, 251, 73, 121, 143, 145, 85, 91, 137, 90,
225, 21, 249, 211, 155, 228, 70,
);
let mask = 0xFF_FF_FF_FF_00_00_00_00;
let actual_result = _mm512_maskz_popcnt_epi8(mask, test_data);
let reference_result = _mm512_set_epi8(
0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 1, 1, 1, 1, 1, 1, 1, 5, 5, 3, 5, 5, 7, 6, 4, 7, 5, 6, 5,
2, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0,
);
assert_eq_m512i(actual_result, reference_result);
}
#[simd_test(enable = "avx512bitalg,avx512f")]
unsafe fn test_mm512_mask_popcnt_epi8() {
let test_data = _mm512_set_epi8(
0, 1, 3, 7, 0xF, 0x1F, 0x3F, 0x7F, 0xFF, -1, 2, 4, 8, 16, 32, 64, 128, 171, 206, 100,
217, 109, 253, 190, 177, 254, 179, 215, 230, 68, 201, 172, 183, 154, 84, 56, 227, 189,
140, 35, 117, 219, 169, 226, 170, 13, 22, 159, 251, 73, 121, 143, 145, 85, 91, 137, 90,
225, 21, 249, 211, 155, 228, 70,
);
let mask = 0xFF_FF_FF_FF_00_00_00_00;
let actual_result = _mm512_mask_popcnt_epi8(test_data, mask, test_data);
let reference_result = _mm512_set_epi8(
0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 1, 1, 1, 1, 1, 1, 1, 5, 5, 3, 5, 5, 7, 6, 4, 7, 5, 6, 5,
2, 4, 4, 183, 154, 84, 56, 227, 189, 140, 35, 117, 219, 169, 226, 170, 13, 22, 159,
251, 73, 121, 143, 145, 85, 91, 137, 90, 225, 21, 249, 211, 155, 228, 70,
);
assert_eq_m512i(actual_result, reference_result);
}
#[simd_test(enable = "avx512bitalg,avx512f,avx512vl")]
unsafe fn test_mm256_popcnt_epi8() {
let test_data = _mm256_set_epi8(
0, 1, 3, 7, 0xF, 0x1F, 0x3F, 0x7F, 0xFF, -1, 2, 4, 8, 16, 32, 64, 128, 171, 206, 100,
217, 109, 253, 190, 177, 254, 179, 215, 230, 68, 201, 172,
);
let actual_result = _mm256_popcnt_epi8(test_data);
let reference_result = _mm256_set_epi8(
0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 1, 1, 1, 1, 1, 1, 1, 5, 5, 3, 5, 5, 7, 6, 4, 7, 5, 6, 5,
2, 4, 4,
);
assert_eq_m256i(actual_result, reference_result);
}
#[simd_test(enable = "avx512bitalg,avx512f,avx512vl")]
unsafe fn test_mm256_maskz_popcnt_epi8() {
let test_data = _mm256_set_epi8(
0, 1, 3, 7, 0xF, 0x1F, 0x3F, 0x7F, 0xFF, -1, 2, 4, 8, 16, 32, 64, 251, 73, 121, 143,
145, 85, 91, 137, 90, 225, 21, 249, 211, 155, 228, 70,
);
let mask = 0xFF_FF_00_00;
let actual_result = _mm256_maskz_popcnt_epi8(mask, test_data);
let reference_result = _mm256_set_epi8(
0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0,
);
assert_eq_m256i(actual_result, reference_result);
}
#[simd_test(enable = "avx512bitalg,avx512f,avx512vl")]
unsafe fn test_mm256_mask_popcnt_epi8() {
let test_data = _mm256_set_epi8(
0, 1, 3, 7, 0xF, 0x1F, 0x3F, 0x7F, 0xFF, -1, 2, 4, 8, 16, 32, 64, 251, 73, 121, 143,
145, 85, 91, 137, 90, 225, 21, 249, 211, 155, 228, 70,
);
let mask = 0xFF_FF_00_00;
let actual_result = _mm256_mask_popcnt_epi8(test_data, mask, test_data);
let reference_result = _mm256_set_epi8(
0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 1, 1, 1, 1, 1, 1, 251, 73, 121, 143, 145, 85, 91, 137,
90, 225, 21, 249, 211, 155, 228, 70,
);
assert_eq_m256i(actual_result, reference_result);
}
#[simd_test(enable = "avx512bitalg,avx512f,avx512vl")]
unsafe fn test_mm_popcnt_epi8() {
let test_data = _mm_set_epi8(
0, 1, 3, 7, 0xF, 0x1F, 0x3F, 0x7F, 0xFF, -1, 2, 4, 8, 16, 32, 64,
);
let actual_result = _mm_popcnt_epi8(test_data);
let reference_result = _mm_set_epi8(0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 1, 1, 1, 1, 1, 1);
assert_eq_m128i(actual_result, reference_result);
}
#[simd_test(enable = "avx512bitalg,avx512f,avx512vl")]
unsafe fn test_mm_maskz_popcnt_epi8() {
let test_data = _mm_set_epi8(
0, 1, 3, 7, 0xF, 0x1F, 0x3F, 0x7F, 90, 225, 21, 249, 211, 155, 228, 70,
);
let mask = 0xFF_00;
let actual_result = _mm_maskz_popcnt_epi8(mask, test_data);
let reference_result = _mm_set_epi8(0, 1, 2, 3, 4, 5, 6, 7, 0, 0, 0, 0, 0, 0, 0, 0);
assert_eq_m128i(actual_result, reference_result);
}
#[simd_test(enable = "avx512bitalg,avx512f,avx512vl")]
unsafe fn test_mm_mask_popcnt_epi8() {
let test_data = _mm_set_epi8(
0, 1, 3, 7, 0xF, 0x1F, 0x3F, 0x7F, 90, 225, 21, 249, 211, 155, 228, 70,
);
let mask = 0xFF_00;
let actual_result = _mm_mask_popcnt_epi8(test_data, mask, test_data);
let reference_result =
_mm_set_epi8(0, 1, 2, 3, 4, 5, 6, 7, 90, 225, 21, 249, 211, 155, 228, 70);
assert_eq_m128i(actual_result, reference_result);
}
#[simd_test(enable = "avx512bitalg,avx512f")]
unsafe fn test_mm512_bitshuffle_epi64_mask() {
let test_indices = _mm512_set_epi8(
63, 62, 61, 60, 59, 58, 57, 56, 63, 62, 61, 60, 59, 58, 57, 56, 32, 32, 16, 16, 0, 0,
8, 8, 56, 48, 40, 32, 24, 16, 8, 0, 63, 62, 61, 60, 59, 58, 57, 56, 63, 62, 61, 60, 59,
58, 57, 56, 32, 32, 16, 16, 0, 0, 8, 8, 56, 48, 40, 32, 24, 16, 8, 0,
);
let test_data = _mm512_setr_epi64(
0xFF_FF_FF_FF_00_00_00_00,
0xFF_00_FF_00_FF_00_FF_00,
0xFF_00_00_00_00_00_00_00,
0xAC_00_00_00_00_00_00_00,
0xFF_FF_FF_FF_00_00_00_00,
0xFF_00_FF_00_FF_00_FF_00,
0xFF_00_00_00_00_00_00_00,
0xAC_00_00_00_00_00_00_00,
);
let actual_result = _mm512_bitshuffle_epi64_mask(test_data, test_indices);
let reference_result = 0xF0 << 0
| 0x03 << 8
| 0xFF << 16
| 0xAC << 24
| 0xF0 << 32
| 0x03 << 40
| 0xFF << 48
| 0xAC << 56;
assert_eq!(actual_result, reference_result);
}
#[simd_test(enable = "avx512bitalg,avx512f")]
unsafe fn test_mm512_mask_bitshuffle_epi64_mask() {
let test_indices = _mm512_set_epi8(
63, 62, 61, 60, 59, 58, 57, 56, 63, 62, 61, 60, 59, 58, 57, 56, 32, 32, 16, 16, 0, 0,
8, 8, 56, 48, 40, 32, 24, 16, 8, 0, 63, 62, 61, 60, 59, 58, 57, 56, 63, 62, 61, 60, 59,
58, 57, 56, 32, 32, 16, 16, 0, 0, 8, 8, 56, 48, 40, 32, 24, 16, 8, 0,
);
let test_data = _mm512_setr_epi64(
0xFF_FF_FF_FF_00_00_00_00,
0xFF_00_FF_00_FF_00_FF_00,
0xFF_00_00_00_00_00_00_00,
0xAC_00_00_00_00_00_00_00,
0xFF_FF_FF_FF_00_00_00_00,
0xFF_00_FF_00_FF_00_FF_00,
0xFF_00_00_00_00_00_00_00,
0xAC_00_00_00_00_00_00_00,
);
let mask = 0xFF_FF_FF_FF_00_00_00_00;
let actual_result = _mm512_mask_bitshuffle_epi64_mask(mask, test_data, test_indices);
let reference_result = 0x00 << 0
| 0x00 << 8
| 0x00 << 16
| 0x00 << 24
| 0xF0 << 32
| 0x03 << 40
| 0xFF << 48
| 0xAC << 56;
assert_eq!(actual_result, reference_result);
}
#[simd_test(enable = "avx512bitalg,avx512f,avx512vl")]
unsafe fn test_mm256_bitshuffle_epi64_mask() {
let test_indices = _mm256_set_epi8(
63, 62, 61, 60, 59, 58, 57, 56, 63, 62, 61, 60, 59, 58, 57, 56, 32, 32, 16, 16, 0, 0,
8, 8, 56, 48, 40, 32, 24, 16, 8, 0,
);
let test_data = _mm256_setr_epi64x(
0xFF_FF_FF_FF_00_00_00_00,
0xFF_00_FF_00_FF_00_FF_00,
0xFF_00_00_00_00_00_00_00,
0xAC_00_00_00_00_00_00_00,
);
let actual_result = _mm256_bitshuffle_epi64_mask(test_data, test_indices);
let reference_result = 0xF0 << 0 | 0x03 << 8 | 0xFF << 16 | 0xAC << 24;
assert_eq!(actual_result, reference_result);
}
#[simd_test(enable = "avx512bitalg,avx512f,avx512vl")]
unsafe fn test_mm256_mask_bitshuffle_epi64_mask() {
let test_indices = _mm256_set_epi8(
63, 62, 61, 60, 59, 58, 57, 56, 63, 62, 61, 60, 59, 58, 57, 56, 32, 32, 16, 16, 0, 0,
8, 8, 56, 48, 40, 32, 24, 16, 8, 0,
);
let test_data = _mm256_setr_epi64x(
0xFF_FF_FF_FF_00_00_00_00,
0xFF_00_FF_00_FF_00_FF_00,
0xFF_00_00_00_00_00_00_00,
0xAC_00_00_00_00_00_00_00,
);
let mask = 0xFF_FF_00_00;
let actual_result = _mm256_mask_bitshuffle_epi64_mask(mask, test_data, test_indices);
let reference_result = 0x00 << 0 | 0x00 << 8 | 0xFF << 16 | 0xAC << 24;
assert_eq!(actual_result, reference_result);
}
#[simd_test(enable = "avx512bitalg,avx512f,avx512vl")]
unsafe fn test_mm_bitshuffle_epi64_mask() {
let test_indices = _mm_set_epi8(
63, 62, 61, 60, 59, 58, 57, 56, 63, 62, 61, 60, 59, 58, 57, 56,
);
let test_data = _mm_setr_epi64x(0xFF_00_00_00_00_00_00_00, 0xAC_00_00_00_00_00_00_00);
let actual_result = _mm_bitshuffle_epi64_mask(test_data, test_indices);
let reference_result = 0xFF << 0 | 0xAC << 8;
assert_eq!(actual_result, reference_result);
}
#[simd_test(enable = "avx512bitalg,avx512f,avx512vl")]
unsafe fn test_mm_mask_bitshuffle_epi64_mask() {
let test_indices = _mm_set_epi8(
63, 62, 61, 60, 59, 58, 57, 56, 63, 62, 61, 60, 59, 58, 57, 56,
);
let test_data = _mm_setr_epi64x(0xFF_00_00_00_00_00_00_00, 0xAC_00_00_00_00_00_00_00);
let mask = 0xFF_00;
let actual_result = _mm_mask_bitshuffle_epi64_mask(mask, test_data, test_indices);
let reference_result = 0x00 << 0 | 0xAC << 8;
assert_eq!(actual_result, reference_result);
}
}